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Part VIII

Interaction with Solids
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Short pulse vs. long pulse interactions

Traditional interaction physics (ICF – ns lasers):

• Collisional heating and creation of long scale-length plasmas

• Laser reflected at critical density surface

• Fast (keV) particles produced at ’high’ intensities (1016 Wcm−2)

Femtosecond pulses

• Pulse length < ion motion (hydrodynamic) timescale

• Huge intensity range 107

• No single interaction model possible
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Typical interaction scenario: I. Creation of critical
surface

Field ionization over the first few laser cycles rapidly creates a surface
plasma layer with a density many times the critical density nc .

ω2 =
4πe2nc

m
, (135)

where e and m are the electron charge and mass respectively.
In practical units:

nc ' 1.1× 1021

(
λ

µm

)
cm−3. (136)
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Interaction scenario: II. Ionization degree

Example: aluminium has 3 valence electrons; 6 more can be created
for a few hundred eV.
The electron density is given by:

ne = Z∗ni =
Z∗NAρ

A
. (137)

effective ion charge: Z∗ = 9
atomic number: A = 26
Avogadro number: NA = 6.02× 1023

mass density: ρ = ρsolid = 1.9 g cm−3

electron density: ne = 4× 1023 cm−3

density contrast (1 µm): ne/nc = 400
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Interaction scenario: III. Heating

Target is heated via electron-ion collisions to 10s or 100s of eV
depending on the laser intensity.
The plasma pressure created during heating causes ion blow-off
(ablation) at the sound speed:

cs =

(
Z∗kBTe

mi

)1/2

' 3.1× 107

(
Te

keV

)1/2(
Z∗

A

)1/2

cm s−1, (138)

where kB is the Boltzmann constant, Te the electron temperature
and mi the ion mass.
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Interaction scenario: IV. Expansion

Because of ion ablation, density profile formed is exponential with
scale-length:

L = csτL

' 3

(
Te

keV

)1/2(
Z∗

A

)1/2

τfsÅ. (139)

Eg: 100 fs Ti:sapphire pulse heats the target to a few hundred eV →
plasma with scale-length L/λ= 0.01–0.1. (cf: 100-1000 for ICF
plasmas).
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Why is ionization important?

For multi-electron atoms, ionization degree, Z∗, needed for basic
plasma properties like the electron density, equation of state,
transport coefficients.

1 High density, optically thick plasmas: radiative and absorptive
processes balanced – local thermal equilibrium (LTE) reached.

2 Short pulses: optically thin plasmas (radiation escapes!), which
span many orders of magnitude in density and temperature all at
once.
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Local thermal equilibrium (LTE)

Relative ion populations related by the Saha-Boltzmann equation:

nenZ+1

nZ
=

gZ+1

gZ

2m3

h3

(
2πTe

m

)3/2

exp(−∆EZ/Te), (140)

where nZ , nZ+1 are the ion densities corresponding to ionization
states Z and Z + 1; gZ , gZ+1 are the respective statistical weights of
these levels (taking electron degeneracy into account), and ∆EZ is
the energy difference between the two states. This equation is
subject to the constraints:∑

nZ = n0;
∑

ZnZ = ne . (141)
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Transient plasmas (non-LTE)

Typical situation for short (< 1ps) pulses. Need time-dependent
atomic rate equations in order to determine the charge distribution:

dnZ

dt
= nenZ−1S(Z − 1)− nenZ [S(Z ) + α(Z )] + nenZ+1α(Z + 1),

(142)
where S(Z ) and α(Z ) are the ionization and recombination rates of
the ion with charge state Z , respectively.
Recombination rate generally comprises a number of separate
processes, such as radiative recombination, 3-body collisional
recombination and dielectronic recombination.
Highly complex procedure for high Z – thousands of transitions.
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Collisional absorption

Distinguish long/short pulse regimes via density scale-length L/λ:

• Long pulse (ps–ns) → L/λ� 1 (eg 10–100). Laser light mainly
absorbed in underdense region via inverse bremsstrahlung.

• Sub-picosecond timescale, low intensities (I < 1015 Wcm−2)
→L/λ≤ 0.1: standard IB formula invalid. Less ’room’ for
absorption, but higher densities → higher collision rates.

• Short pulse, high intensities: nonlinear collisionless absorption –
cf. metal optics
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Collisional absorption: Helmholtz equations

Standard method for electromagnetic wave propagation in an
inhomogeneous plasma – see books by Ginzburg, Kruer.
Start from Maxwell’s equations with small field amplitudes and a
non-relativistic fluid response including collisional damping:

m
∂v

∂t
= −e(E +

v

c
×B)−mνeiv, (143)

where νei is the electron-ion collision frequency.
Physically arises from binary collisions, resulting in a frictional drag
on the electron motion.

224 / 273



Interaction with
Solids:
Overdense
Plasmas

Short pulse
nteraction
scenario

Ionization

Collisional
Absorption

Helmholtz
equations

Normal skin
effect

Heating and
Thermal
Conduction

Hydrodynamics

Electron-ion collisional frequency
Spitzer-Härm

Collision rate:

νei =
4(2π)1/2

3

neZe4

m2v3
te

ln Λ

' 2.91× 10−6ZneT
−3/2
e ln Λ s−1. (144)

Z = number of free electrons per atom
ne = electron density in cm−3

Te = temperature in eV
ln Λ is the Coulomb logarithm, with usual limits, bmin and bmax, of
the electron-ion scattering cross-section.
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Electron-ion collisional frequency: Coulomb
logarithm

Limits are determined by the classical distance of closest approach
and the Debye length respectively, so that:

Λ =
bmax

bmin
= λD .

kBTe

Ze2
=

9ND

Z
, (145)

where

λD =

(
kBTe

4πnee2

)1/2

=
vte

ωp
, (146)

and

ND =
4π

3
λ3

Dne

is the number of particles in a Debye sphere.
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Wave equations

The relevant EM wave equations for E and B are obtained in the
usual way by taking the curl of the Faraday and Ampère equations
(60, 61) respectively, to give:

∇2E− 1

c2

∂2E

∂t2
=

4π

c2

∂J

∂t
+∇(∇·E), (147)

∇2B− 1

c2

∂2B

∂t2
= −4π

c
∇×J. (148)

The right-hand sides of each equation represent the source terms of
the EM waves in the plasma.
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Linearized wave equations

Assume that all field and fluid quantities have a harmonic
time-dependence exp(−iωt), where ω is the laser frequency:

f (x, t) = f0(x) + f1(x)e
−iωt + f2(x)e

−2iωt + ...,

which results in the following simplifications:

∂

∂t
→ −iω

ne → no + n1

J → −en0v1

(E + v × B) → E1.
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Ohm’s Law

Inserting these approximations into the Lorentz equation (143) allows
us to solve for v1, namely:

v1 =
−i

ω + iνei

eE1

m
.

This immediately gives us the induced plasma current

J1 = −enov1 = σeE1, (149)

where σe , the AC electrical conductivity, is

σe =
iω2

p

4πω(1 + i ν̃)
. (150)

Note ν̃ = νei/ω.
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General wave equation

Substituting expression (149) for J1 into the RHS of the wave
equation (147) for E1 gives us a general expression for the electric
field:

∇2E1 +
ω2

c2
E1 =

ω2
p

c2

E1

1 + i ν̃
+∇(∇·E1). (151)
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Dispersion relation

For a planar, transverse EM wave propagating in a uniform plasma
we have ∇ → ik, and E1 perpendicular to k, so that ∇·E1 = 0. In
this limit we recover the standard linear dispersion relation:

−k2 +
ω2

c2

(
1−

ω2
p

ω2(1 + i ν̃)

)
= 0. (152)
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Dielectric constant

From this we identify the dielectric constant of the propagation
medium

ε ≡ k2c2

ω2
= 1−

ω2
p

ω2(1 + i ν̃)
= 1 +

4πiσe

ω
.

Can be readily generalized to a non-uniform plasma by allowing
permittivity ε(x) to vary in space.
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One-dimensional density gradient

Consider plasma density with a gradient in one direction, so that

ε(x) ≡ n2(x) = 1− n0(x)/nc

(1 + i ν̃(x))
, (153)

where n(x) is the local refractive index, n0 the equilibrium electron
density and nc the critical density of the EM wave.
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Simplified wave equation: S-polarization

nc

E

B

k

n  cosc
2

x

θ

en  (x)

y
θ

s−pol.

Figure: Geometry of plane-wave incident on a plasma density profile for
s-polarized light (E-field in the z-direction).
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S-polarized wave

Assume incident wave is at some fixed angle to the density gradient,
polarized out of the propagation plane, see Fig. 13. In this case the
wave has a periodicity in y given by:

E1 = (0, 0,Ez)e
iky sin θ.

Thus ∇ = (∂/∂x , ik sin θ, 0), so that ∇·E1 = 0. Making use of
Eq. (153), the wave equation reduces to the Helmholtz equation for
the electric field:

∂2Ez

∂x2
+ k2(ε− sin2 θ)Ez = 0. (154)
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P-polarized wave

Consider now a p-polarized wave E1 = (Ex ,Ey , 0).
In this case, ∇·E1 6= 0; a component of the laser field lies along the
density gradient.

nc

n  cosc
2

x

θ

en  (x)

y
θ

B

E p

k
E

B
s
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Helmholtz equation for B

The equation for the electric field in this case is complicated because
it contains both EM and ES components.
Easier to solve for Bz instead, and then obtain E from Ampère’s law,
which after substituting J1 = σeE1, becomes (?)

∇×B1 = − iωε

c
E1. (155)

In an analogous fashion, Faraday’s law can be written:

∇×E1 =
iω

c
B1. (156)
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Helmholtz equation for B

As with the electric field, we substitute the expression for the current
Eq. (149) into the magnetic field wave equation (148), and then use
Eq. (155) and Eq. (156) to eliminate E1; Eq. (153) to eliminate σe :

∇2B1 +
ω2

c2
B1 +

∇ε
ε

×(∇×B1) = 0. (157)

Applying the same oblique-incidence ansatz as before

B1 = (0, 0,Bz)e
iky sin θ,

we get the Helmholtz equation for B:

∂2Bz

∂x2
− 1

ε

∂ε

∂x

∂Bz

∂x
+ k2(ε− sin2 θ)Bz = 0. (158)
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Numerical solution of Helmholtz equations

Helmholtz equations (154) and (158) are ordinary differential
equations which can be solved numerically by standard
matrix-inversion.

4 principle parameters of interest:

1 scale-length

2 polarization

3 angle of incidence

4 collision frequency

Typically find characteristic angular dependence in reflectivity for a
given value of kL.
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Solution: long density scale-lengths

Remark: wave modes are purely transverse: no coupling between an
s-polarized EM wave and electrostatic modes (or Langmuir waves),
since n1 = ∇·E1 = 0.

If density gradient L/λ�, then ε(x) is slowly varying over a laser
wavelength, i.e. L−1 ∼ ε−1∂ε/∂x � 1. then Eq. (154) can be solved
via the Wentzel-Kramers-Brillouin (WKB) approximation.

→ Airy functions.

240 / 273



Interaction with
Solids:
Overdense
Plasmas

Short pulse
nteraction
scenario

Ionization

Collisional
Absorption

Helmholtz
equations

Normal skin
effect

Heating and
Thermal
Conduction

Hydrodynamics

Absorption in long-scale-length plasma for S-light

For s-light, the absorption coefficient in this limit is given for an
exponential profile by (Kruer, 1988):

ηWKB = 1− exp

(
−8νeiL

3c
cos3 θ

)
. (159)
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Resonance absorption: P-light with kL � 1
Ginzburg (1964)

For p-polarized light, EM wave drives plasma resonance at ne = nc ,
which may be collisionally damped, leading to a maximum absorption
of about 60% at an optimum angle of incidence given by

sin θopt = 0.8 (kL)−1/3
. (160)
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Absorption for S- and P-light at various density
scale-lengths

Absorption fraction of both s- and p-light for three different
scale-lengths: L/λ=1 (solid curves), L/λ=0.1 (dashed) and L/λ=
0.01 (dotted).
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Absorption in steep density profiles: skin effect

In the limit L → 0, recover Fresnel-like absorption behavior of
metal-optics. Consider first s-polarized light. Starting from the
Helmholtz equation 154 for the electric field, we represent the density
by a Heaviside step function:

n0(x) = n0Θ(x),

and for the time-being neglect collisions in the dielectric constant, so
that Eq. (153) reduces to:

ε(x) = 1−
ω2

p

ω2
Θ(x).
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Vacuum field solution

In the vacuum region (x < 0), the electric field thus has the solution

Ez = 2E0 sin(kx cos θ + φ), (161)

where k = ω/c , E0 is the amplitude of the laser field and φ a phase
factor still to be determined.
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Evanescent field solution

In the overdense region, the field is evanescent:

Ez = E (0) exp(−x/ls), (162)

where

ls =
c

ωp

(
1− ω2

ω2
p

cos2 θ

)−1/2

. (163)

– collisionless skin-depth. In highly overdense limit, n0/nc � 1, we
have ls ' c/ωp.
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Phase matched overall solution

To complete our solution, we match up Eq. (161) and Eq. (162)
together with their derivatives at the boundary x = 0. This gives:

E (0) = 2E0
ω

ωp
cos θ

tanφ = −ls
ω

c
cos θ.

-4 -3 -2 -1 0 1 2
kx
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Reflectivity: Fresnel equations

Fresnel equations for light reflectivity on a conducting surface:

Rs =

∣∣∣∣ sin(θ − θt)
sin(θ + θt)

∣∣∣∣2 , for s-light (164)

and

Rp =

∣∣∣∣ tan(θ − θt)
tan(θ + θt)

∣∣∣∣2 , for p-light (165)

where θ is the angle of incidence as before, and

θt = sin−1

{
sin θ

n

}
is the generalized, complex angle of the transmitted light rays (from
Snell’s law).
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Reflectivity: example

The refractive index n =
√
ε can be obtained from Eq. (153) as

before, setting the density equal to the solid density – Drude model.

Example
Solid aluminium target: Z∗ = 3
ne ' 2× 1023 cm−3

Ti-Sa laser: λL = 0.8 µm
ne/nc ' 100.

Assume the plasma is initially heated to 120 eV, so that according to
Eq. (144), we have ν/ω = 5 at the maximum density.
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Reflectivity: example

The resulting absorption curves calculated from Eqs. (164) and (165)
are shown in Fig. 7 along with numerical solution of the Helmholtz
equations for an exponential profile with L/λ= 0.001.
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Thermal transport

Energy transport equation for a collisional plasma (?)

∂ε

∂t
+∇.(q + Φa) = 0, (166)

where ε is the energy density, q is the heat flow and Φa = ηaΦL is the
absorbed laser flux.
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Heating rate

If penetration depth of the heat wave lh < ls = c/ωp (skin depth),
then the thermal transport can be neglected.
Volume heated simultaneously: V ' lsπσ

2.
Setting ε = 3

2nekBTe and ∇.Φa ∼ Φa/ls , have

dTe

dt
' Φa

ne ls
, (167)

or

d

dt
(kBTe) ' 4

Φa

Wcm−2

( ne

cm−3

)−1
(

ls
cm

)−1

keV fs−1. (168)
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Onset of transport: heat carried into target

After a few femtoseconds, huge temperature gradients generated:
heat is carried away from the surface into the colder target material
according to Eq. (166). For ideal plasmas, we write

ε =
3

2
nekBTe

as before, and

q(x) = −κe
∂Te

∂x
, (169)

which is the usual Spitzer-Härm heat-flow (??).
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Spitzer-Härm heat-flow

Substituting for ε and q in Eq. (166) and restricting ourselves to 1D
by letting ∇ = (∂/∂x , 0, 0), gives a diffusion equation for Te :

3

2
nekB

∂Te

∂t
=

∂

∂x

(
κe
∂Te

∂x

)
+
∂ΦL

∂x
. (170)

κe is known as the Spitzer thermal conductivity and is given by:

κe = 32

(
2

π

)1/2
ne

ν0m5/2
T 5/2

e , (171)

where

ν0 =
2πneZe4 log Λ

m2
.
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Figure: Nonlinear heat-wave advancing into a semi-infinite, solid-density
plasma. The curves are obtained from the numerical solution of the Spitzer
heat flow equation for constant laser absorption at the target surface (left
boundary).
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Figure: Building blocks of a hydrodynamic laser-plasma simulation model.
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