## Searching for Top Squarks at the LHC





### Kechen Wang (王科臣)

Center for Future High Energy Physics Institute of High Energy Physics Chinese Academy of Sciences

13<sup>th</sup> LHC Mini-Workshop @ Zhejiang U, Nov 9, 2014

Phys. Rev. D **85** (2012) 115007, Phys.Rev. D **86** (2012) 075004, Phys. Rev. D **87** (2013) 095007, hep-ph/1312.1348 (accepted by PRD).

## OUTLINE

#### Supersymmetry Top Squark $(\tilde{t})$

- Motivation
- LHC search status

#### Search from Cascade Decay

- $\tilde{t} \tilde{\chi}_1^0$  Coannihilation Scenario
- Endpoint measurements

#### **Fully Hadronic Final State Scenario**

M3 technique

#### **Bino-Higgsino Dark Matter Scenario**

- Dilepton invariant mass distribution
- Light slepton & heavy slepton cases

#### **Compressed Scenario**

- VBF topology selection
- Two-body decay & three-body decay cases

#### Conclusion

### Supersymmetry



(a) Fermion  $\leftrightarrow$  Boson (b) R parity conserving SUSY, lightest neutralino  $\tilde{\chi}_1^0 \rightarrow$  cold dark matter candidate

#### After EW symmetry breaking,

 $\tilde{\chi}_1^0 \sim (\tilde{\mathbf{B}}, \tilde{W}, \tilde{H}_d, \tilde{H}_u) \qquad \tilde{\chi}_1^+ \sim (\tilde{W}^+, \tilde{H}_u^+) \qquad \tilde{\chi}_1^- \sim (\tilde{W}^-, \tilde{H}_d^-)$ 





slepton

### Top squark

- 3rd generation top squark could be light to give the Higgs mass a reasonable correction.
- ➢ Higgs boson at 126 GeV → light stop (at sub-TeV).





SUSY particles (MSSM model)

To show search strategies we developed for a light stop.

### Why Stop can be light?

Hierarchy Problem, naturalness

$$\Delta m_{H}^{2} \sim |y_{t}|^{2} \left[ -\lambda_{W} + \frac{3}{2} m_{t}^{2} \log \left( \frac{\Lambda_{UV}^{2}}{m_{t}^{2}} \right) + \lambda_{W} - m_{\tilde{t}}^{2} \log \left( \frac{\Lambda_{UV}^{2}}{m_{\tilde{t}}^{2}} \right) + \dots \right]$$

$$\Delta m_{H}^{2} = \frac{H}{-y_{t}} \left( \frac{t_{L}}{t_{R}} + \frac{y_{t}}{y_{t}} - \frac{H}{-y_{t}} + \frac{H}{-y_{t}^{2}} - \frac{y_{t}^{2}}{y_{t}^{2}} - \frac{y_{t}^{2}}{y_{t}^{2}} \right)$$
SUSY solution

In SM enormous corrections to m<sub>h</sub>: Δm<sup>2</sup> ∝ Λ<sup>2</sup><sub>UV</sub> from top quark.
 In SUSY Stop loop cancels Λ<sup>2</sup><sub>UV</sub> term, and give a finite correction.
 Light stops (~TeV) needed for "natural" (not fine-tuned) solution to hierarchy problem.

### Stop mixing



5 / 48

### Top Squark Decay Modes (RPC)

Stop decay  $\leftarrow$  Stop mixing & neutralino/chargino composition &  $\Delta m = m_{\tilde{t}} - m_{\tilde{z}^0}$ 



### **Our Scenarios**



### **Top Squark Production Processes**



Production from cascade decay





Kechen Wang

### **Top Squark Search Challenge**



### LHC status of Stop searches

ATLAS



### LHC projection analysis of Stop searches

#### ATLAS 14 TeV Projection analysis [ATL-PHYS-PUB-2013-011]



## OUTLINE

#### Supersymmetry Top Squark ( $\widetilde{t}$ )

- Motivation
- LHC search status

#### Search from Cascade Decay

- $\tilde{t} \tilde{\chi}_1^0$  Coannihilation Scenario
- Endpoint measurements

#### **Fully Hadronic Final State Scenario**

M3 technique

#### **Bino-Higgsino Dark Matter Scenario**

- Dilepton invariant mass distribution
- Light slepton & heavy slepton cases

#### **Compressed Scenario**

- VBF topology selection
- Two-body decay & three-body decay cases

#### Conclusion

### Stop-neutralino coannihilation scenario



### Stop-neutralino coannihilation scenario

B. Dutta, T. Kamon, A. Krislock, K. Sinha and K. Wang, Phys. Rev. D85 (2012) 115007 [hep-ph/1112.3966].

$$\Delta m = m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = 53 \text{ GeV} < m_w \qquad \tilde{t}_1 \sim \tilde{t}_R; \ \tilde{\chi}_1^0 \sim \tilde{B}, \ \tilde{\chi}_2^0 \sim \tilde{W} \Longrightarrow \tilde{t}_1 \to c + \tilde{\chi}_1^0$$

DM relic density satisfied by the coannihilation mechanism. Mass spectrum (GeV).

| Particle       | Mass | Particle         | Mass | Particle               | Mass |
|----------------|------|------------------|------|------------------------|------|
| $\tilde{d}_L$  | 653  | ẽ∟               | 437  | $\tilde{\chi}_1^0$     | 286  |
| $\tilde{d}_R$  | 636  | € <sub>R</sub>   | 411  | $\tilde{\chi}_2^0$     | 338  |
| ũL             | 648  | $\tilde{\tau}_1$ | 315  | $\tilde{\chi}_3^0$     | 477  |
| ũ <sub>R</sub> | 635  | $	ilde{	au}_2$   | 418  | $	ilde{\chi}_4^0$      | 503  |
| θ <sub>1</sub> | 520  |                  |      | ${\tilde \chi}_1^\pm$  | 337  |
| $\tilde{b}_2$  | 596  |                  |      | $\tilde{\chi}_2^{\pm}$ | 500  |
| $\tilde{t}_1$  | 339  |                  |      | Ĩ                      | 650  |
| $\tilde{t}_2$  | 616  |                  |      |                        |      |



### Search strategy

◆ ≥ 4 j + ≥ 1 b + MET, \$\tilde{g} → \$\tilde{b}\$ + b → \$\tilde{t}\$ + W + b → \$\tilde{\chi}\_1^0 + c + W + b\$
 ◆ Endpoint measurements \$M\_{bW}, M\_{jW} ⇒ m\_{\tilde{t}}, m\_{\tilde{b}}\$ @ 14 TeV
 ◆ Bi-Event Subtraction Technique (BEST) is performed to get rid of uncorrelated jet background.

Event selection: (a)  $p_T(j_{1,2}) \ge 200 \text{ GeV}$ , in  $|\eta| \le 2.5$ (b)  $\ge 4$  jets, with  $p_T(j) \ge 30 \text{ GeV}$  in  $|\eta| \le 2.5$ (c) MET > 180 GeV (c)  $p_T(j_1) + p_T(j_2) + \text{MET} \ge 600 \text{ GeV}$ (d) For  $M_{bW}$ ,  $\ge 1$  tightly tagged b jets (42% efficiency, 2% fake rate).



Data simulation: ISAJET + PYTHIA + PGS4

### End points & Stop mass

50 fb<sup>-1</sup> @ 14 TeV



### Results for a heavy mass spectrum

Our strategy works for heavy mass spectrum  $\leftarrow$  need more luminosity.  $\Delta m = m_{\tilde{t}} - m_{\tilde{z}_1^0} = 39 \text{ GeV} < m_w$ 

| Particle       | Mass | Particle         | Mass                | Particle               | Mass |
|----------------|------|------------------|---------------------|------------------------|------|
| ã₁_            | 1190 | ẽ∟               | 888                 | $\tilde{\chi}_1^0$     | 666  |
| ã <sub>ℝ</sub> | 1169 | õ <sub>R</sub>   | 850                 | $\tilde{\chi}_2^0$     | 740  |
| ũL             | 1188 | $\tilde{\tau}_1$ | 721                 | $\tilde{\chi}_3^0$     | 836  |
| ũ <sub>R</sub> | 1167 | $	ilde{	au}_2$   | 840                 | $	ilde{\chi}_4^0$      | 870  |
| θ <sub>1</sub> | 980  |                  |                     | $\tilde{\chi}_1^{\pm}$ | 739  |
| ₿ <sub>2</sub> | 1084 |                  |                     | $\tilde{\chi}_2^{\pm}$ | 868  |
| $\tilde{t}_1$  | 705  |                  |                     | 9                      | 1187 |
| $\tilde{t}_2$  | 1044 |                  |                     |                        |      |
|                |      |                  |                     |                        |      |
| Particle       | Mass | 5 200 f          | b <sup>-1</sup> Sta | nt.                    |      |
| õ              | 690  |                  | $\pm 6$             |                        |      |
| ĩ              | 1002 | . =              | ±126                |                        |      |



Kechen Wang

## OUTLINE

#### Supersymmetry Top Squark ( $\widetilde{t}$ )

- Motivation
- LHC search status

#### Search from Cascade Decay

- $\tilde{t} \tilde{\chi}_1^0$  Coannihilation Scenario
- Endpoint measurements

#### Fully Hadronic Final State Scenario

M3 technique

#### **Bino-Higgsino Dark Matter Scenario**

- Dilepton invariant mass distribution
- Light slepton & heavy slepton cases

#### **Compressed Scenario**

- VBF topology selection
- Two-body decay & three-body decay cases

#### Conclusion

### Fully hadronic final state scenario

$$\Delta m = m_{\tilde{t}} - m_{\tilde{\chi}_1^0}$$



Kechen Wang

19 / 48

### Fully hadronic final state scenario

B. Dutta, T. Kamon, N. Kolev, K. Sinha, and K. Wang, Phys.Rev. D86 (2012) 075004 [hep-ph/1207.1873].

 $\Delta \mathbf{m} > \mathbf{m}_{t}; \tilde{t}_{1} \sim \tilde{t}_{R}; \tilde{\chi}_{1}^{0} \sim \tilde{B}, \tilde{\chi}_{2}^{0} \sim \tilde{W} \Longrightarrow \tilde{t}_{1} \rightarrow t + \tilde{\chi}_{1}^{0}$  $pp \rightarrow \tilde{t} \; \tilde{t}^{*} \rightarrow (t \tilde{\chi}_{1}^{0}) (t \tilde{\chi}_{1}^{0}) \rightarrow (b j j \tilde{\chi}_{1}^{0}) (\bar{b} j j \tilde{\chi}_{1}^{0})$ 





Kechen Wang

### Background





Search strategy

### M3 Technique: Identifying 1<sup>st</sup> Top



### Angular and $M_T$ cuts to reduce SM BG



### Angular and $M_T$ cuts to reduce SM BG



### M3 Technique: Identifying 2<sup>nd</sup> Top



### Significance

S ~ B @ 50 fb<sup>-1</sup>, 8 TeV. Stop mass: 350 ~ 550 GeV

Cuts are optimized for each point.

TABLE IV. Final significance for various choices of masses. All masses are in GeV. The luminosity is 50 fb<sup>-1</sup>.

| ĩ                 | 350  | 400  | 450  | 500  | 550  | 400  | 400  |
|-------------------|------|------|------|------|------|------|------|
| $	ilde{\chi}^0_1$ | 100  | 100  | 100  | 100  | 100  | 150  | 200  |
| $S/\sqrt{B}$      | 1.29 | 1.71 | 1.39 | 0.81 | 0.35 | 0.94 | 0.47 |



## OUTLINE

#### Supersymmetry Top Squark ( $\widetilde{t}$ )

- Motivation
- LHC search status

#### Search from Cascade Decay

- $\tilde{t} \tilde{\chi}_1^0$  Coannihilation Scenario
- Endpoint measurements

#### Fully Hadronic Final State Scenario

M3 technique

#### **Bino-Higgsino Dark Matter Scenario**

- Dilepton invariant mass distribution
- Light slepton & heavy slepton cases

#### **Compressed Scenario**

- VBF topology selection
- Two-body decay & three-body decay cases

#### Conclusion

### Bino-Higgsino DM Scenarios

$$\Delta m = m_{\tilde{t}} - m_{\tilde{\chi}_1^0}$$



### Bino-Higgsino DM scenario

B. Dutta, T. Kamon, N. Kolev, K. Sinha, K. Wang and S. Wu, Phys. Rev. D87 (2013) 095007 [hep-ph/1302.3231].

 $\Delta \mathbf{m} \geq \mathbf{m}_{\mathsf{t}}; \quad \tilde{t}_1 \sim \tilde{t}_R; \quad \tilde{\chi}_1^0 \sim (\tilde{B} + \tilde{H}), \quad \tilde{\chi}_{2,3}^0 \sim \tilde{H} \Longrightarrow \tilde{t}_1 \rightarrow b + \tilde{\chi}_1^{\pm}, \quad t + \tilde{\chi}_{2,3}^0, \text{ or } t + \tilde{\chi}_1^0$ number density 0.1 10<sup>-2</sup> After EW symmetry breaking,  $\tilde{\chi}_1^0 \sim (\tilde{B}, \tilde{W}, \tilde{H}_d, \tilde{H}_u) = \tilde{\chi}_1^+ \sim (\tilde{W}^+, \tilde{H}_u^+) = \tilde{\chi}_1^- \sim (\tilde{W}^-, \tilde{H}_d^-)$ ·3 10-10 increasing SM  $\langle \sigma v \rangle$  $\widetilde{\chi}_1^0$ Annihilation comoving 10  $\mathrm{N}_{\mathrm{EQ}}$ 10 - 12 $10^{-13}$  $10^{-14}$ SM  $10^{1}$  $10^{2}$  $10^{3}$ 1 time—> m/T

| Composition | To satisfy                                      | Generic case   |               |                                                     | Comments                             |
|-------------|-------------------------------------------------|----------------|---------------|-----------------------------------------------------|--------------------------------------|
|             | relic density                                   | $\sigma_{ann}$ | Relic density | Possible mechanism                                  |                                      |
| Bino        | 20 - 100 GeV,<br>depending on a<br>slepton mass | small          | large         | Non-thermal,<br>resonance,<br>coannihilation,       | Dominant: t channel slepton exchange |
| Wino        | $\sim$ 2.4 TeV                                  | large          | small         | Non-thermal,                                        |                                      |
| Higgsino    | $\sim$ 1 TeV                                    | large          | small         | multi-component,<br>well-tempering<br>mixture, etc. | Strong bound from direct production  |

**Kechen Wang** 

30 / 48

### Search Strategy



GeV in  $|\eta| \le 2.5$ , and  $\sum p_{T,iso}^{track} \le 5$  GeV and  $\Delta R=0.4$ 

- (d) MET > 150 GeV
- (e)  $H_T > 100 \text{ GeV}.$



### Light slepton case

 $\tilde{\chi}_{2,3}^0 \sim \tilde{H}$  almost degenerate.



### **Dilepton mass distribution**



Final State:

### **Dilepton mass distribution**



### Significance

#### 30 fb<sup>-1</sup> luminosity, 8 TeV



| 30 fb <sup>-1</sup> | luminosity, | 8 | TeV |  |
|---------------------|-------------|---|-----|--|
|                     |             |   |     |  |

 $20\,GeV < M_{ll} < 70\,GeV$ 



| $m_{\tilde{t}}$ | Signal            | Background        | significance |
|-----------------|-------------------|-------------------|--------------|
| (GeV)           | (N <sub>s</sub> ) | (N <sub>B</sub> ) | (s)          |
| 390             | 212               | 1392              | 5.3          |
| 440             | 180               | 1368              | 4.6          |
| 500             | 117               | 1354              | 3.1          |
| 550             | 78                | 1348              | 2.1          |
| 600             | 51                | 1345              | 1.4          |

distinguishable edge, for  $m_{\tilde{t}} \leq 550 \text{ GeV}$ .

significance ~  $3\sigma$  , for  $m_{\tilde{t}} = 500 \, GeV$  .

### Heavy slepton case



### $\tilde{B}$ - $\tilde{H}$ Dark Matter



 $m_{\tilde{\chi}^0_1} = 113 \, GeV$ 

$$\Delta M = m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0}$$

| Masses                            | $\tilde{B}$ | $\tilde{H}$ | $\Omega h^2$ | S                      | Comments                 |
|-----------------------------------|-------------|-------------|--------------|------------------------|--------------------------|
| (GeV)                             | (%)         | (%)         |              | (30 fb <sup>-1</sup> ) |                          |
| $\Delta M = 160$                  |             |             |              |                        | Mainly Bino DM           |
| <i>m<sub>ĩ</sub></i> =123         | 96          | 4           | 0.11         | 0.44                   | (Coannihilation)         |
| $m_{\tilde{t}} = 500$             |             |             |              |                        |                          |
| $\Delta M = 63$                   |             |             |              |                        | Bino-Higgsino DM         |
| $m_{\tilde{l}}=144$               | 72          | 28          | 0.11         | 3.1                    | (Light slepton scenario) |
| $m_{\tilde{t}} = 500$             |             |             |              |                        |                          |
| $\Delta M = 62$                   |             |             |              |                        | Bino-Higgsino DM         |
| $m_{\tilde{l}} = \overline{4000}$ | 67          | 33          | 0.11         | 1.1                    | (Heavy slepton scenario) |
| $m_{\tilde{t}} = 390$             |             |             |              |                        |                          |

(a)  $\tilde{\chi}_1^0 \sim \tilde{B}$ , need  $\tilde{\chi}_1^0 - \tilde{l}$  coannihilation. a low  $p_T$  lepton  $\longrightarrow$  small significance.

(b)  $\tilde{\chi}_1^0 \sim (\tilde{B} + \tilde{H})$  and light  $\tilde{l}$ ,  $\longrightarrow$  edge around  $\Delta M$ .

(c)  $\tilde{\chi}_1^0 \sim (\tilde{B} + \tilde{H})$  and heavy  $\tilde{l}$ ,  $Z \rightarrow ll \longrightarrow$  small significance.

## OUTLINE

#### Supersymmetry Top Squark ( $\widetilde{t}$ )

- Motivation
- LHC search status

#### Search from Cascade Decay

- $\tilde{t} \tilde{\chi}_1^0$  Coannihilation Scenario
- Endpoint measurements

#### Fully Hadronic Final State Scenario

M3 technique

#### **Bino-Higgsino Dark Matter Scenario**

- Dilepton invariant mass distribution
- Light slepton & heavy slepton cases

#### **Compressed Scenario**

- VBF topology selection
- Two-body decay & three-body decay cases

#### Conclusion



### **Compressed Scenario**

B. Dutta, W. Flanagan, A. Gurrola, W. Johns, T. Kamon, P. Sheldon, K. Sinha, K. Wang and S. Wu, [hep-ph/1312.1348].

$$\Delta m = m_{\tilde{t}} - m_{\tilde{\chi}_1^0} \sim m_t \qquad \tilde{t}_1 \sim \tilde{t}_R; \ \tilde{\chi}_1^0 \sim \tilde{B}, \ \tilde{\chi}_2^0 \sim \tilde{W}$$

Two-body decay case:  $(m_{\tilde{t}}, m_{\tilde{\chi}_1^0}) = (200, 20) \text{ GeV}$   $\Delta m = m_t + 7 \text{ GeV}, m_t = 173 \text{ GeV}$   $\tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0$ On-shell top, but soft jets/leptons

Three-body decay case: (200, 35) GeV  $\Delta m = m_t - 7 \text{ GeV} < m_t$   $\tilde{t}_1 \rightarrow b + W + \tilde{\chi}_1^0$ Off-shell top, even softer jets/leptons

### Search strategy

♦ ≥ 2 j + ≥ 2 b + ≥ 1 l + MET.  $pp \rightarrow \tilde{t} \tilde{t}^* + jets \rightarrow (bW\tilde{\chi}_1^0)(\bar{b}W\tilde{\chi}_1^0) + jets$  ♦ VBF topology selection.

Event selection:

(a) VBF topology selection:  $\geq 2$  non b-tagged jets,  $j_1$ ,  $j_2$ (1)  $p_T(j_1) \geq 75$  GeV,  $p_T(j_2) \geq 50$  GeV, in  $|\eta| \leq 4$ ; (2)  $|\Delta \eta(j_1, j_2)| > 3.5$ ,  $\eta_{j_1} \eta_{j_2} < 0$ (3)  $m(j_1, j_2) > 500$  GeV This reduces the W+jets and Z+jets backgrounds.

(b)  $\ge$  2 loosely tagged b jets with  $p_T \ge$  30 GeV in  $|\eta| \le$  2.5, (70% efficiency, 1% fake rate).

(c)  $\geq$  1 leptons with  $p_T \geq$  20 GeV

(d) Big MET requirement, optimized for each mass point.

### VBF topology production

Vector Boson Fusion (VBF) production



 $pp \rightarrow \tilde{t} \ \tilde{t}^* + (0-3)$  jets, inclusively, QCD=4 QED=4

Samples are generated: MadGraph + PYTHIA + PGS4

### VBF topology signature



 $\tilde{t}$ 

VBF tagged jets (2 energetic jets: large  $m_{jj}$ , forward region, opposite hemispheres)

Advantages of VBF topology selection:

- (a) VBF tagging jets
- (b) Broad enhancements in MET
- (c) Compressed scenarios
- (d) Free from trigger bias
- (e) Direct probing EW sector, complementary
  - ← agnostic about colored sector

VBF production topology Transverse plane

### **MET** distribution



### Cross sections (fb)

| $\Delta m = m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = m_t + 7 \text{ GeV}$                                                                                                                                                                         | $\Delta m = m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = m_t - 7 \text{ GeV}$                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| $(m_{\tilde{t}}, m_{\tilde{\chi}_1^0})$ Selection Signal $t\bar{t}$ +jets S/B                                                                                                                                                                   | $(m_{\tilde{t}}, m_{\tilde{\chi}_1^0})$ Selection Signal $t\bar{t}$ +jets S/B                                            |
| (200, 20) Pre cut $5.4 \times 10^4 \ 6.9 \times 10^5 \ -$<br>$\Delta M = 7$ VBF $1.8 \times 10^3 \ 3.8 \times 10^4 \ -$                                                                                                                         | (200, 35) Pre cut $5.4 \times 10^4 \ 6.9 \times 10^5 \ -$<br>$\Delta M = -7$ VBF $1.4 \times 10^4 \ 3.8 \times 10^4 \ -$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                            | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                    |
| $   \underbrace{\not{E}_{T} > 100  8.9  680  1.3 \times 10^{-2}}_{(400, 220) \text{ Pre cut } 1.6 \times 10^{3}  6.9 \times 10^{5}  -}_{\Delta M = 7  \text{VBF}}  62  3.8 \times 10^{4}  -}_{1 \text{ lenter}}  14  8.1 \times 10^{3}  -} \\ $ | $   \not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                            | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                            | 45                                                                                                                       |

### Experiment reach with systematic uncertainty

LHC preliminary reach @ 300 fb<sup>-1</sup>, 14 TeV



### PT distribution of b jet in Three-Body Decay Case



Lower  $p_T$  threshold of b-jet  $\rightarrow$  improve significance

Kechen Wang

47 / 48

### Conclusion

### $\rightarrow$ Production from cascade decay $\Delta m = m_{\tilde{t}} - m_{\tilde{t}^0}$

#### Stop coannihilation scenario:

- $\Delta \mathbf{m} < \mathbf{m}_{\mathsf{W}}; \tilde{t}_1 \sim \tilde{t}_R; \tilde{\chi}_1^0 \sim \tilde{B}, \tilde{\chi}_2^0 \sim \tilde{W} \Longrightarrow \tilde{t}_1 \rightarrow c + \tilde{\chi}_1^0$
- $\ge 4 \mathbf{j} + \ge 1 \mathbf{b} + \mathbf{MET}, \ \tilde{g} \rightarrow \tilde{b} + b \rightarrow \tilde{t} + W + b \rightarrow \tilde{\chi}_1^0 + c + W + b$
- Endpoint measurements  $M_{bW}, M_{jW} \Rightarrow m_{\tilde{t}}, m_{\tilde{b}} @ 14 \text{ TeV}$

#### $\rightarrow$ Direct production of $\tilde{t} \tilde{t}^*$

#### Fully hadronic final state scenario:

- $\Delta \mathbf{m} > \mathbf{m}_{\mathsf{t}} ; \ \tilde{t}_1 \sim \tilde{t}_R; \ \tilde{\chi}_1^0 \sim \tilde{B}, \ \tilde{\chi}_2^0 \sim \tilde{W} \Longrightarrow \tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0$
- $\ge 4 \text{ j} + \ge 2 \text{ b} + \text{MET}, pp \rightarrow \tilde{t} \tilde{t}^* \rightarrow (t \tilde{\chi}_1^0) (t \tilde{\chi}_1^0) \rightarrow (b j j \tilde{\chi}_1^0) (\bar{b} j j \tilde{\chi}_1^0)$
- M3 technique, reconstruct 2 top, S ~ B, 500 GeV @ 50 fb<sup>-1</sup>, 8 TeV.

#### $\tilde{B}$ - $\tilde{H}$ DM scenario:

- $\ge 2 j + \ge 1 b + 2 l (OSSF) + MET, \tilde{t} \to \tilde{\chi}_{3,2}^0 + t \to \tilde{\chi}_1^0 + l^{\pm} + l^{\mp} + t$
- Di-lepton invariant mass distribution (OSSF-OSDF):
  - Light l: Sensitivity up to 600 GeV @ 30 fb<sup>-1</sup>, 8 TeV.
  - Heavy  $\tilde{l}$  : Small significance.

#### **Compressed scenario:**

• 
$$\Delta \mathbf{m} \sim \mathbf{m}_{\mathbf{t}}; \tilde{t}_1 \sim \tilde{t}_R; \; \tilde{\chi}_1^0 \sim \tilde{B}, \; \tilde{\chi}_2^0 \sim \tilde{W} \Longrightarrow \tilde{t}_1 \longrightarrow t + \tilde{\chi}_1^0 \text{ or } b + W + \tilde{\chi}_1^0$$

- $\diamond \geq 2 j + \geq 2 b + \geq 1 l + MET, pp \rightarrow \tilde{t}_1 \tilde{t}_1^* + jets$
- VBF topology selection:  $\Delta m = m_t \pm 7 \text{ GeV}$ 
  - 2-body decay: For 200 GeV, 6σ @ 300 fb<sup>-1</sup>, 14 TeV.
  - 3-body decay: For 200 GeV, 4σ @ 300 fb<sup>-1</sup>, 14 TeV.

# Backup SlideATLASLHC status of SUSY searches

#### ATLAS SUSY Searches\* - 95% CL Lower Limits

Status: ICHEP 2014

|                                                   | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $e, \mu, \tau, \gamma$                                                                                                                                                                                    | Jets                                                                                                                        | $E_{ m T}^{ m miss}$                                               | $\int \mathcal{L} dt [\mathbf{f}]$                                                                              | <sup>-1</sup> ] Mass limit                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reference                                                                                                                                                                                                                                  |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inclusive Searches                                | $\begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \overline{q}\overline{q}, \overline{q} \rightarrow \overline{q}^{0}, \\ \overline{g}\overline{q}, \overline{q} \rightarrow \overline{q}^{0}, \\ \overline{g}\overline{q}, \overline{g} \rightarrow \overline{q}\overline{q}^{0}, \\ \overline{g}\overline{q}, \overline{g} \rightarrow \overline{q}\overline{q}^{0}, \\ \overline{g}\overline{q}, \overline{g} \rightarrow \overline{q}q\overline{q}^{0}, \\ \overline{g}\overline{q}, \overline{g} \rightarrow \overline{q}q\overline{q}, \\ \overline{g}\overline{q}, \overline{g} \rightarrow \overline{q}, \overline{g} \rightarrow \overline{q}, \\ \overline{g} \rightarrow \overline{q}, \overline{g} \rightarrow \overline{q}, \\ \overline{g} \rightarrow \overline{q}, \overline$ | $\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 \ 2 \ r \ + 0 \ - 1 \ \ell \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{matrix}$ | 2-6 jets<br>3-6 jets<br>2-6 jets<br>2-6 jets<br>2-6 jets<br>3-6 jets<br>0-3 jets<br>0-2 jets<br>1 b<br>0-3 jets<br>mono-jet | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes | 20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>4.7<br>20.3<br>4.7<br>20.3<br>4.8<br>4.8<br>5.8<br>10.5 | \$\vec{k}\$     1.2 T       \$\vec{k}\$     1.1 TeV       \$\vec{k}\$     350 GeV       \$\vec{k}\$     350 GeV       \$\vec{k}\$     1.12 TeV       \$\vec{k}\$     1.13 TeV       \$\vec{k}\$     1.12 TeV       \$\vec{k}\$     1.12 TeV       \$\vec{k}\$     1.24 TeV       \$\vec{k}\$     619 GeV       \$\vec{k}\$     900 GeV       \$\vec{k}\$     690 GeV       \$\vec{k}\$     690 GeV       \$\vec{k}\$     690 GeV | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1405.7875<br>ATLAS-CONF-2013-062<br>1308.1841<br>1405.7875<br>ATLAS-CONF-2013-062<br>ATLAS-CONF-2013-069<br>1208.4688<br>1407.0603<br>ATLAS-CONF-2014-01<br>ATLAS-CONF-2012-144<br>1211.1167<br>ATLAS-CONF-2012-124<br>ATLAS-CONF-2012-124 |
| 3 <sup>rd</sup> gen.<br>ẽ med.                    | $\begin{array}{l} \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \bar{g} \rightarrow t \tilde{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \tilde{t} \tilde{\chi}_{1}^{1} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>0-1 <i>e</i> , μ<br>0-1 <i>e</i> , μ                                                                                                                                                                 | 3 <i>b</i><br>7-10 jets<br>3 <i>b</i><br>3 <i>b</i>                                                                         | Yes<br>Yes<br>Yes<br>Yes                                           | 20.1<br>20.3<br>20.1<br>20.1                                                                                    | \$\$         1.25           \$\$         1.1 TeV           \$\$         1.32           \$\$         1.34                                                                                                                                                                                                                                                                                                                         | TeV         m(K <sup>0</sup> <sub>1</sub> ) <400 GeV           m(K <sup>0</sup> <sub>1</sub> ) <350 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1407.0600<br>1308.1841<br>1407.0600<br>1407.0600                                                                                                                                                                                           |
| 3 <sup>rd</sup> gen. squarks<br>direct production | $ \begin{array}{l} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^- \\ \tilde{h}_1 \tilde{c}_1 \left( [\text{igh}) t, \tilde{i}_1 \rightarrow b \tilde{\chi}_1^+ \\ \tilde{r}_1 \tilde{c}_1 \left( [\text{igh}) t, \tilde{i}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{r}_1 \tilde{r}_1 \left( (\text{medium}), \tilde{r}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{r}_1 \tilde{r}_1 \left( (\text{medium}), \tilde{r}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{r}_1 \tilde{r}_1 \left( (\text{meavy}) \tilde{b}_1^- \rightarrow b \tilde{\chi}_1^0 \\ \tilde{r}_1 \tilde{r}_1 \left( (\text{meavy}) \tilde{b}_1^- \rightarrow b \tilde{\chi}_1^0 \\ \tilde{r}_1 \tilde{r}_1 (\text{meav}) \tilde{b}_1^- \delta \tilde{b}_1^0 \\ \tilde{r}_1 \tilde{r}_1 (\text{meav}) \tilde{b}_1^- \delta \tilde{b}_1^0 \\ \tilde{r}_1 \tilde{r}_1 (\text{meav}) \tilde{b}_1^0 \rightarrow b \tilde{b}_1^0 \\ \tilde{r}_1 \tilde{r}_1 (\text{meav}) \tilde{c}_1^0 \rightarrow b \tilde{c}_1^0 \\ \tilde{r}_1 \tilde{r}_1 \tilde{r}_1 \rightarrow b \tilde{c}_1^0 \\ \tilde{r}_1 \tilde{r}_1 \tilde{r}_1 \rightarrow b \tilde{c}_1^0 \\ \tilde{r}_1 \tilde{r}_1 \tilde{r}_1 (\text{meav}) \tilde{r}_1 + Z \end{array} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 3 \ e, \mu \ (Z) \end{matrix}$                                           | 2 b<br>0-3 b<br>1-2 b<br>0-2 jets<br>2 jets<br>2 b<br>1 b<br>2 b<br>1 ono-jet/c-t<br>1 b<br>1 b                             | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes | 20.1<br>20.3<br>4.7<br>20.3<br>20.3<br>20.1<br>20<br>20.1<br>20.3<br>20.3<br>20.3<br>20.3                       | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                          | $\begin{split} & \mathfrak{m}(\tilde{\xi}_{1}^{0}) < 90  \text{GeV} \\ & \mathfrak{m}(\tilde{\xi}_{1}^{0}) = 2  \mathfrak{m}(\tilde{\xi}_{1}^{0}) \\ & \mathfrak{m}(\tilde{\xi}_{1}^{0}) = 55  \text{GeV} \\ & \mathfrak{m}(\tilde{\xi}_{1}^{0}) = 15  \text{GeV} \\ & \mathfrak{m}(\tilde{\xi}_{1}^{0}) = 1  \text{GeV} \\ & \mathfrak{m}(\tilde{\xi}_{1}^{0}) = 200  \text{GeV},  \mathfrak{m}(\tilde{\xi}_{1}^{0}) = \pi(\tilde{\xi}_{1}^{0}) = 5  \text{GeV} \\ & \mathfrak{m}(\tilde{\xi}_{1}^{0}) = 0  \text{GeV} \\ & \mathfrak{m}(\tilde{\xi}_{1}^{0}) = 5  \text{GeV} \\ & \mathfrak{m}(\tilde{\xi}_{1}^{0}) = 5  \text{GeV} \\ & \mathfrak{m}(\tilde{\xi}_{1}^{0}) = 50  \text{GeV} \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1308.2631<br>1404.2500<br>1208.4305, 1209.2102<br>1403.4853<br>1403.4853<br>1308.2631<br>1407.0583<br>1406.1122<br>1407.0608<br>1403.5222<br>1403.5222                                                                                     |
| EW<br>direct                                      | $ \begin{array}{c} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*}, \tilde{\chi}_{1}^{*} \rightarrow \tilde{\ell} \nu (\tilde{r}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*}, \tilde{\chi}_{1}^{*} \rightarrow \tilde{r} \nu (\tau ) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{*} \rightarrow \tilde{\ell}_{1} \nu \ell_{L} (\ell (\tilde{r}) , \tilde{r} \tilde{\ell}_{L} \ell (\tilde{r}) ) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{*} \tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{*} \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{*} \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{*} \tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{*} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{*} \tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{*} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{*} \tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{2}^{*} \rightarrow W \tilde{\chi}_{2}^{*} \tilde{\chi}_{2}^{*} \rightarrow W \tilde{\chi}_{1}^{*} \tilde{\chi}_{2}^{*} \\ \tilde{\chi}_{2}^{*} \tilde{\chi}_{2}^{*} \rightarrow \tilde{\chi}_{2}^{*} \tilde{\chi}_{2}^{*} \rightarrow \tilde{\chi}_{2}^{*} \\ \tilde{\chi}_{2}^{*} \tilde{\chi}_{2}^{*} \rightarrow \tilde{\chi}_{2}^{*} \tilde{\chi}_{2}^{*} \rightarrow \tilde{\chi}_{2}^{*} \\ \tilde{\chi}_{2}^{*} \tilde{\chi}_{2}^{*} \rightarrow \tilde{\chi}_{2}^{*} \tilde{\chi}_{2}^{*} \rightarrow \tilde{\chi}_{2}^{*} \\ \tilde{\chi}_{2}^{*} \tilde{\chi}_{2}^{*} = \tilde{\chi}_{2}^{*} \tilde{\chi}_{2}^{*} \tilde{\chi}_{2}^{*} \rightarrow \tilde{\chi}_{2}^{*} \tilde{\chi}_{2}^{*} \\ \tilde{\chi}_{2}^{*} \tilde{\chi}_{2}^{*} = \tilde{\chi}_{2}^{*} \tilde{\chi}_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 - 3 \ e, \mu \\ 1 \ e, \mu \\ 4 \ e, \mu \end{array}$                                                                           | 0<br>0<br>-<br>0<br>2 <i>b</i><br>0                                                                                         | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes                             | 20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3                                                    | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                          | $\begin{split} m(\tilde{k}_{1}^{0}) &= 0 \; \text{GeV} & \text$ | 1403.5294<br>1403.5294<br>1407.0350<br>1402.7029<br>1403.5294, 1402.7029<br>ATLAS-CONF-2013-093<br>1405.5086                                                                                                                               |
| Long-lived<br>particles                           | Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$<br>Stable, stopped $\tilde{g}$ R-hadron<br>GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e$<br>GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}$ , long-lived $\tilde{\chi}_{1}^{0}$<br>$\tilde{q}\tilde{q}, \tilde{\chi}_{1}^{0} \rightarrow qq\mu$ (RPV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Disapp. trk<br>0<br>, μ) 1-2 μ<br>2 γ<br>1 μ, displ. vtx                                                                                                                                                  | 1 jet<br>1-5 jets<br>-<br>-                                                                                                 | Yes<br>Yes<br>-<br>Yes<br>-                                        | 20.3<br>27.9<br>15.9<br>4.7<br>20.3                                                                             | $\vec{k}_1^+$ 270 GeV         832 GeV $\vec{k}$ 870 GeV         872 GeV $\vec{k}_1^0$ 230 GeV         1.0 TeV                                                                                                                                                                                                                                                                                                                    | $\begin{split} m(\tilde{\kappa}_1^{-1})\cdot m(\tilde{\kappa}_1^{0}) &= 160 \text{ MeV}, \tau(\tilde{\kappa}_1^{-1}) &= 0.2 \text{ ns} \\ m(\tilde{\kappa}_1^{0}) &= 100 \text{ GeV}, 10  \mu \text{s} < \tau(\tilde{\kappa}) < 1000 \text{ s} \\ 10 < \tan \beta < 50 \\ 0.4 < \tau(\tilde{\kappa}_1^{0}) < 2 \text{ ns} \\ 1.5 < c\tau < 156 \text{ mm}, \text{BR}(\mu) = 1, m(\tilde{\kappa}_1^{0}) = 108 \text{ GeV} \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATLAS-CONF-2013-069<br>1310.6584<br>ATLAS-CONF-2013-058<br>1304.6310<br>ATLAS-CONF-2013-092                                                                                                                                                |
| RPV                                               | $\begin{array}{l} LFV \ pp \rightarrow \tilde{\mathbf{v}}_\tau + X, \tilde{\mathbf{v}}_\tau \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{\mathbf{v}}_\tau + X, \tilde{\mathbf{v}}_\tau \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{x}_1^+ \tilde{x}_1^-, \tilde{x}_1^+ \rightarrow W \tilde{x}_1^0, \tilde{x}_1^0 \rightarrow e e \tilde{\nu}_\mu, e \mu \tilde{\nu}_e \\ \tilde{x}_1^+ \tilde{x}_1^-, \tilde{x}_1^+ \rightarrow W \tilde{x}_1^0, \tilde{x}_1^0 \rightarrow e e \tilde{\nu}_\mu, e \mu \tilde{\nu}_e \\ \tilde{x}_1^+ \tilde{x}_1^-, \tilde{x}_1^+ \rightarrow W \tilde{x}_1^0, \tilde{x}_1^0 \rightarrow \tau \tau \tilde{\nu}_e, e \tau \tilde{\nu}_\tau \\ \tilde{g} \rightarrow q q \\ \tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow b s \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \hline 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu \ (SS) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (SS) \end{array}$                                                   | 0-3 <i>b</i><br>-<br>-<br>6-7 jets<br>0-3 <i>b</i>                                                                          | -<br>Yes<br>Yes<br>-<br>Yes                                        | 4.6<br>4.6<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3                                                              | \$\vec{F}_r\$         1.1 TeV           \$\vec{F}_r\$         1.3           \$\vec{K}_1^+\$         750 GeV           \$\vec{K}_1^+\$         450 GeV           \$\vec{K}_2^-\$         916 GeV           \$\vec{K}_2^-\$         850 GeV                                                                                                                                                                                        | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1212.1272<br>1212.1272<br>1404.2500<br>1405.5086<br>1405.5086<br>ATLAS-CONF-2013-091<br>1404.250                                                                                                                                           |
| Other                                             | Scalar gluon pair, sgluon $\rightarrow q\bar{q}$<br>Scalar gluon pair, sgluon $\rightarrow t\bar{t}$<br>WIMP interaction (D5, Dirac $\chi$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>2 <i>e</i> , <i>µ</i> (SS)<br>0                                                                                                                                                                      | 4 jets<br>2 b<br>mono-jet                                                                                                   | -<br>Yes<br>Yes                                                    | 4.6<br>14.3<br>10.5                                                                                             | sgluon         100-287 GeV           sgluon         350-800 GeV           M* scale         704 GeV                                                                                                                                                                                                                                                                                                                               | incl. limit from 1110.2693 $m(\chi){<}80~{\rm GeV}, limit of{<}687~{\rm GeV} ~{\rm for}~{\rm D8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1210.4826<br>ATLAS-CONF-2013-051<br>ATLAS-CONF-2012-147                                                                                                                                                                                    |
|                                                   | $\sqrt{s} = 7 \text{ TeV}$<br>full data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\sqrt{s} = 8$ TeV partial data                                                                                                                                                                           | $\sqrt{s} = $ full                                                                                                          | 8 TeV<br>data                                                      |                                                                                                                 | 10 <sup>-1</sup> 1                                                                                                                                                                                                                                                                                                                                                                                                               | Mass scale [TeV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                            |

**ATLAS** Preliminary  $\sqrt{s} = 7, 8 \text{ TeV}$ 

\*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 $\sigma$  theoretical signal cross section uncertainty.



### **Backup Slide**

### LHC status of SUSY Stop searches



### Backup Slide LHC status of SUSY DM searches

Challenge: small production cross section of EW sector.

#### ATLAS



### **Backup Slide**

### LHC status of SUSY Slepton searches

ATLAS

#### CMS



### **Backup Slide**

