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B̂(r) =
∑

λ=e,m

∫
d3r ′

∫ ∞

0

dω

iω
∇× Gλ(r,r ′,ω)· f̂ λ(r ′,ω)

+ H. c. , (4)

where f̂
†
λ(r,ω) and f̂ λ(r,ω) are the creation and annihilation

operators of the elementary electric (λ = e) and magnetic
(λ = m) excitations, respectively. They obey the bosonic
commutation relations

[ f̂ λ(r,ω), f̂
†
λ′(r ′,ω′)] = δ(r − r ′)δλλ′δ(ω − ω′) (5)

and

[ f̂ λ(r,ω), f̂ λ′(r ′,ω′)] = [ f̂
†
λ(r,ω), f̂

†
λ′(r ′,ω′)] = 0, (6)

where δ(r − r ′) is a diagonal matrix with the diagonal element
given by δ(r − r ′), and 0 represents a zero matrix. In Eqs. (3)
and (4), the quantities Gλ are related to the classical Green’s
tensor G by

Ge(r,r ′,ω) = i
ω2

c2

√
!

πϵ0
Im ϵ(r ′,ω) G(r,r ′,ω), (7)

Gm(r,r ′,ω) = i
ω

c

√
!

πϵ0

Im µ(r ′,ω)
|µ(r ′,ω)|2

[∇′× G(r ′,r,ω)]T.

(8)

Here, ϵ0 and c represent the vacuum permittivity and the
light speed, respectively. The Green’s function G satisfies
the differential equation

[
∇ × 1

µ(r,ω)
∇ × − ω2

c2
ϵ(r,ω)

]
G(r,r ′,ω) = δ(r − r ′)

(9)
and the boundary condition

G(r,r ′,ω) → 0 for |r − r ′| → ∞. (10)

It also fulfills the Schwarz reflection principle and obeys the
Onsager-Lorentz reciprocity:

G(r,r ′,−ω∗) = G∗(r,r ′,ω),
(11)

G(r ′,r,ω) = GT(r,r ′,ω).

In addition, there is a useful integral relation for the Green’s
function:

∑

λ=e,m

∫
d3s Gλ(r,s,ω)· G∗T

λ (r ′,s,ω)

= !µ0

π
ω2 Im G(r,r ′,ω), (12)

where µ0 is the vacuum permeability. Thus, using Eqs. (3) and
(4), we write ĤF into the form

ĤF =
∑

λ=e,m

∫
d3r

∫ ∞

0
dω!ω f̂

†
λ(r,ω) · f̂ λ(r,ω). (13)

It is easy to see that the ground state of ĤF can be defined as

f̂ λ(r,ω)|{0}⟩ = 0 ∀λ,r,ω. (14)

Hereafter, we use |{ }⟩ to represent the state of electromagnetic
fields, while, for a thermal state, one has

⟨{β}| f̂ λ(r,ω) f̂
†
λ′(r ′,ω′)|{β}⟩ = (1 + N (β))δ(r − r ′)

× δλλ′δ(ω − ω′), (15)

⟨{β}| f̂
†
λ(r,ω) f̂ λ′(r ′,ω′)|{β}⟩ = N (β)δ(r − r ′)δλλ′δ(ω − ω′),

(16)

with β = !c/kT , k being the Boltzmann constant and

N (β) = 1
eβω/c − 1

. (17)

In Eq. (1), ĤAF describes the interaction between the
atom and the body-assisted electromagnetic field. Within the
multipolar coupling scheme, ĤAF contains three different
terms [18]:

ĤAF = −d̂A · Ê(rA) − m̂A · B̂(rA) +
∑

α∈A

q2
α

8mα

[ˆ̄rα× B̂(rA)]2,

(18)
where the first, second, and third terms in the right-hand
side represent the electric, paramagnetic, and diamagnetic
interactions, respectively. d̂A and m̂A are the respective atomic
electric and magnetic dipole operators, and qα , mα , and ˆ̄rα

denote the charges, masses, and positions relative to the center
of mass of the particles contained in the atom, respectively.

III. DIAMAGNETIC INTERACTION

The electric interaction between an atom and the fields
in the presence of a body, such as a perfect mirror or a
dielectric substrate, has been studied extensively including
the contributions from the zero-point fluctuations, the equi-
librium thermal fluctuations (see [19] for recent reviews),
and the out of equilibrium thermal fluctuations [8,10]. In
addition, the magnetic interactions, including paramagnetic
and diamagnetic ones, arising from the vacuum fluctuations
have been investigated in [12,14]. Here, we focus on the
diamagnetic interaction between a ground-state atom and
the body-assisted electromagnetic fields from the thermal
fluctuations. The contributions from the equilibrium and out
of equilibrium thermal fluctuations are both considered. We
assume that the left half space (z < 0) is filled with a
nonabsorbing and nondispersive dielectric substrate whose
permittivity is real and frequency independent (which we call
a real dielectric substrate for short hereafter) at temperature Ts

and the right half space (z > 0) is filled with a thermal bath at
temperature Te. Apparently, Te = Ts corresponds to the case of
thermal equilibrium. For convenience, we introduce the atomic
diamagnetizability operator:

m̂d
A = −

∑

α∈A

q2
α

4mα

(
ˆ̄r2
α I − ˆ̄rα ˆ̄rα

)
. (19)

Here, ˆ̄r2
α ≡ ˆ̄rα · ˆ̄rα and I is a unit matrix. In terms of

Lagrange’s identity [a×b]2 = b · (a2 I − aa) · b, we can re-
express the diamagnetic interaction Hamiltonian as

∑

α∈A

q2
α

8mα

[ˆ̄rα× B̂(rA)]2 = −1
2

B̂(rA)·m̂d
A · B̂(rA). (20)
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the magnetic part of the CP potential reads

Um(rA) = Up(rA) + Ud (rA)

= h̄µ0

2π

∫ ∞

0
dξ tr

[
β(iξ ) · G(1)

mm(rA,rA,iξ )
]

= h̄µ0

2π

∫ ∞

0
dξ β(iξ )tr

[
G(1)

mm(rA,rA,iξ )
]

(37)

and the total CP potential is given by

U (rA) = Ue(rA) + Um(rA). (38)

We have thus generalized previous results for the CP
potential of an atom with electric and paramagnetic properties
to one that also exhibits nontrivial diamagnetic properties.
It is found that despite the different interaction terms and
perturbative orders (first order instead of second order), the
extension to a diamagnetic atom can be obtained formally by
including the diamagnetic contribution in the magnetizability,
βp(ω) "→ β(ω) = βp(ω) + βd . In particular, the local-field
corrected potentials for atoms embedded in a medium as
derived in Ref. [18] remain valid with this replacement.

By introducing αe(ω) = α(ω), αm(ω) = β(ω)/c2, the
electric and magnetic parts of the CP potential can be given in
the compact notation

Uλ(rA) = h̄

2πε0

∫ ∞

0
dξ tr

[
αλ(iξ ) · G(1)

λλ(rA,rA,iξ )
]

= h̄

2πε0

∫ ∞

0
dξ αλ(iξ )trG(1)

λλ (rA,rA,iξ ) (39)

(λ = e,m).
There are two important differences between the dia-

magnetic and the paramagnetic magnetizabilities which will
have an impact on the associated potentials. First, the dia-
magnetizability has an opposite sign with respect to the
paramagnetizability, which is a consequence of the Lenz rule.
Second, in contrast to the paramagnetizability, which obeys
the usual Kramers-Kronig relations, the diamagnetizability is
independent of frequency.

B. Application: Atom in front of a perfectly reflecting mirror

Let us consider an isotropic atom at distance zA from
a perfectly reflecting planar mirror. The magnetoelectric
properties of the mirror are characterized by ε = ∞ (µ = ∞)
for a perfectly conducting (infinitely permeable) plate. The

Green tensor reads [31]

G(1)(r,r ′,iξ ) = ± 1
8π2

∫
d2q

b
ei(q+·r−q−·r ′)(e+

p e−
p − eses)

(40)

(q± = q ± ibez, q⊥ez, q = |q|, b =
√

q2 + ξ 2/c2), with the
upper (lower) sign corresponding to a perfectly conducting
(infinitely permeable) plate and the polarization vectors es and
ep being defined by (eq = q/q)

es = eq × ez, e±
p = c

ξ
(−iqez ∓ beq). (41)

Evaluating the double curl of the Green tensor, we find that
G(1)

mm(r,r ′,iξ ) is equal to −ξ 2c−2G(1)(r,r ′,iξ ). Substituting
this into Eq. (30) and carrying out the q integral, one
finds

Ud (zA) = ± h̄µ0β
d

16π2z3
A

∫ ∞

0
dξ e−2zAξ/c

×
(

1 + 2
zAξ

c
+ 2

z2
Aξ 2

c2

)
. (42)

After performing the ξ integral, we find an attractive (repul-
sive) CP potential,

Ud (zA) = ±3h̄µ0cβ
d

32πz4
A

= ∓ 3h̄µ0c

32πz4
A

∑

α∈A

q2
α

6mα

〈
ˆ̄r2
α

〉
, (43)

of a diamagnetic atom in front of a perfectly conducting
(permeable) plate. It is given by a universal 1/z4

A power law.
In Table I, we compare this result with the known

findings for electric and paramagnetic atoms. We recall that
electric and paramagnetic atoms interact with conducting and
permeable plates according to an “equals attract, opposites
repel” rule: An electric plate attracts electric atoms while
repelling (para)magnetic atoms, with corresponding results
for a (para)magnetic plate. In contrast to this, diamagnetic
potentials carry a sign that is opposite to that of their
paramagnetic counterparts. This is due to the Lenz rule as
encoded in the minus sign in the diamagnetic magnetizability,
(12). The diamagnetic CP potential thus has the same sign as
the corresponding electric potential.

Another difference is the fact that the wavelengths of
electric and paramagnetic dipole transitions divide the CP
potential into two asymptotic regimes: the nonretarded regime
of distances smaller than these wavelengths and the opposite,
retarded regime. The CP potential follows two distinct 1/z3

A

TABLE I. Signs and asymptotic power laws of the ground-state CP potential of an electric, paramagnetic, or diamagnetic atom with a
perfectly reflecting plate.

Plate

Perfectly conducting Infinitely permeable

Atom Retarded limit Nonretarded limit Retarded limit Nonretarded limit

Electric − 1
z4
A

− 1
z3
A

+ 1
z4
A

+ 1
z3
A

Paramagnetic + 1
z4
A

+ 1
z3
A

− 1
z4
A

− 1
z3
A

Diamagnetic − 1
z4
A

+ 1
z4
A
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substrate in the absence of the environment radiation. In
order to discuss the more general case TS ! TE ! 0, we
make use of the additivity property of the thermal force
which can be written, in general, as the sum of two con-
tributions: Fneq

th !TS;TE;z"#F
neq
th !TS;0;z"$F

neq
th !0;TE;z",

produced, respectively, by the radiation of the substrate
and of the environment. Their additivity can be checked by
evaluating separately the two contributions and verifying
that their sum, at thermal equilibrium, reproduces the
Lifshitz force Feq

th [22]. The full surface-atom force out
of equilibrium can finally be written in the convenient form

Fneq!TS;TE;z"#Feq!TE;z"$Fneq
th !TS;0;z"%F

neq
th !TE;0;z";

(9)

where the equilibrium force Feq!T; z" is given by (3) while
Fneq

th !T; 0; z" is defined by Eq. (8).
In Figs. 1–3, we show the explicit results for the poten-

tial energy, the force, and the gradient of the force obtained
starting from Eq. (9) as a function of the distance from the
surface for different choices of TS and TE. Calculations
have been done for a sapphire substrate and for rubidium
atoms. For Feq!T; z" we have used the predictions of [2].
The figure clearly shows that the thermal effects out of
equilibrium are sizable (solid lines), thereby providing
promising perspectives for future measurements of the
surface-atom force at large distances. In particular, in order
to increase the attractive nature of the force, it is much
more convenient to heat the substrate by keeping the
environment at room temperature (lower solid line) rather
than heating the whole system (dashed line). When TS <
TE (upper solid line), the force exhibits a characteristic
change of sign reflecting a repulsive nature at large dis-
tances (see also discussion below). At short distances the
thermal correction to the force becomes smaller and
smaller and is determined by the temperature of the sub-
strate. We have reported the results for the potential, for the

force, and for the gradient of the force because the corre-
sponding predictions can be of interest for different types
of experiments with ultracold gases. Experiments based on
the study of the center of mass oscillation of a trapped gas
are sensitive to the gradient of the force [2]. The corre-
sponding frequency shifts produced by the surface-atom
interaction have been recently measured [10] in conditions
of thermal equilibrium in agreement with the predictions of
theory [2]. Conversely, experiments based on Bloch oscil-
lations are sensitive to the force itself [11,23]. Finally, one
can also think at interference experiments with Bose-
Einstein condensates in a double well potential. For large
separations between the wells the position of the corre-
sponding interference fringes are sensitive to the potential
[24].

In the last part of the Letter we discuss the large z
behavior of the out of equilibrium force. In this limit
only values q & 1 are important in the evaluation of the
integral (8). By making the substitution q2 % 1 # t2, and
the t' 1 expansion, we find that the force (8) exhibits the
nontrivial asymptotic behavior

Fneq
th !T;0;z"z!1#%

@!0

z3"c

Z 1
0
d!

!
e@!=kBT%1

f!!": (10)

Notice that the force exhibits a slower 1=z3 decay with
respect to the one holding at thermal equilibrium where it
decays like 1=z4 [see Eq. (5)]. In the above equation we
have introduced the function

f!!" # fj"!!" % 1j$ ("0!!" % 1)g1=2 2$ j"!!" % 1j!!!
2
p
j"!!" % 1j

;

(11)

which depends on the optical properties of the substrate.
For temperatures much smaller than the energy @!c=kB,
where !c is the lowest characteristic frequency of the
dielectric substrate, we can replace f!!" with its low
frequency limit !"0 $ 1"= !!!!!!!!!!!!!!

"0 % 1
p

. The force (9) felt by
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FIG. 1. Surface-atom potential energy Vneq!z" #
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z dz0Fneq!z0" calculated from Eq. (9), for different thermal
configurations.
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the atom then approaches the asymptotic behavior

Fneq!TS;TE; z"z!1 #$
!
6

"0k2
B!T2

S$T2
E"

z3c@
"0% 1!!!!!!!!!!!!!!
"0$ 1
p ; (12)

holding at low temperature and at distances larger than
#T=

!!!!!!!!!!!!!!
"0 $ 1
p

where #T is the thermal photon wavelength
calculated at the relevant temperatures TS and TE [25].
Equation (12) shows that, at large distances, the new force
is attractive or repulsive depending on whether the sub-
strate temperature is higher or smaller than the environ-
ment one. Furthermore, it exhibits a stronger temperature
dependence with respect to equilibrium and contains ex-
plicitly the Planck constant. The new dependence of
Fneq!T; 0; z" on temperature and distance can be physically
understood by noticing that the main contribution to the zth
dependent part of the electric energy UE arises from the
blackbody radiation impinging on the surface in a small
interval of angles, of order of !#T=z"2, near the angle of
total reflection. This radiation creates slowly damping
evanescent waves in vacuum. As a result Fneq!T; 0; z" turns
out to be, in accordance with Eq. (12), of order of
$!#2

T=z
3"UBB, where UBB / T4 is the energy density of

the blackbody radiation.
Equation (12) holds for a dielectric substrate where "0 is

finite. For a metal, if one uses the Drude model, one has
"00!!" # 4!$=! with the real part "0!!" remaining finite
as !! 0 so that one finds f!!"!

!!!!!!!!!!!!!!!!!!
"00!!"=2

p
#!!!!!!!!!!!!!!!!!

2!$=!
p

. At low temperatures Eq. (10) then gives rise
to a different temperature dependence

Fneq!TS; TE; z"z!1 # $
"0%!3=2" !!!!

$
p

k3=2
B !T3=2

S $ T3=2
E "

z3c
!!!!!!
2@
p ;

(13)

where %!3=2" & 2:61 is the usual Riemann function.

In conclusion, in this Letter we have calculated the
surface-atom force out of thermal equilibrium and pointed
out the occurrence of a new asymptotic behavior at large
distances. Our predictions could be tested in experiments
with ultracold atomic gases trapped close to the surface of
a substrate.
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different angles, reflects from the substrate surface, giving
rise to a field distribution whose intensity falls smoothly to
a minimum at the substrate surface. The resulting Stark
shift from the external radiation then pulls the atom away
from the surface, contributing a repulsive term to the
potential [26]. Antezza et al. [24] recently predicted that
the nonequilibrium contribution to the CP potential asymp-
totically scales as UNEQ ! "T2

S # T2
E$=x2. This novel scal-

ing dependence dominates at long range. One can thus
temperature tune the magnitude of this long-range force
and, in principle, even change the sign of the overall force.

We observe the temperature dependence of the Casimir-
Polder force between a rubidium atom and a dielectric
substrate by measuring the collective oscillation frequency
of the mechanical dipole mode of a Bose-Einstein conden-
sate (BEC) near enough to a dielectric substrate for the CP
force to measurably distort the trapping potential. This
distortion of the trap results in changes to the oscillation
frequency proportional to the gradient of the force:

 !x %
!o #!x

!o
’ 1

2m!2
o
h@xFCPi; (1)

where m is the mass of the 87Rb atom, and !x is defined as
the fractional frequency difference between the unper-
turbed trap frequency !o and !x, the trap frequency per-
turbed by the CP force FCP.

The use of a BEC in this work is not conceptually
central. The force between the substrate and the condensate
is the simple sum of the force on the individual atoms of the
condensate. For our purpose, the condensate represents a

spatially compact collection of a relatively large number of
atoms whose well-characterized Thomas-Fermi density
profile facilitates the spatial averaging and the inclusion
of nonlinear effects in the oscillations, necessary for the
quantitative comparison between theory and experiment
[9,27].

Experimental details, surface-atom measurement, and
calibration techniques, along with a detailed discussion
of measurements of stray electric and magnetic fields
appear in [8,9,28]. In brief, the experiment consists of
2:5& 105 87Rb atoms Bose condensed (condensate purity
>0:8) in the jF ' 1; mF ' #1i ground state. The conden-
sate is produced!1:2 mm below a dielectric substrate in a
Ioffe-Pritchard–style magnetic trap (trap frequencies of
229 and 6.4 Hz in the radial and axial directions, respec-
tively), resulting in respective Thomas-Fermi radii of 2.69
and 97:1 "m.

The dielectric substrate studied consists of uv-grade
fused silica !2& 8& 5 mm3 in size (x, y, and z direc-
tions, respectively) sitting atop a monolithic pyrex glass
holder inside a pyrex glass cell which composes the vac-
uum chamber (Fig. 2). The top surface (#x̂ face) of the
substrate is painted with a!100 "m thick opaque layer of
graphite and treated in a high-temperature oven prior to
placement in the vacuum chamber. The observed lifetime
of the BEC places a strong, robust, upper bound on the total
pressure of residual gas just below the substrate surface of
!3& 10#11 torr, even at TS ' 605 K.

The fused-silica substrate was heated by shining !1 W
of laser light (860 nm) on the graphite layer. The rough
texture of the pyrex holder creates near point contacts with
the substrate corners, providing good thermal isolation
between the holder and the substrate. This technique al-
lows us to vary the temperature of the substrate while
maintaining near room-temperature vacuum chamber
walls and only slightly elevated holder temperatures.
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FIG. 2 (color online). Side view of the apparatus. Shown is a
scale drawing of the fused-silica substrate (leftmost of the four
substrates) with a top layer of graphite. The graphite absorbs the
light from the laser, heating the substrate. The pyrex holder is
isolated enough from the substrate to allow a hot substrate–cool
environment scenario. The enlargement in the inset shows the
BEC at a distance x from the surface.

 

FIG. 1 (color online). Cartoon drawing of thermal fluctuations
near the surface of a dielectric substrate (shaded region).
(a) Internal radiation striking the surface at angles less than
the critical angle #C does not contribute to the Casimir-Polder
force. However, internal radiation impingent at larger angles (b)
undergoes total internal reflection (c) and contributes to an
overall ac Stark shift by creating evanescent waves in free
space (d). Surrounding the atom (red circle) is radiation from
the environment (e) which contributes to the CP force by creat-
ing standing waves at the surface. The force does not arise from
radiation pressure but rather from gradients in intensity. The
surface-atom force becomes more attractive for TS > TE and
more repulsive for TS < TE.

PRL 98, 063201 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
9 FEBRUARY 2007

063201-2

�d = 1

static approximation	

real dielectric 

Antezza et al., PRL 95, 113202 (2005)	


Zhou and Yu,  PRA 90, 032501 (2014)	




present Letter we describe heat transfer in three-body
systems and we highlight the concept of three-body ampli-
fication of heat flux exchanged at nanoscale between two
media. In addition we propose a device based on an inter-
mediate passive relay, which is able to increase the number
of coupled modes. This investigation belongs to the vast
category of few-body problems whose richness has been
largely explored in atomic physics, quantum chemistry,
and celestial mechanics. Recently, interesting effects
have been theoretically discussed in the context of heat
transfer [19,20].

We consider two parallel slabs identified for convenience
by the indexes i ¼ 1 and i ¼ 3, as shown in Fig. 1(a). Each
slab has a finite thickness, whereas its transverse extension
is much larger than the distance between the slabs, so that
they can be considered infinite with respect to the xy plane.
We compare this system to a configuration in which a
third slab, labeled with i ¼ 2 and having thickness !, is
placed between slabs 1 and 3 [see Fig. 1(b)]. The system
is placed in both cases in a stationary thermodynamical
configuration, in which each body is held at temperature
Ti (i ¼ 1, 2, 3). As far as the material properties of the three
slabs are concerned, we describe them in terms of three
complex dielectric permittivities "ið!Þ, meaning that their
electromagnetic response is local and nonmagnetic.

Herein we are interested in comparing the heat flux on
body 3 in two- and three-body configurations. The heat-
transfer problem in the case of a couple of arbitrary bodies
in a thermal environment has been recently solved [21]. In
this case, the heat flux on a body can be expressed as a sum of
an evanescent and a propagative contribution: the former (the
latter) depends only on the modes of the electromagnetic
field for which the transverse wave vectork satisfies ck > !
(ck < !). The evanescent contribution, only connected to
the temperatures T1 and T3 of the two bodies, largely domi-
nates on the propagative one at distances between them
smaller than the thermal wavelength (somemicrons at ambi-
ent temperature). In this near-field regime the monochro-
matic heat flux onbody3 at frequency! can bewritten under
the form of a Landauer expansion

"2sð!; dÞ ¼ @!n13ð!Þ
X

p

Z
ck>!

d2k

ð2#Þ2 T 2s;pð!;k; dÞ

(2)

where

T 2s;pð!;k; dÞ ¼ 4Imð$1pÞImð$3pÞe$2ImðkzÞd

j1$ $1p$3pe
$2ImðkzÞdj2

: (3)

These quantities depend also on the thicknesses of slabs 1 and
3 through the reflection coefficients $i of slab i [22].

The scattering procedure developed to investigate heat
and momentum transfer between two bodies described
detail in Ref. [21] has been generalized to the case of three
bodies in a thermal environment [23]. In this case, as
expected on physical grounds, the evanescent contribution

is a function of the three temperatures T1, T2, and T3, while
the environmental temperature Te enters only in the prop-
agative term. In order to reduce the number of free pa-
rameters for the analysis of the amplification mechanism,
we will focus our attention on the symmetric case in which
the distances between adjacent slabs in the three-body
configuration (1–2 and 2–3) are both equal to d, i.e., the
distance between slabs 1 and 3 in the two-body configura-
tion (see Fig. 1). This choice makes d the only relevant
distance in both scenarios. Moreover, it makes the minimal
distance between any couple of adjacent bodies the same
for the two configurations and the optical distance between
slabs 1 and 3 double in the three-slab case with respect to
two slabs. For the three-slab system the near-field expres-
sion of the monochromatic heat flux on slab 3 reads [23]

"3sð!; d;!Þ ¼ @!X

p

Z
ck>!

d2k

ð2#Þ2

% ½n12ð!ÞT ð12Þ
3s;pð!;k; d;!Þ

þ n23ð!ÞT ð23Þ
3s;pð!;k; d;!Þ( (4)

with

T ð12Þ
3s;pð!;k;d;!Þ

¼ 4j%2pð!Þj2Imð$1pÞImð$3pÞe$4ImðkzÞd

j1$$12pð!Þ$3pe
$2ImðkzÞdj2j1$$1p$2pð!Þe$2ImðkzÞdj2

T ð23Þ
3s;pð!;k;d;!Þ¼4Im½$12pð!Þ(Imð$3pÞe$2ImðkzÞd

j1$$12pð!Þ$3pe
$2ImðkzÞdj2

:

(5)

In the right-hand side of Eq. (4) the dependence on the
couple (!, k) is implicit. We note that the evanescent term

FIG. 1 (color online). Geometry of the system in the (a) two-
and (b) three-slab configurations. The distance d between
adjacent slabs (1–2 and 2–3) in the three-body configuration
equals the distance between slabs in the two-body case.
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the local EM field is the main ingredient needed to compute
the transition rates regulating the atomic dynamics, as, e.g.,
in the case of Kossakowski-Lindblad master equations in the
Markovian regime [21,34].

In this paper we provide a systematic derivation for the
internal dynamics of an atom placed in front of an arbitrary
body embedded in a thermal radiation whose temperature
is different from that of the body. The paper is organized
as follows. In Sec. II we describe the physical model under
investigation and we derive a master equation for the general
case of an N -level atom. In Sec. III we derive closed-form
expressions for the transition rates holding out of thermal
equilibrium in terms of the scattering matrices of the body,
valid for arbitrary geometrical and material properties. In
Secs. IV and V we specialize our analysis to the case of a two-
and a three-level atom, discussing how the atomic dynamics
occurring at thermal equilibrium is modified by the absence of
equilibrium. In Sec. VI we derive explicit expressions for the
transition rates for the case in which the body is a slab of finite
thickness. This configuration is numerically investigated in
Sec. VII where the cases in which slab is made of a dielectrics
(GaAs) or a metal (gold) are considered and compared. The
dynamics of both two- and three-level atoms are discussed,
showing the occurrence of peculiar phenomena emerging out
of thermal equilibrium, already pointed out in the general
analysis. In Sec. VIII we draw our conclusions.

II. MODEL

We consider an N -level atom A placed close to a body of
arbitrary geometry and dielectric permittivity and embedded in
an environmental radiation generated by the walls surrounding
the system (see Fig. 1). The body and the surrounding walls
have in general different temperatures, TM and TW, which are
kept fixed in time realizing a stationary configuration out of
thermal equilibrium. By assumption, the walls are far from
both the body and the atom, their shape is irregular, and
they are at local thermal equilibrium at temperature TW. As
a result of these hypotheses, the radiation associated to the
wall has no evanescent contribution reaching the body and the
atom, and is a universal isotropic blackbody radiation. This
blackbody radiation is by definition independent of the actual
material constituting the walls. The atom interacts with the
electromagnetic field (playing the role of bath B) generated by

FIG. 1. (Color online) Atom is kept fixed close to an arbitrary
body whose temperature TM is different from that of the surrounding
walls, TW. TM and TW are kept fixed in time, realizing a stationary
environment for the atom.

the walls and the body. The total Hamiltonian has the form

H = HA + HB + HI , (1)

where HA in the free Hamiltonian of the atom and HB the free
Hamiltonian of the bath. We describe the interaction between
the atom and the field using the multipolar coupling in dipole
approximation [35] HI = −D · E(R), where D is the atomic
electric-dipole operator and E(R) is the electric field at the
atomic position R in the Schrödinger picture. In the interaction
picture HI becomes

HI (t) = −D(t) · E(R,t), (2)

where the time-dependent electric-dipole operator
and electric field are defined by the transformations
D(t) = exp( i

h̄
HAt)D exp(− i

h̄
HAt) and E(R,t) = exp( i

h̄
HBt)

E(R) exp(− i
h̄
HBt). We describe the electric field in the

interaction picture using a decomposition in which a mode
of the field is identified by the frequency ω, the transverse
wave vector k = (kx,ky), the polarization index p (taking the
values p = 1,2 corresponding to TE and TM polarizations,
respectively), and the direction or propagation φ = ±1
(shorthand notation φ = ±) along the z axis. In this approach,
the total wave vector takes the form Kφ = (k,φkz), where the z
component of the wave vector kz is a dependent variable given

by kz =
√

ω2

c2 − k2, with k = |k|. The explicit expression of
the field is

E(R,t) = 2 Re
[∫ +∞

0

dω

2π
e−iωtE(R,ω)

]
, (3)

where a single-frequency component reads

E(R,ω) =
∑

φ,p

∫
d2k

(2π )2
eiKφ ·Rϵ̂φ

p(k,ω)Eφ
p (k,ω), (4)

E
φ
p (k,ω) being the field amplitude operator associated to the

mode (ω,k,p,φ). For the polarization vectors appearing in
Eq. (4) we adopt the following standard definitions:

ϵ̂
φ
TE(k,ω) = ẑ × k̂ = 1

k
(−ky x̂ + kx ŷ),

(5)
ϵ̂

φ
TM(k,ω) = c

ω
ϵ̂

φ
TE(k,ω) × Kφ = c

ω
(−kẑ + φkzk̂),

where x̂, ŷ, and ẑ are the unit vectors along the three axes and
k̂ = k/k.

A. Derivation of the master equation

Following [34], we now derive a master equation for the
reduced density matrix ρ(t) = TrB[ρtot(t)], where TrB denotes
the trace over the degrees of freedom associated to the bath. In
the following, we denote the eigenvalues of HA by ϵ and the
projection onto the eigenspace belonging to the eigenvalue ϵ by
&(ϵ). The starting point of our derivation is, in the interaction
picture, the von Neumann equation for the total density matrix
ρtot(t):

d

dt
ρtot(t) = − i

h̄
[HI (t),ρtot(t)], (6)

where HI (t) of Eq. (2) is rewritten as [34]

HI (t) = −
∑

i,ω

e−iωtAi(ω)Ei(R,t), (7)
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C, the integration over frequencies in (26) can be done by using the Kramers-Kronig

relations connecting real and imaginary parts of the Green’s function:
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4. Emitters close to a slab

We now specialize the derivation of previous section to the case when the body is a slab

of finite thickness �, defined by the two interfaces z = 0 and z = �� (see figure 3). In

this simple case, explicit expressions for the transmission and reflection operators can be

exploited [47, 48]. Because of the translational invariance of a planar slab with respect

to the xy plane, the slab reflection and transmission operators, R and T , are diagonal

and equal to

hp,k|R|p0,k0i = (2⇡)2�(k� k

0)�
pp

0⇢
p

(k,!),

hp,k|T |p0,k0i = (2⇡)2�(k� k

0)�
pp

0⌧
p

(k,!),
(28)

where the Fresnel reflection and transmission coe�cients modified by the finite thickness

� are given by (we recall that p = 1, 2 corresponding to TE and TM polarizations)

⇢
p

(k,!) = r
p

(k,!)
1� e2ikzm�

1� r2
p

(k,!)e2ikzm�

,

⌧
p

(k,!) =
t
p

(k,!)t̄
p

(k,!)ei(kzm�kz)�

1� r2
p

(k,!)e2ikzm�

.

(29)

In the previous equations we have introduced the z component of the K vector inside

the medium,

k
zm

=

r

"(!)
!2

c2
� k

2, (30)
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different angles, reflects from the substrate surface, giving
rise to a field distribution whose intensity falls smoothly to
a minimum at the substrate surface. The resulting Stark
shift from the external radiation then pulls the atom away
from the surface, contributing a repulsive term to the
potential [26]. Antezza et al. [24] recently predicted that
the nonequilibrium contribution to the CP potential asymp-
totically scales as UNEQ ! "T2

S # T2
E$=x2. This novel scal-

ing dependence dominates at long range. One can thus
temperature tune the magnitude of this long-range force
and, in principle, even change the sign of the overall force.

We observe the temperature dependence of the Casimir-
Polder force between a rubidium atom and a dielectric
substrate by measuring the collective oscillation frequency
of the mechanical dipole mode of a Bose-Einstein conden-
sate (BEC) near enough to a dielectric substrate for the CP
force to measurably distort the trapping potential. This
distortion of the trap results in changes to the oscillation
frequency proportional to the gradient of the force:

 !x %
!o #!x

!o
’ 1

2m!2
o
h@xFCPi; (1)

where m is the mass of the 87Rb atom, and !x is defined as
the fractional frequency difference between the unper-
turbed trap frequency !o and !x, the trap frequency per-
turbed by the CP force FCP.

The use of a BEC in this work is not conceptually
central. The force between the substrate and the condensate
is the simple sum of the force on the individual atoms of the
condensate. For our purpose, the condensate represents a

spatially compact collection of a relatively large number of
atoms whose well-characterized Thomas-Fermi density
profile facilitates the spatial averaging and the inclusion
of nonlinear effects in the oscillations, necessary for the
quantitative comparison between theory and experiment
[9,27].

Experimental details, surface-atom measurement, and
calibration techniques, along with a detailed discussion
of measurements of stray electric and magnetic fields
appear in [8,9,28]. In brief, the experiment consists of
2:5& 105 87Rb atoms Bose condensed (condensate purity
>0:8) in the jF ' 1; mF ' #1i ground state. The conden-
sate is produced!1:2 mm below a dielectric substrate in a
Ioffe-Pritchard–style magnetic trap (trap frequencies of
229 and 6.4 Hz in the radial and axial directions, respec-
tively), resulting in respective Thomas-Fermi radii of 2.69
and 97:1 "m.

The dielectric substrate studied consists of uv-grade
fused silica !2& 8& 5 mm3 in size (x, y, and z direc-
tions, respectively) sitting atop a monolithic pyrex glass
holder inside a pyrex glass cell which composes the vac-
uum chamber (Fig. 2). The top surface (#x̂ face) of the
substrate is painted with a!100 "m thick opaque layer of
graphite and treated in a high-temperature oven prior to
placement in the vacuum chamber. The observed lifetime
of the BEC places a strong, robust, upper bound on the total
pressure of residual gas just below the substrate surface of
!3& 10#11 torr, even at TS ' 605 K.

The fused-silica substrate was heated by shining !1 W
of laser light (860 nm) on the graphite layer. The rough
texture of the pyrex holder creates near point contacts with
the substrate corners, providing good thermal isolation
between the holder and the substrate. This technique al-
lows us to vary the temperature of the substrate while
maintaining near room-temperature vacuum chamber
walls and only slightly elevated holder temperatures.
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FIG. 2 (color online). Side view of the apparatus. Shown is a
scale drawing of the fused-silica substrate (leftmost of the four
substrates) with a top layer of graphite. The graphite absorbs the
light from the laser, heating the substrate. The pyrex holder is
isolated enough from the substrate to allow a hot substrate–cool
environment scenario. The enlargement in the inset shows the
BEC at a distance x from the surface.

 

FIG. 1 (color online). Cartoon drawing of thermal fluctuations
near the surface of a dielectric substrate (shaded region).
(a) Internal radiation striking the surface at angles less than
the critical angle #C does not contribute to the Casimir-Polder
force. However, internal radiation impingent at larger angles (b)
undergoes total internal reflection (c) and contributes to an
overall ac Stark shift by creating evanescent waves in free
space (d). Surrounding the atom (red circle) is radiation from
the environment (e) which contributes to the CP force by creat-
ing standing waves at the surface. The force does not arise from
radiation pressure but rather from gradients in intensity. The
surface-atom force becomes more attractive for TS > TE and
more repulsive for TS < TE.
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The temperature of the fused-silica substrate as a func-
tion of the heating laser power was determined in an offline
calibration apparatus, constructed to be a near-identical
version of the main vacuum chamber, except with im-
proved optical access for a temperature probe laser. The
probe laser is coherently split between two arms of a
Michelson interferometer (Fig. 3). The resulting fringe
shifts are proportional to changes in substrate temperature.
A finite-element numerical model of the thermal system
agreed with our measurements and contributed to our
confidence that the temperature of the substrate and the
environment were understood. Residual systematic uncer-
tainties in temperature are reflected in the error bars in
Fig. 4(b).

The experiment, described in detail in [9], begins with
an adiabatic displacement of the atom cloud to a distance x
from the bottom surface (!x̂ face) of the substrate via the
addition of a vertical bias magnetic field. The cloud is then
resonantly driven into a mechanical dipole oscillation by
an oscillatory magnetic field [29]. After a period of free
oscillation the relative position of the cloud is determined
by destructive imaging after "5 ms of antitrapped expan-
sion. This process is repeated for various times in the free
oscillation. The center-of-mass position is recorded at short
times to determine the initial phase of the oscillation and at
later times ("1 s) to precisely determine the oscillation
frequency. Data are taken consecutively alternating the trap
center position between a distance x, close to the surface,
and a normalizing distance xo # 15 !m. The distance xo
is sufficiently far from the substrate to avoid surface per-
turbations, yet close enough to provide a local oscillator!o
with which the data taken at x can be compared. Data sets
are then taken at a number of surface-atom positions
(between 7 and 11 !m) and for various substrate tempera-
tures (310, 479, and 605 K, taken in random order, several
times, and averaged in Fig. 4).

The results in Fig. 4(a) show the fractional change in the
trap frequency "x plotted as a function of the trap center to
surface position x. The blue squares show the measured
effect of the room-temperature Casimir-Polder force [TS #

310$5% K] on the trap frequency. The increase in the
strength of the CP force due to thermal corrections be-
comes obvious when the substrate is heated to 479(20) K
(green circles) and even more pronounced when it is at
605(28) K (red triangles). These measurements were all
done maintaining a room-temperature environment for
which the pyrex vacuum chamber walls were measured
to be TE # 310$5% K. The curves in Fig. 4(a) represent the
theoretical predictions [24] for corresponding substrate-
environment temperature scenarios, showing excellent
agreement with the measurements.
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FIG. 3 (color online). Interferometric temperature measure-
ment apparatus (sizes not to scale). Shown is a schematic view
of the Michelson interferometer used to nonperturbatively mea-
sure the substrate temperature. As the substrate heats, the glass
both expands and changes its index of refraction, creating an
interferometric signal.
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FIG. 4 (color online). (a) Fractional change in the trap fre-
quency due to the Casimir-Polder force. Pictured are three sets of
data and accompanying theoretical curves with no adjustable
parameters for various substrate temperatures. The blue squares
represent data taken with a 310 K substrate; green circles, a
479 K substrate; and red triangles, a 605 K substrate. The
environment temperature is maintained at 310 K. The error
bars represent the total uncertainty (statistical and systematic)
of the measurement. (b) Average values of "x from (a) (for trap
center to surface positions 7.0, 7.5, and 8:0 !m) plotted versus
substrate temperature, demonstrating a clear increase in strength
of the CP force for elevated temperatures. The solid theory curve
represents the nonequilibrium effect (corresponding 7–8 !m
average), while the dash-dotted theory curve represents the
case of equal temperatures.
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different angles, reflects from the substrate surface, giving
rise to a field distribution whose intensity falls smoothly to
a minimum at the substrate surface. The resulting Stark
shift from the external radiation then pulls the atom away
from the surface, contributing a repulsive term to the
potential [26]. Antezza et al. [24] recently predicted that
the nonequilibrium contribution to the CP potential asymp-
totically scales as UNEQ ! "T2

S # T2
E$=x2. This novel scal-

ing dependence dominates at long range. One can thus
temperature tune the magnitude of this long-range force
and, in principle, even change the sign of the overall force.

We observe the temperature dependence of the Casimir-
Polder force between a rubidium atom and a dielectric
substrate by measuring the collective oscillation frequency
of the mechanical dipole mode of a Bose-Einstein conden-
sate (BEC) near enough to a dielectric substrate for the CP
force to measurably distort the trapping potential. This
distortion of the trap results in changes to the oscillation
frequency proportional to the gradient of the force:

 !x %
!o #!x

!o
’ 1

2m!2
o
h@xFCPi; (1)

where m is the mass of the 87Rb atom, and !x is defined as
the fractional frequency difference between the unper-
turbed trap frequency !o and !x, the trap frequency per-
turbed by the CP force FCP.

The use of a BEC in this work is not conceptually
central. The force between the substrate and the condensate
is the simple sum of the force on the individual atoms of the
condensate. For our purpose, the condensate represents a

spatially compact collection of a relatively large number of
atoms whose well-characterized Thomas-Fermi density
profile facilitates the spatial averaging and the inclusion
of nonlinear effects in the oscillations, necessary for the
quantitative comparison between theory and experiment
[9,27].

Experimental details, surface-atom measurement, and
calibration techniques, along with a detailed discussion
of measurements of stray electric and magnetic fields
appear in [8,9,28]. In brief, the experiment consists of
2:5& 105 87Rb atoms Bose condensed (condensate purity
>0:8) in the jF ' 1; mF ' #1i ground state. The conden-
sate is produced!1:2 mm below a dielectric substrate in a
Ioffe-Pritchard–style magnetic trap (trap frequencies of
229 and 6.4 Hz in the radial and axial directions, respec-
tively), resulting in respective Thomas-Fermi radii of 2.69
and 97:1 "m.

The dielectric substrate studied consists of uv-grade
fused silica !2& 8& 5 mm3 in size (x, y, and z direc-
tions, respectively) sitting atop a monolithic pyrex glass
holder inside a pyrex glass cell which composes the vac-
uum chamber (Fig. 2). The top surface (#x̂ face) of the
substrate is painted with a!100 "m thick opaque layer of
graphite and treated in a high-temperature oven prior to
placement in the vacuum chamber. The observed lifetime
of the BEC places a strong, robust, upper bound on the total
pressure of residual gas just below the substrate surface of
!3& 10#11 torr, even at TS ' 605 K.

The fused-silica substrate was heated by shining !1 W
of laser light (860 nm) on the graphite layer. The rough
texture of the pyrex holder creates near point contacts with
the substrate corners, providing good thermal isolation
between the holder and the substrate. This technique al-
lows us to vary the temperature of the substrate while
maintaining near room-temperature vacuum chamber
walls and only slightly elevated holder temperatures.
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FIG. 2 (color online). Side view of the apparatus. Shown is a
scale drawing of the fused-silica substrate (leftmost of the four
substrates) with a top layer of graphite. The graphite absorbs the
light from the laser, heating the substrate. The pyrex holder is
isolated enough from the substrate to allow a hot substrate–cool
environment scenario. The enlargement in the inset shows the
BEC at a distance x from the surface.

 

FIG. 1 (color online). Cartoon drawing of thermal fluctuations
near the surface of a dielectric substrate (shaded region).
(a) Internal radiation striking the surface at angles less than
the critical angle #C does not contribute to the Casimir-Polder
force. However, internal radiation impingent at larger angles (b)
undergoes total internal reflection (c) and contributes to an
overall ac Stark shift by creating evanescent waves in free
space (d). Surrounding the atom (red circle) is radiation from
the environment (e) which contributes to the CP force by creat-
ing standing waves at the surface. The force does not arise from
radiation pressure but rather from gradients in intensity. The
surface-atom force becomes more attractive for TS > TE and
more repulsive for TS < TE.
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The open quantum system method 
The total density matrix satisfies the von Neumann equation

The reduced  density matrix obeys the master equation

The Lamb-shift Hamiltonian The dissipator term

For a two-level atom: 
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FIG. 1: (color online). Scheme of the system considered.

Substituting Eq. (9) into Eqs. (7, 8) and considering the relations given in (11, 12), for

an isotropic atom we have
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Here µ
0

is the vacuum permeability and µ
0
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0

= 1/c2 is used.

For a planar multilayer dielectric system described in Fig. (1), the atom is placed at

a distance z
A

from the body and is assumed to be in a thermal bath with a temperature

T
0

. In this system, Eqs. (13, 14, 15) can be re-expressed as
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where Eq. (10) has been used, and
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where r0
k = {x0, y0}. In the right hand side of Eqs. (16, 17, 18), the first term is the

contribution of the fluctuations for the system in vacuum and thermal equilibrium with a

temperature T
0

, while the second term arises from the out of thermal equilibrium nature

of the system. In the present system, only the diagonal elements of ImG
ij

(r, r,!) and

gl
ij

(r, r,!) are nonzero.

Substituting Eq. (16) into Eq. (5), we can obtain the energy level shifts �E
1

and �E
2

for the ground state and the exited state. Since �E
1

and �E
2

depend on z
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, di↵erentiating
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and �E
2

with respect to z
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gives the CP forces for the ground state atom and the

exited state one, respectively. The second term in the right hand side of Eq. (16) shows the
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Thermalization:  	

  after evolving for a sufficiently long period of time, the system 
thermalizes to a steady state with an effective temperature	
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equilibrium values at temperatures TM and TW. The transition
rates relative to each frequency ωnm are equal to the ones at
thermal equilibrium at an effective temperature T

(nm)
eff , associa-

ble to each transition. This is defined by n(ωnm,T
(nm)

eff ) = n
(nm)
eff

and is given by

T
(nm)

eff = h̄ωnm

kB

[
ln

(
1 + n

(nm)
eff

−1)]−1
, (32)

being in general T (nm)
eff ̸= T

(pq)
eff . No thermodynamical meaning

different from the one above is associated to the notion of
effective temperatures here introduced. The global dynamics
can be then readily interpreted in terms of well-known
thermal-equilibrium physics by means of the various T

(nm)
eff .

However, out of thermal equilibrium, the various transitions
feel in general different effective temperatures whose values
depend on many factors such as the geometry of the body, the
system-body distance, and their interplay with the body optical
resonances. By varying the various parameters one can tune
the various effective temperatures far or close between them.

In the case TW = TM = T , in Eqs. (29) and (31),
n

(nm)
eff = n(ωnm,T ) for any (nm). It follows that the transition

rates "(±ωnm) are factorized as a product of "0(ωnm), of a
term [1 + n(ωnm,T ) or n(ωnm,T )], depending on temperature,
times the factor αW(ωnm) + αM(ωnm), depending on the
properties of the body. Indeed, at thermal equilibrium the
atomic decay rates depend on the presence of a material body
because of the modification of the local field due to the field
emitted by the body itself and to the way it scatters the one
coming from the environment.

Equations (17) and (29)–(31) allow one to investigate the
time evolution of the atomic density matrix in the presence
of an arbitrary body and for any couple of temperatures TM
and TW. Remarkably, the explicit quantized form of HB of
Eq. (1) has not been needed here. Indeed, all quantities we
are interested in are related to the fluctuations of the fields,
which under the local equilibrium assumption are provided,
as explained in this section, by the fluctuation-dissipation
theorem derived only by using general properties of the fields.
In order to get an insight on the atomic dynamics we consider
in the next two sections two specific examples in which the
atom has a simple level structure.

IV. TWO-LEVEL SYSTEM

In this section we assume that the atom has only two
levels, ω0 = ω2 − ω1 being the transition frequency between
the excited state |e⟩ ≡ |2⟩ and the ground state |g⟩ ≡ |1⟩
[see Fig. 2(a)].

FIG. 2. (Color online) Scheme of levels and definition of transi-
tion frequencies for a two- (a) and three-level (b) atom.

The free Hamiltonian of the two-level atom is

HA =
2∑

n=1

h̄ωn|n⟩⟨n|, (33)

and the atomic dipole operator D(t) assumes the simple form

D(t) = d|1⟩⟨2|e−iω0t + d∗|2⟩⟨1|eiω0t , (34)

where d = ⟨g|D|e⟩ (we assume that its diagonal matrix
elements vanish). In Eqs. (9) and (10) the sum over i and
j runs on i,j = x,y,z and the sum over ω on the only two
values ω0 and −ω0. By comparing Eqs. (2), (7), and (34), one
sees that A(ω0) = d|1⟩⟨2| = A†(−ω0). By performing the sum
over ω, Eq. (17) becomes

d

dt
ρ(t)

= −i

[
∑

n

ωn|n⟩⟨n| + S(−ω0)|1⟩⟨1| + S(ω0)|2⟩⟨2|,ρ(t)

]

+"(−ω0)
(

ρ11|2⟩⟨2| − 1
2
{|1⟩⟨1|,ρ(t)}

)

+"(ω0)
(

ρ22|1⟩⟨1| − 1
2
{|2⟩⟨2|,ρ(t)}

)
, (35)

where S(−ω0), S(ω0), "(−ω0), and "(ω0) are defined as in
Eq. (18). The Lamb-shift Hamiltonian HLS = S(−ω0)|1⟩⟨1| +
S(ω0)|2⟩⟨2| induces a shift in the eigenvalues of the free atom
Hamiltonian HA, which now become ω1 + S(−ω0) and ω2 +
S(ω0) with a difference given by %ω = ω0 + S(ω0) − S(−ω0).
"(ω0) and "(−ω0) are the transition rates associated to the
down- and upward transitions, respectively. From Eq. (35) the
differential equations for ρij = ⟨i|ρ(t)|j ⟩ follow:

d

dt
ρ11(t) = −"(−ω0)ρ11(t) + "(ω0)ρ22(t),

d

dt
ρ22(t) = "(−ω0)ρ11(t) − "(ω0)ρ22(t), (36)

d

dt
ρ12(t) =

[
i%ω − "(ω0) + "(−ω0)

2

]
ρ12(t).

The solution of this equation reads
(

ρ11(t)
ρ22(t)

)
=

(
ρ11(0)
ρ22(0)

)
e−γ (ω0)t + 1 − e−γ (ω0)t

γ (ω0)

(
"(ω0)

"(−ω0)

)
,

ρ12(t) = ρ12(0)ei%ω t e− γ (ω0)
2 t , ρ21(t) = ρ12(t)∗. (37)

The decay rate γ (ω0) = "(ω0) + "(−ω0) is not influenced
by the Lamb shift, which does not play any role also in the
steady state of the system. At times t ≫ 1/γ (ω0) the system
thermalizes to the steady state

ρ(t → ∞) = 1
"(−ω0) + "(ω0)

(
"(ω0) 0

0 "(−ω0)

)
. (38)

The decoherence process is linked to the behavior of nondiag-
onal elements ρ12 and ρ21 and is essentially regulated by the
decay rate γ (ω0)/2. As we will see, the behavior of the atomic
evolution is qualitatively different between the equilibrium and
nonequilibrium case.
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ij

(!) =
2µ
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!2

~ [1 +N(!, �
0

)] ImG
ij

(r
A

, r
A

,!) (17)

+
2⇡

~

n�1X

l=1

[N(!, �
l

) � N(!, �
0

)] gl
ij

(r
A

, r
A

,!) ,

and

�
ij

(�!) =
2µ

0

!2

~ N(!, �
0

) ImG
ij

(r
A

, r
A

,!) (18)

+
2⇡

~

n�1X

l=1

[N(!, �
l

) � N(!, �
0

)] gl
ij

(r
A

, r
A

,!) ,

where Eq. (10) has been used, and

gl
ij

(r, r,!) ⌘ µ
0

!4

⇡c2

Z
d2r0

k

Z �dl

�dl�1

dz0 Im ✏
l

G
ik

(r, r0,!)G⇤
jk

(r, r0,!) , (19)

where r0
k = {x0, y0}. In the right hand side of Eqs. (16, 17, 18), the first term is the

contribution of the fluctuations for the system in vacuum and thermal equilibrium with a

temperature T
0

, while the second term arises from the out of thermal equilibrium nature

of the system. In the present system, only the diagonal elements of ImG
ij

(r, r,!) and

gl
ij

(r, r,!) are nonzero.

Substituting Eq. (16) into Eq. (5), we can obtain the energy level shifts �E
1

and �E
2

for the ground state and the exited state. Since �E
1

and �E
2

depend on z
A

, di↵erentiating

�E
1

and �E
2

with respect to z
A

gives the CP forces for the ground state atom and the

exited state one, respectively. The second term in the right hand side of Eq. (16) shows the

contribution to the CP force from out of thermal equilibrium is determined by gl
ij

(r, r,!).

For an isotropic atom, it is Tr gl
ij

(r, r,!) since gl
ij

(r, r,!) = 0 for i 6= j, where

Tr gl
ij

= gl
xx

+ gl
yy

+ gl
zz

. (20)

From Eqs. (17, 18), we find that the transition rates �(!
0

) and �(�!
0

) can be re-

expressed as
0

@ �(!
0

)

�(�!
0

)

1

A = ↵(!
0

)�
0

(!
0

)

0

@1 +N
e↵

(!
0

)

N
e↵

(!
0

)

1

A , (21)
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The transition rates can be re-expressed as	


where �
0

(!
0

) = !

3
0 |d12|2
3⇡✏0~c3 is the vacuum spontaneous-emission rate relative to the transition

between the ground and exited states, ↵(!
0

) = 6⇡c

!0

P
i,j

[d21]i[d21]
⇤
j

|d21|2 ImG
ij

(r, r,!
0

), and

N
e↵

(!
0

) = N(!
0

, �
0

) +
6⇡2c

µ
0

!3

0

↵(!
0

)

n�1X
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[N(!
0

, �
l

) � N(!
0

, �
0

)] ·
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i,j

[d
21

]
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[d
21

]⇤
j

|d
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ij
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,!
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0
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0
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2⇡2c

µ
0

!3

0

↵(!
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[N(!
0

, �
l

) � N(!
0
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0
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ij
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A

, r
A

,!
0

) .(22)

Here, the last line holds for an isotropic atom. N
e↵

(!) depends on temperatures and

gl
ij

(r, r,!), which is dependent on the properties of the body. As discussed in [6, 7] , after

evolving for a su�ciently long period of time, the system thermalizes to a steady state

with an e↵ective temperature

T
e↵

=
~!

0

k
[ln(1 +N�1

e↵

(!
0

))]�1 , (23)

which is relative with T
i

(i = 0, · · · , n� 1) and the properties of the body. For a thermal

equilibrium system with the temperature T
0

, T
e↵

reduces to T
0

.

The above discussions show that, to know the e↵ect of out of thermal equilibrium on

the CP force and T
e↵

of an isotropic atom, we must discuss firstly the term Tr gl
ij

(r, r,!),

which depends on the Green function. In general, the Green function can be expanded as

G(!, r, r0) = G0(!, r, r0) + G(1)(!, r, r0) with G0(!, r, r0) being the one of a vacuum. In

the present system, G(1)(!, r, r0) can be expanded as

G(1)(!, r, r0) =

Z
d2keik·(R�R0

)G(1)(k,!, z, z0) (24)

where k = (k
x

, k
y

) and R = (x, y). Since Eq. (19) shows that r indicates the position of

the atom and thus is in the nth layer, while r0 is in the lth one (l = 1, · · · , n � 1), z and

z0 must be in di↵erent layers. Only the Green function with z and z0 in di↵erent layers

need to be considered. Assuming z and z0 are in the lth and jth layers, respectively, with
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where �
0
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) = !

3
0 |d12|2
3⇡✏0~c3 is the vacuum spontaneous-emission rate relative to the transition
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Here, the last line holds for an isotropic atom. N
e↵

(!) depends on temperatures and

gl
ij

(r, r,!), which is dependent on the properties of the body. As discussed in [6, 7] , after

evolving for a su�ciently long period of time, the system thermalizes to a steady state

with an e↵ective temperature

T
e↵

=
~!

0

k
[ln(1 +N�1

e↵

(!
0

))]�1 , (23)

which is relative with T
i

(i = 0, · · · , n� 1) and the properties of the body. For a thermal

equilibrium system with the temperature T
0

, T
e↵

reduces to T
0

.

The above discussions show that, to know the e↵ect of out of thermal equilibrium on

the CP force and T
e↵

of an isotropic atom, we must discuss firstly the term Tr gl
ij

(r, r,!),

which depends on the Green function. In general, the Green function can be expanded as

G(!, r, r0) = G0(!, r, r0) + G(1)(!, r, r0) with G0(!, r, r0) being the one of a vacuum. In

the present system, G(1)(!, r, r0) can be expanded as

G(1)(!, r, r0) =

Z
d2keik·(R�R0

)G(1)(k,!, z, z0) (24)

where k = (k
x

, k
y

) and R = (x, y). Since Eq. (19) shows that r indicates the position of

the atom and thus is in the nth layer, while r0 is in the lth one (l = 1, · · · , n � 1), z and

z0 must be in di↵erent layers. Only the Green function with z and z0 in di↵erent layers

need to be considered. Assuming z and z0 are in the lth and jth layers, respectively, with
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The effective number of photons becomes



l 6= j, we have that G0(k,!, z, z0) = 0 and G(1)(k,!, z, z0) takes the form [26]

G(1)(k,!, z, z0) =
i

8⇡2b
l

X

�=s,p

⇠�
t�
l/j

ei(bj�dj+bl�dl)

D�

j


⌅

>

�l
(k, w, z)

D+

�l/j

⌅

<

�j
(�k, w, z0)⇥(l � j)

+
⌅

<

�l
(k, w, z)

D�
�l/j

⌅

>

�j
(�k, w, z0)⇥(j � l)

�
,(25)

where ⇠p = 1, ⇠s = �1, b
j

=
q
k2

j

� k2, k = |k|, k
j

=
p
✏
j

!

c

,

D
�j = 1 � r�

j�r
�

j+

e2ibj�dj , D±
�l/j

= 1 � r�
l±r

�

ll⌥1/j

e2ibl�dl (26)

with r�
j� and r�

j+

being the coe�cients for reflection at the left/right boundary of layer

j. In the present paper, r�
j� = r�

j/1

, r�
j+

= r�
j/n

and r�
1� = r�

n+

= 0 if d
0

! 1. r�
j/m

and

t�
j/m

are the reflection and transmission coe�cients between layers j and m, respectively,

which can be calculated by the recursive relations

t
j/m

⌘ t
j/k/m

=
t
j/k

t
k/m

eibk�dk

1 � r
k/j

r
k/m

e2ibk�dk
, r

j/m

⌘ r
j/k/m

= r
j/k

+
t
j/k

t
k/j

r
k/m

e2ibk�dk

1 � r
k/j

r
k/m

e2ibk�dk
,(27)

where j/k/m ⌘ j · · · k · · ·m and jk/m ⌘ jk · · ·m with k = j ± 1. For a single interface

i�j where j = i+1 or i�1, rs
ij

= bi�bj

bi+bj
= �rs

ji

, rp
ij

= ✏jbi�✏ibj

✏jbi+✏ibj
= �rp

ji

and t�
ij

=
q

✏i
✏j
(1+r�

ij

).

⌅

�>

�j
(k, w, z) and ⌅

<

�j
(k, w, z), describing a wave of unit strength incident rightward and

leftward in the jth layer, are defined as

⌅

>

�j
(k, w, z) = ê+

�j
eibj(z��dj) + r�

j+

ê�
�j
e�ibj(z��dj) , (28)

⌅

<

�j
(k, w, z) = ê�

�j
e�ibjz + r�

j�ê
+

�j
eibjz , (29)

where ê±
pj

= 1

kj
(⌥b

j

k̂ + kẑ) and ê±
sj

= k̂ ⇥ ẑ. In Eq. (25), ⇥(l � j) is the usual unit step

function, and �d
j

= d
j�1

� d
j

is the thickness of the jth layer dielectric slab. Notice that

for the rightmost (leftmost) layer �d
n

(�d
1

) = 0 is stipulated.

Substituting Eqs. (24, 25) into Eq. (19), for a system described in Fig. (1) and an

isotropic atom one has Tr[gl
ij

(r, r,!)] = gl(z, z,!) and

gl(z, z,!) =
µ
0

!2

8⇡2

Z 1
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kdk
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where A± = |
t

p
n/l

Dpl
|2 (k

2±|bl|2)(k2+|bn|2)
|knkl|2

, and Ā = |
t

s
n/l

Dsl
|2. This expression shows that Im b

n

must be nonzero, otherwise gl(z, z,!) will be independent on z and becomes a constant.

From the definition of b
l

, we obtain that 2 Im2 b
n

= �(!
2

c

2 � k2) + |!2

c

2 � k2| and

Im2 b
l

=
1

2


�

✓
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c2
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c4
Im2 ✏

l

+

✓
!2

c2
Re ✏

l
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�
. (32)

Since ✏
n

= 1 in the nth layer, nonzero Im b
n

limits that only the k2 � !

2

c

2 part in k

integration from 0 to 1 has the contribution.

When the multilayer body consists of the real dielectric, which means Im ✏
l

= 0 (l =

1, · · · , n � 1), Eqs. (31, 32) tell us that if Re b
l

6= 0, Im b
l

= 0, and vice versa, which

leads to gl(z, z,!) = 0 for l = 2, · · · , n � 1. For the leftmost layer (l = 1), if it is a half

space dielectric substrate, �d
1

= 0, d
0

! 1 and r�
1� = 0. Considering these limit firstly

in Eq. (30), we find g1(z, z,!) is existent and nonzero. If the thickness of the 1th layer

is finite, g1(z, z,!) equals to zero, too. Thus, only the leftmost layer real dielectric with

half infinite thickness provides an e↵ect of out of thermal equilibrium, and all other finite

thick real dielectric layers play no role although they have di↵erent temperatures. For

a simplest system consisted of a half space real dielectric (n = 2), one has d
1

= 0 and

d
0

! 1, which imply �d
1

= 0 and r�
1� = 0. It is easy to see that our result reduces to

what was obtained in [1, 4] where the out of thermal equilibrium CP force for an atom

near a half space real dielectric substrate is studied.

Now we consider a special case: there are only three layers (n = 3 in Fig. (1)), in which

the first layer is a perfectly reflecting plate, the second layer is a dispersive and absorbing

dielectric with a finite thickness �d
2

(setting d
2

= 0 and d
1

= �d
2

), and the third one is

a vacuum. Thus, rp
2� = 1 and rs

2� = �1. Then Eq. (30) can be simplified to be

g2(z, z,!) =
µ
0

!2
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)
⇤
. (33)

Since the second term in the right hand side of the above expression is an oscillating one,

the dominant contribution to the out of equilibrium e↵ect comes from the first term. The
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Since ✏
n

= 1 in the nth layer, nonzero Im b
n

limits that only the k2 � !

2

c

2 part in k

integration from 0 to 1 has the contribution.

When the multilayer body consists of the real dielectric, which means Im ✏
l

= 0 (l =

1, · · · , n � 1), Eqs. (31, 32) tell us that if Re b
l

6= 0, Im b
l

= 0, and vice versa, which

leads to gl(z, z,!) = 0 for l = 2, · · · , n � 1. For the leftmost layer (l = 1), if it is a half

space dielectric substrate, �d
1

= 0, d
0

! 1 and r�
1� = 0. Considering these limit firstly

in Eq. (30), we find g1(z, z,!) is existent and nonzero. If the thickness of the 1th layer

is finite, g1(z, z,!) equals to zero, too. Thus, only the leftmost layer real dielectric with

half infinite thickness provides an e↵ect of out of thermal equilibrium, and all other finite

thick real dielectric layers play no role although they have di↵erent temperatures. For

a simplest system consisted of a half space real dielectric (n = 2), one has d
1

= 0 and

d
0

! 1, which imply �d
1

= 0 and r�
1� = 0. It is easy to see that our result reduces to

what was obtained in [1, 4] where the out of thermal equilibrium CP force for an atom

near a half space real dielectric substrate is studied.

Now we consider a special case: there are only three layers (n = 3 in Fig. (1)), in which

the first layer is a perfectly reflecting plate, the second layer is a dispersive and absorbing

dielectric with a finite thickness �d
2

(setting d
2

= 0 and d
1

= �d
2

), and the third one is

a vacuum. Thus, rp
2� = 1 and rs

2� = �1. Then Eq. (30) can be simplified to be

g2(z, z,!) =
µ
0

!2

8⇡2

Z 1
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kdk
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|2 e
�2 Im bnz

⇥
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2
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+ Im b
2

(A� � Ā)e�2 Im b2�d2 sin(2Re b
2

�d
2

)
⇤
. (33)

Since the second term in the right hand side of the above expression is an oscillating one,

the dominant contribution to the out of equilibrium e↵ect comes from the first term. The
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Using the Green function, we obtain 

For the real dielectric:   Im✏l = 0 gl(z, z,!) = 0

Re b
2

(1 � e�4 Im b2�d2) component in Eq. (33) shows that large Im b
2

�d
2

and Re b
2

can

strengthen the contribution arising from out of thermal equilibrium. Assuming that the

dielectric in the second layer has a very small but nonzero Im ✏
2

and expanding Im b
2

and

Re b
2

at Im ✏
2

⇠ 0, we obtain

Im2 b
2

' 1

2


�
✓
!2

c2
Re ✏

2

� k2

◆
+ |!

2
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Re ✏

2

� k2| + !4 Im2 ✏
2
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c
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�
, (34)

Re2 b
2

' 1

2

✓
!2

c2
Re ✏

2
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◆
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2
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Re ✏

2

� k2| + !4 Im2 ✏
2
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c
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�
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Since k2 > !

2

c

2 is required, one can get the minimum value of Im b
2

Min{Im b
2

} =
! Im ✏

2

2c
p
Re ✏

2

� 1
. (36)

From Eqs. (22, 33), we find that, if 2Min{Im b
2

}�d
2

> 1 at ! = !
0

, the dominative term

of the e↵ective temperature will be independent on �d
2

. Thus, Im ✏2p
Re ✏2�1

�d2
�0

> 1 is the

necessary condition that the finite thick slab can be treated as a half infinite thick one,

where �
0

= c

!0
is the transition wavelength of the atom.

In [5], Obrecht et al. confirmed experimentally the theoretical predictions for the new

behavior of nonequilibrium thermal CP force [1, 4]. The theoretical results were obtained
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transition of 87Rb, the transition wavelength has the value �
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In conclusion, we find that the real dielectric with a finite thickness provides no non-

equilibrium thermal contributions on the thermalization and the CP force of an atom.

When the dielectric slab with finite thickness �d is dispersive and absorbing and has a
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A special case n=3:
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Since ✏
n

= 1 in the nth layer, nonzero Im b
n

limits that only the k2 � !

2
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2 part in k

integration from 0 to 1 has the contribution.

When the multilayer body consists of the real dielectric, which means Im ✏
l

= 0 (l =

1, · · · , n � 1), Eqs. (31, 32) tell us that if Re b
l

6= 0, Im b
l

= 0, and vice versa, which

leads to gl(z, z,!) = 0 for l = 2, · · · , n � 1. For the leftmost layer (l = 1), if it is a half

space dielectric substrate, �d
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= 0, d
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! 1 and r�
1� = 0. Considering these limit firstly

in Eq. (30), we find g1(z, z,!) is existent and nonzero. If the thickness of the 1th layer

is finite, g1(z, z,!) equals to zero, too. Thus, only the leftmost layer real dielectric with

half infinite thickness provides an e↵ect of out of thermal equilibrium, and all other finite

thick real dielectric layers play no role although they have di↵erent temperatures. For

a simplest system consisted of a half space real dielectric (n = 2), one has d
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= 0 and
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! 1, which imply �d
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= 0 and r�
1� = 0. It is easy to see that our result reduces to

what was obtained in [1, 4] where the out of thermal equilibrium CP force for an atom

near a half space real dielectric substrate is studied.

Now we consider a special case: there are only three layers (n = 3 in Fig. (1)), in which
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(setting d
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= 0 and d
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), and the third one is
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Since the second term in the right hand side of the above expression is an oscillating one,

the dominant contribution to the out of equilibrium e↵ect comes from the first term. The

10
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From Eqs. (22, 33), we find that, if 2Min{Im b
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of the e↵ective temperature will be independent on �d
2
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> 1 is the

necessary condition that the finite thick slab can be treated as a half infinite thick one,

where �
0
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is the transition wavelength of the atom.

In [5], Obrecht et al. confirmed experimentally the theoretical predictions for the new

behavior of nonequilibrium thermal CP force [1, 4]. The theoretical results were obtained

in the half space dielectric system with the so called static approximation considered,

which means that the dielectric and atom polarizability functions take their static values,

respectively. While, the measurements were obtained by positioning a nearly pure 87Rb

Bose-Einstein condensate a few microns from a 2 mm thick dielectric substrate consisting

of uv-grade fused silica. The dielectric constant of fused silica is Re ✏ = 3.8 [27]. Choosing

the 5S
1/2

� 5P
1/2

transition of 87Rb, the transition wavelength has the value �
0

' 7.9 ⇥

10�7 [28]. Thus, the 2 mm thick fused silica slab can be treated as a half space substrate

if Im ✏ > 6 ⇥ 10�4 is satisfied.

In conclusion, we find that the real dielectric with a finite thickness provides no non-

equilibrium thermal contributions on the thermalization and the CP force of an atom.

When the dielectric slab with finite thickness �d is dispersive and absorbing and has a

very tiny Im ✏, it can be treated as a half space dielectric substrate if Im ✏p
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satisfied.
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if Im ✏ > 6 ⇥ 10�4 is satisfied.
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In conclusion, we find that the real dielectric with a finite thickness provides no non-
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2±|bl|2)(k2+|bn|2)
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, and Ā = |
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Dsl
|2. This expression shows that Im b
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must be nonzero, otherwise gl(z, z,!) will be independent on z and becomes a constant.
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Since ✏
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2 part in k

integration from 0 to 1 has the contribution.

When the multilayer body consists of the real dielectric, which means Im ✏
l

= 0 (l =

1, · · · , n � 1), Eqs. (31, 32) tell us that if Re b
l

6= 0, Im b
l

= 0, and vice versa, which

leads to gl(z, z,!) = 0 for l = 2, · · · , n � 1. For the leftmost layer (l = 1), if it is a half

space dielectric substrate, �d
1

= 0, d
0

! 1 and r�
1� = 0. Considering these limit firstly

in Eq. (30), we find g1(z, z,!) is existent and nonzero. If the thickness of the 1th layer

is finite, g1(z, z,!) equals to zero, too. Thus, only the leftmost layer real dielectric with

half infinite thickness provides an e↵ect of out of thermal equilibrium, and all other finite

thick real dielectric layers play no role although they have di↵erent temperatures. For

a simplest system consisted of a half space real dielectric (n = 2), one has d
1

= 0 and

d
0

! 1, which imply �d
1

= 0 and r�
1� = 0. It is easy to see that our result reduces to

what was obtained in [1, 4] where the out of thermal equilibrium CP force for an atom

near a half space real dielectric substrate is studied.

Now we consider a special case: there are only three layers (n = 3 in Fig. (1)), in which

the first layer is a perfectly reflecting plate, the second layer is a dispersive and absorbing

dielectric with a finite thickness �d
2

(setting d
2

= 0 and d
1

= �d
2

), and the third one is

a vacuum. Thus, rp
2� = 1 and rs

2� = �1. Then Eq. (30) can be simplified to be
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µ
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Since the second term in the right hand side of the above expression is an oscillating one,

the dominant contribution to the out of equilibrium e↵ect comes from the first term. The
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strengthen the contribution arising from out of thermal equilibrium. Assuming that the
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From Eqs. (22, 33), we find that, if 2Min{Im b
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> 1 at ! = !
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, the dominative term

of the e↵ective temperature will be independent on �d
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. Thus, Im ✏2p
Re ✏2�1

�d2
�0

> 1 is the

necessary condition that the finite thick slab can be treated as a half infinite thick one,

where �
0

= c

!0
is the transition wavelength of the atom.

In [5], Obrecht et al. confirmed experimentally the theoretical predictions for the new

behavior of nonequilibrium thermal CP force [1, 4]. The theoretical results were obtained

in the half space dielectric system with the so called static approximation considered,

which means that the dielectric and atom polarizability functions take their static values,

respectively. While, the measurements were obtained by positioning a nearly pure 87Rb

Bose-Einstein condensate a few microns from a 2 mm thick dielectric substrate consisting

of uv-grade fused silica. The dielectric constant of fused silica is Re ✏ = 3.8 [27]. Choosing

the 5S
1/2

� 5P
1/2

transition of 87Rb, the transition wavelength has the value �
0

' 7.9 ⇥

10�7 [28]. Thus, the 2 mm thick fused silica slab can be treated as a half space substrate

if Im ✏ > 6 ⇥ 10�4 is satisfied.

In conclusion, we find that the real dielectric with a finite thickness provides no non-

equilibrium thermal contributions on the thermalization and the CP force of an atom.

When the dielectric slab with finite thickness �d is dispersive and absorbing and has a

very tiny Im ✏, it can be treated as a half space dielectric substrate if Im ✏p
Re ✏�1

�d

�0
> 1 is

satisfied.
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• 有限厚度的实电介质板没有⾮非平衡热效应（CP⼒力和
热化） 

• 如果满⾜足                    ，有限厚度的电介质可以当做
半⽆无限厚的电介质来处理 

结     论
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respectively. While, the measurements were obtained by positioning a nearly pure 87Rb
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the 5S
1/2

� 5P
1/2

transition of 87Rb, the transition wavelength has the value �
0

' 7.9 ⇥

10�7 [28]. Thus, the 2 mm thick fused silica slab can be treated as a half space substrate

if Im ✏ > 6 ⇥ 10�4 is satisfied.

In conclusion, we find that the real dielectric with a finite thickness provides no non-

equilibrium thermal contributions on the thermalization and the CP force of an atom.

When the dielectric slab with finite thickness �d is dispersive and absorbing and has a

very tiny Im ✏, it can be treated as a half space dielectric substrate if Im ✏p
Re ✏�1

�d

�0
> 1 is

satisfied.
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