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Motivation



Hierarchy problem in loop integral:

∫

ddl

(2π)d

i

l2 − m2 + iǫ
∼ Λ2

Quadratically divergent !

It is quit obscure to do such an integral since in

general the energy of a particle in the quantum

world have no reason to be continuous.



Fourian transformation between time and frequency



A “point” or a “plane wave” is only concept in mathematical
QFT.

The divergence is kind of “phase transition”?

Can the divergence be removed by Riemann ζ function?

We should be very careful about the operation from a

summing to a integral



Bose Einstein Condensation:

al =
ωl

e
ǫl−µ

kT − 1

TTC

µ < 0µ = 0ε0 ⇐ ⇐

The way from discrete summing to integral may go
wrong in some physical systems.



work of thermal process:



Riemann ζ function:

ζ(s) =
1

Γ(s)

∫

dt
ts−1

et − 1
=

∞
∑

n=1

n−s

.

ζ(−1) = 1 + 2 + 3 + 4 + ... = − 1

12
A brief Proof

ζ(−1) =
ζ(−1) − (2ζ(−1) −

∑

∞

n=1
1)

2

→ ζ(−1) =

∑

∞

n=1
1

3

Taylor expansion of 1
(1+x)2 at x = 0

1

(1 + x)2
= 1 − 2x + 3x2 − 4x3 + ...

x = 1 − ǫ then
∑∞

n=1 1 = −1
4

then ζ(−1) = − 1
12



Discrete regularization



Procedure of Dimensional Regularization

i

16π2
Bµν(p,m2

1,m
2
2) =

∫

ddl

(2π)d
kµkν

[k2 − m2
1 + iǫ][(k − p)2 − m2

2 + iǫ]
,

Feynman parameterization

use

1

AB
=

∫ 1

0
dxdyδ(x + y − 1)

1

[xA + yB]2

and let l = k − xp

B =

∫

ddl

(2π)d

∫ 1

0
dx

lµlν + x2pµpν
[l2 − S(x)]2

in which

S(x) ≡ p2x2 − (p2 + m2
1 − m2

2)x + m2
1



Wick Rotation

Rotate the integral from Minkovski space to Euclidean space:

I(d, n, S) =

∫

ddl

(2π)d
1

(l2 + S)n



Dimensional Regularization

ID(d, n, S, µ) = µǫ
∫

ddl

(2π)d
1

(l2 + S)n

= µǫ
1

(4π)d/2
Γ(n − d

2)

Γ(n)

(

1

S

)n− d
2

1 d = 4 − ǫ, n = 1, 2

Γ(−1 +
ǫ

2
), Γ(

ǫ

2
)

divergent

2 d = 3 − ǫ, n = 1, 2 the integral is finite. interestingly

ID(d, n, S, µ) = µǫ
∫

d3−ǫl

(2π)3−ǫ
1

l2 + S

superficially divergent, but finite in complex integral.



Discrete regularization

I(d, n, S) =

∫

ddl

(2π)d
1

(l2 + S)n

we consider the virtual particle like an oscillator, which energy gap
is denoted as l0, the energy level is jl0.

IW (d, n, S, l0) =
l0
2π

∫

dd−1l

(2π)d−1

1

(l2 + S)n

+
l0
π

∞
∑

j=1

∫

dd−1l

(2π)d−1

1

(l2 + j2l20 + S)n

Then

IW =
l0
2π

1

(4π)d/2−1/2

Γ(n − d
2 + 1

2)

Γ(n)

(

1

S

)n− d
2
+ 1

2

+
l0
π

∞
∑

j=1

1

(4π)d/2−1/2

Γ(n − d
2 + 1

2)

Γ(n)

(

1

j2l20 + S

)n− d
2
+ 1

2



IW =
l0

π

1

(4π)d/2−1/2

Γ(n− d
2

+ 1
2
)

Γ(n)

»

1

2

„

1

S

«n− d

2
+ 1

2

+
∞
X

j=1

`

j2l20 + S
´−(n− d

2
+ 1

2
)
–

,

=
l−2n+d
0

π

1

(4π)d/2−1/2

Γ(n− d
2

+ 1
2
)

Γ(n)

»

1

2
(S/l20)−(n− d

2
+ 1

2
) +

∞
X

j=1

„

j2 +
S

l20

«−(n− d

2
+ 1

2
) –

,

=
4l−2n+d

0

(4π)d/2+1/2

Γ(n− d
2

+ 1
2
)

Γ(n)

»

E
S/l2

0

1 (n−
d

2
+

1

2
; 1) +

1

2
(S/l20)−(n− d

2
+ 1

2
)

–

All the divergence from the Γ function now vanish in case of even
number dimension. The divergences are absorbed by the
Epstein-Hurwitz function :

Ec2
1 (s; 1) ≡

∞
∑

j=1

(j2 + c2)−s

where c2 = S/l20 and s = n − d/2 + 1/2.



Epstein-Hurwitz function can be regulated by Riemann ζ function
in case of c2 ≤ 1, the results depend on the parameter s, which is:

1 in case of 1
2 − s ∈ N :

Ec2

1 (s; 1) = −
(−1)−(s−1/2)π1/2

2Γ(s)Γ( 3
2
− s)

c1−2s

»

ψ(
1

2
) − ψ(

3

2
− s) + ln c2 + 2γ

–

−
1

2
c−2s ,

−

∞
X

k=0,k 6= 1

2
−s

(−1)k Γ(k + s)

k!Γ(s)
ζ(2k + 2s)c2k .

2 in case of 1
2 − s /∈ N and −s /∈ N :

Ec2

1 (s; 1) =
π1/2

2Γ(s)
Γ(s−

1

2
)c1−2s −

1

2
c−2s ,

−

∞
X

k=0

(−1)k Γ(k + s)

k!Γ(s)
ζ(2k + 2s)c2k .

3 in case of −s ∈ N :

Ec2

1 (s; 1) = −

−s
X

k=0

(−1)k Γ(k + s)

k!Γ(s)
ζ(2k + 2s)c2k .

where N is the natural number N = 0, 1, 2, 3, ....



d = 4

1 n = 1

s = n − d

2
+

1

2
= −1

2
,

1

2
− s = 1

2 n = 2

s = n − d

2
+

1

2
=

1

2
,

1

2
− s = 0

3 n ≥ 3
1

2
− s /∈ N, − s /∈ N

Ec2
1 (s; 1) is a continuous function in the complex plane.

lim
s→− 1

2

Ec2

1 (s; 1) = Ec2

1 (−1

2
; 1)

All the divergences vanish in our new method of regularization.
left only with two kinds of terms:

1 finite term composed by the product of Γ functions

2 a summation of a power series of S/l20.



Comparision with of DR

1 DR

BD
0 = △ + ln

µ2

m2
1

−
∫ 1

0
dxlnS(x) ,

in which △ = 2
ǫ − γ + ln4π

2 WWZ

BW
0 = 2ln2 − 2γ + ln

l20
m2

1

−
∫ 1

0
dxlnS(x) ,

−2
∞

∑

k=1

(−1)k
Γ(k + 1/2)

k!π1/2
ζ(2k + 1)

∫ 1

0
dx

(

m2
1

l20
S(x)

)k

.

All the other functions are similar !



i

16π2
Bµν(p,m2

1,m
2
2) =

∫

ddl

(2π)d
lµlν

[l2 − m2
1 + iǫ][(l − p)2 − m2

2 + iǫ]
,

BD
µν =

1

3

{

pµpν

[

∆ + ln
µ2

m2
1

− 3

∫ 1

0
dxx2lnS(x)

]

+
gµν
d

[

(3m2
1 + 3m2

2 − p2)(∆ + ln
µ2

m2
1

+ 1)

−3m2
1 + 3m2

2 − p2

2
− 6m2

1

∫ 1

0
dxS(x)lnS(x)

]}

,



BW
µν =

1

3

{

pµpν

[

2ln2 − 2γ + ln
l20
m2

1

− 3

∫ 1

0
dxx2lnS(x)

]

+
gµν
d

[

(3m2
1 + 3m2

2 − p2)(2ln2 − 2γ + ln
l20
m2

1

+ 1)

−3m2
1 + 3m2

2 − p2

2
− 6m2

1

∫ 1

0
dxS(x)lnS(x)

]

−6pµpν

[

∞
∑

k=1

(−1)k
Γ(k + 1/2)

k!π1/2
ζ(2k + 1)

×
∫ 1

0
dxx2

(

m2
1

l20
S(x)

)k
]

− 6
gµν
d



−l20

∞
∑

k=0,k 6=1

(−1)k

×Γ(k − 1/2)

k!π1/2
ζ(2k − 1)

∫ 1

0
dx

(

m2
1

l20
S(x)

)k

+
∞

∑

k=1

(−1)k

×Γ(k + 1/2)

k!π1/2
ζ(2k + 1)

∫ 1

0
dx m2

1S(x)

(

m2
1

l20
S(x)

)k
]}

.



Two level of understanding our regularization:

1 Level I: this method is a trick, by which we can get the

almost the same results of dimensional regularization in

case of l20 ≫ S.

2 Level II: What we are doing is an anti-BEC calculation,

the divergences are in fact condensed in the vacuum.

Then we should take a new look at the quantum field

theory.



Where does the divergence go ?

ID(d, n, S, µ) = µǫ
∫

d3−ǫl

(2π)3−ǫ
1

l2 + S

= µǫ
1

(4π)3/2
Γ(−1−ǫ

2 )

Γ(1)

(

1

S

)− 1−ǫ
2

→ −
√

S

4π

I(d, n, S) =

∫

d3l

(2π)3
1

l2 + S
=

1

4π2
2πi

−S

2i
√

S
= −

√
S

4π



ζ(s) =
1

Γ(s)

∫

dt
ts−1

et − 1

ζ(−1) =
∞

∑

k=1

k = − 1

12
, ζ(0) =

∞
∑

k=1

1 = −1

2

Γ(−1 +
ǫ

2
), Γ(

ǫ

2
)

are physics problems, divergence are removed by

renormalization.

Γ(−1

2
), ζ(−1)

are mathematics problems, divergence are regulated by

mathematician.



Implications of the new
regularization



Predications in the QED

Electron magnetic movement ae.

αe ≡
g − 2

2
=

α

2π
− α

2π

ζ(3)

6

m2
e

l20
.

Running of coupling strength αeff(q2).

αeff(q2) =
α

1 − α
3π ln( −q2

A′m2 )
,

where A′ = exp(5
3 + ζ(3)

5 ).



Lamb shift.

Not changed by the new regularizations. The Uehling
potential comes from the imaginary part of photon self energy
Π̂2(q

2) which not appear in the power series terms.



Gauge symmetry.

Ward identity requires:

Πµν(q2) = (qµqν − gµνq2)Π(q2)

Cut has additional term

e2Λ2gµν

which violates the U(1) symmetry.
DR uses

γµγνγµ = −(2 − ǫ)γν

......

protecting the symmetry.
The new regularization violates the gauge symmetry too.

We can consider it as a auxilary method of DR, which

means that we use DR to study the gauge symmetry

and Lorentz symmetry. but use the WWZ to give the

prediction of scalar function.



β function of the QED.

The energy scale l0 is like the temperature of the vacuum,
thus the β function of the coupling is kind of thermal
capacitance of the a theory. Especially when the momentum
approaches to the temperature then the β function will be
exactly the capacitance: (M2 → 1)

β(α) = M
∂

∂M
(counter terms) ,

= 2
∂

∂lnM2
(counter terms) ,

≃ 2
∂

∂M2
(counter terms) .

β function of the QED is:

β(e) =
e3

12π2
− 1

3
ζ(3)

e3

16π2
.

The first term is the prediction of DR, the second term is the
modification of the new regularization.



What is Hierarchy?

Tuning with a symmetry and with a divergence

Tuning without a symmetry but with a divergence



Tuning without a symmetry and without divergence



Hierarchy problem of a scalar mass

1 λφ4 theory: the leading term of mass counter term is

δm =
λ

2

m2

16π2

„

2ln2 − 2γ + ln
l20
m2

+ 1 +
l20

3m2

«

.

2 Yukawa theory: the leading term of mass counter term is

δm = −
Y 2

4π2

»

l20
3

+

Z 1

0
dx(m2

f − x(1 − x)m2
s)

 

6 ln 2 − 6γ − 3 ln
m2

f − x(1 − x)m2
s

l20
+ 1

!#

+m2
sδZ ,

δZ = −
3Y 2

4π2

Z 1

0
dxx(1 − x)

 

2 ln 2 − 2γ −
2

3
− ln

m2
f − x(1 − x)m2

s

l20

!

.



Points:

All the physical variables are discrete. Continuous Lorentz
symmetry is in fact conflict with Quantum Mechanics.

“Point” QFT is only zero order approximation of real physics.
Loop calculations must use discrete summation.

A theory must be defined on an error scale ∆µ not on an
absolute scale µ. Integrated the heavy particles (Λ → ∞) is
inaccurate understanding of Quantum Mechanics.

Assumption:

1 l0: energy gap, temperature of vacuum, or enery scale of a
theory

2 jl0: energy bound states, j is the quantum number,

3
∫

dd−1l

(2π)d−1

1

(l2 + j2l20 + S)n

Distribution of jth bound states

We are tring to do a statistics of vacuum ?!



Conclusion

The divergence of a radiative correction is unphysical,

emergence of divergence is because a wrong

mathematical tools are used by physicists.



Conclusion

The divergence of a radiative correction is unphysical,

emergence of divergence is because a wrong

mathematical tools are used by physicists.

Thank you !
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