The Casimir-Polder force in a stationary environment out of equilibrium thermal

吴普训

宁波大学、北大高能中心

13th LHC Mini-Workshop, Zhejiang University, Hangzhou

Puxun wu and Hongwei Yu: PRA **90**, 032502 (2014) Puxun wu and Hongwei Yu: In preparation

Outline

- The Casimir-Polder (CP) force: vacuum and equilibrium thermal fluctuations
- The out of thermal equilibrium effect
- The CP force and thermalization in multilayer planar dielectric system
- Conclusion

- The Casimir-Polder (CP) force: vacuum and equilibrium thermal fluctuations
 - 1. Casimir effect

2. Casimir-Polder force

Wu and Yu, PRA **90**, 032502 (2014)

The out of thermal equilibrium CP force

$$F^{\text{neq}}(T_S, T_E, z)_{z \to \infty} = -\frac{\pi}{6} \frac{\alpha_0 k_B^2 (T_S^2 - T_E^2)}{z^3 c \hbar} \frac{\varepsilon_0 + 1}{\sqrt{\varepsilon_0 - 1}},$$

static approximation real dielectric

Antezza et al., PRL **95**, 113202 (2005) Zhou and Yu, PRA **90**, 032501 (2014)

Thermalization

Photon Heat Tunneling

Entanglement

Bellomo et al., PRA 87, 012101 (2013) Bellomo and Antezza, EPL 104, 10006 (2013) Messina et al., PRL 109, 244302 (2012)

Measurement of the Temperature Dependence of the Casimir-Polder Force

Heating Laser $\gamma_x \equiv \frac{\omega_o - \omega_x}{\omega_o} \simeq \frac{1}{2m\omega_o^2} \langle \partial_x F_{\rm CP} \rangle,$ Х Pyrex BEC 87_{Rb} Chamber Ŷ⊗→Ŷ Pyrex Holder ^{4 × 10⁻} (a) ⊢ 1mm **Environment Temperature:** 310 K Substrate Temperature: ------ 605 K 3 - 479 K - 310 K ≻× 2 $2 \times 5 \times 8 mm$ 1

0

7

8

√x

Obrecht et al. PRL98, 063201 (2007)

9

Trap Center - Surface (µm)

10

11

• The CP force and thermalization in multilayer planar dielectric system

The open quantum system method

The total density matrix satisfies the von Neumann equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho_{\mathrm{tot}}(t) = -\frac{\mathrm{i}}{\hbar}[H_I,\rho_{\mathrm{tot}}(t)]$$

The reduced density matrix obeys the master equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho(t) = -\frac{\mathrm{i}}{\hbar}[H_{LS},\rho(t)] + \mathcal{D}(\rho(t))$$

The Lamb-shift Hamiltonian The dissipator term

For a two-level atom:

$$\frac{d}{dt}\rho(t) = -i\left[\sum_{n=1}^{2}\omega_{n}|n\rangle\langle n|+S(\omega_{0})|2\rangle\langle 2|+S(-\omega_{0})|1\rangle\langle 1|,\rho(t)\right]$$
$$+ \Gamma(\omega_{0})\left(\rho_{22}|1\rangle\langle 1|-\frac{1}{2}\{|2\rangle\langle 2|,\rho(t)\}\right) + \Gamma(-\omega_{0})\left(\rho_{11}|2\rangle\langle 2|-\frac{1}{2}\{|1\rangle\langle 1|,\rho(t)\}\right)$$

 $S(-\omega_0)$ and $S(\omega_0)$ represent the atomic eigenvalue shifts of the ground state and the excited one, respectively

$$S(\omega_0) \equiv \sum_{i,j} s_{ij}(\omega_0) [d_{21}]_i^* [d_{21}]_j ,$$

$$S(-\omega_0) \equiv \sum_{i,j} s_{ij}(-\omega_0) [d_{21}]_i [d_{21}]_j^* ,$$

 $\Gamma(-\omega_0)$ and $\Gamma(\omega_0)$ are the transition rates associated to the downand upward transitions, respectively

$$\Gamma(\omega_0) \equiv \sum_{i,j} \gamma_{ij}(\omega_0) [\boldsymbol{d}_{21}]_i^* [\boldsymbol{d}_{21}]_j ,$$

$$\Gamma(-\omega_0) \equiv \sum_{i,j} \gamma_{ij}(-\omega_0) [\boldsymbol{d}_{21}]_i [\boldsymbol{d}_{21}]_j^*$$

Here

$$\begin{split} s_{ij}(\omega) &= \frac{1}{h^2} \int_0^\infty d\omega' \int_0^\infty d\omega'' \left[\frac{\langle E_i(\boldsymbol{r},\omega')E_j^{\dagger}(\boldsymbol{r},\omega'')\rangle}{\omega - \omega'} + \frac{\langle E_i^{\dagger}(\boldsymbol{r},\omega')E_j(\boldsymbol{r},\omega'')\rangle}{\omega + \omega'} \right] \\ \gamma_{ij}(\omega) &= \frac{2\pi}{h^2} \int_0^\infty d\omega' \begin{cases} \langle E_i(\boldsymbol{r},\omega)E_j^{\dagger}(\boldsymbol{r},\omega')\rangle & \omega > 0 \\ \langle E_i^{\dagger}(\boldsymbol{r},-\omega)E_j(\boldsymbol{r},\omega')\rangle & \omega < 0 \end{cases} \\ \end{split}$$
For a thermal state:
$$\begin{aligned} \mathbf{Vacuum fluctuations} \\ s_{ij}(\omega) &= \frac{\mu_0}{\hbar\pi} \int_0^\infty d\omega' \omega'^2 \left[\underbrace{1 + N(\omega',\beta_0)}_{\omega - \omega'} + \underbrace{N(\omega',\beta_0)}_{\omega + \omega'} \right] \operatorname{Im} G_{ij}(\boldsymbol{r}_A,\boldsymbol{r}_A,\omega') \\ &+ \frac{1}{\hbar} \sum_{l=1}^{n-1} \int_0^\infty d\omega' \left(\frac{1}{\omega - \omega'} + \frac{1}{\omega + \omega'} \right) [N(\omega',\beta_l) - N(\omega',\beta_0)] g_{ij}^{l}(\boldsymbol{r}_A,\boldsymbol{r}_A,\omega') \\ N(\omega,\beta_i) &= \frac{1}{e^{\beta_i \omega/c} - 1} \quad \beta_i = \frac{\hbar c}{kT_i} \end{aligned}$$
The contribution from out of thermal Equilibrium

$$\gamma_{ij}(\omega) = \frac{2\mu_0\omega^2}{\hbar} [1 + N(\omega, \beta_0)] \operatorname{Im} G_{ij}(\boldsymbol{r}_A, \boldsymbol{r}_A, \omega) + \frac{2\pi}{\hbar} \sum_{l=1}^{n-1} [N(\omega, \beta_l) - N(\omega, \beta_0)] g_{ij}^l(\boldsymbol{r}_A, \boldsymbol{r}_A, \omega)$$

$$\gamma_{ij}(-\omega) = \frac{2\mu_0\omega^2}{\hbar} N(\omega,\beta_0) \operatorname{Im} G_{ij}(\boldsymbol{r}_A,\boldsymbol{r}_A,\omega) + \frac{2\pi}{\hbar} \sum_{l=1}^{n-1} \left[N(\omega,\beta_l) - N(\omega,\beta_0) \right] g_{ij}^l(\boldsymbol{r}_A,\boldsymbol{r}_A,\omega)$$

where

$$g_{ij}^{l}(\boldsymbol{r},\boldsymbol{r},\omega) \equiv \frac{\mu_{0}\omega^{4}}{\pi c^{2}} \int \mathrm{d}^{2}\boldsymbol{r}_{\parallel}^{\prime} \int_{-d_{l-1}}^{-d_{l}} \mathrm{d}z^{\prime} \operatorname{Im} \epsilon_{l} G_{ik}(\boldsymbol{r},\boldsymbol{r}^{\prime},\omega) G_{jk}^{*}(\boldsymbol{r},\boldsymbol{r}^{\prime},\omega)$$

For an isotropic atom, the CP force from out of thermal equilibrium is determined by

$$\operatorname{Tr} g_{ij}^{l} = g_{xx}^{l} + g_{yy}^{l} + g_{zz}^{l}$$

Thermalization:

after evolving for a sufficiently long period of time, the system thermalizes to a steady state with an effective temperature

$$\rho(t \to \infty) = \frac{1}{\Gamma(-\omega_0) + \Gamma(\omega_0)} \begin{pmatrix} \Gamma(\omega_0) & 0\\ 0 & \Gamma(-\omega_0) \end{pmatrix}.$$

The transition rates can be re-expressed as

$$\begin{pmatrix} \Gamma(\omega_0) \\ \Gamma(-\omega_0) \end{pmatrix} = \alpha(\omega_0)\Gamma_0(\omega_0) \begin{pmatrix} 1 + N_{\text{eff}}(\omega_0) \\ N_{\text{eff}}(\omega_0) \end{pmatrix}$$

The effective number of photons becomes

$$N_{\text{eff}}(\omega_{0}) = N(\omega_{0}, \beta_{0}) + \frac{6\pi^{2}c}{\mu_{0}\omega_{0}^{3}\alpha(\omega_{0})} \sum_{l=1}^{n-1} [N(\omega_{0}, \beta_{l}) - N(\omega_{0}, \beta_{0})] \cdot \sum_{i,j} \frac{[d_{21}]_{i}[d_{21}]_{j}^{*}}{|d_{21}|^{2}} g_{ij}^{l}(\boldsymbol{r}_{A}, \boldsymbol{r}_{A}, \omega_{0})$$

$$= N(\omega_{0}, \beta_{0}) + \frac{2\pi^{2}c}{\sum_{i=1}^{n-1} [N(\omega_{0}, \beta_{i}) - N(\omega_{0}, \beta_{0})] \operatorname{Tr} g_{i}^{l}(\boldsymbol{r}_{A}, \boldsymbol{r}_{A}, \omega_{0})$$

$$= N(\omega_0, \beta_0) + \frac{1}{\mu_0 \omega_0^3 \alpha(\omega_0)} \sum_{l=1} \left[N(\omega_0, \beta_l) - N(\omega_0, \beta_0) \right] \operatorname{Tr} g_{ij}^{\iota}(\boldsymbol{r}_A, \boldsymbol{r}_A, \omega_0)$$

$$T_{\rm eff} = \frac{\hbar\omega_0}{k} [\ln(1 + N_{\rm eff}^{-1}(\omega_0))]^{-1}$$

Using the Green function, we obtain

$$g^{l}(z, z, \omega) = \frac{\mu_{0}\omega^{2}}{8\pi^{2}} \int_{0}^{\infty} \frac{k dk}{|b_{n}|^{2}} e^{-2\operatorname{Im} b_{n}z - 2\operatorname{Im} b_{l}\Delta d_{l}} \left(\operatorname{Re} b_{l}(A_{+} + \bar{A})[e^{-2\operatorname{Im} b_{l}d_{l}} - e^{-2\operatorname{Im} b_{l}d_{l-1}}] - \operatorname{Re} b_{l}(A_{+}|r_{l-}^{p}|^{2} + \bar{A}|r_{l-}^{s}|^{2})[e^{2\operatorname{Im} b_{l}d_{l}} - e^{2\operatorname{Im} b_{l}d_{l-1}}] - \operatorname{Im} b_{l}(A_{-}\operatorname{Re} r_{l-}^{p} + \bar{A}\operatorname{Re} r_{l-}^{s})[\sin(2\operatorname{Re} b_{l}d_{l}) - \sin(2\operatorname{Re} b_{l}d_{l-1})] + \operatorname{Im} b_{l}(A_{-}\operatorname{Im} r_{l-}^{p} + \bar{A}\operatorname{Im} r_{l-}^{s})[\cos(2\operatorname{Re} b_{l}d_{l}) - \cos(2\operatorname{Re} b_{l}d_{l-1})]),$$

$$\operatorname{Im}^{2} b_{l} = \frac{1}{2} \left[-\left(\frac{\omega^{2}}{c^{2}}\operatorname{Re} \epsilon_{l} - k^{2}\right) + \sqrt{\frac{\omega^{4}}{c^{4}}\operatorname{Im}^{2} \epsilon_{l}} + \left(\frac{\omega^{2}}{c^{2}}\operatorname{Re} \epsilon_{l} - k^{2}\right)^{2} \right]$$
$$\operatorname{Re}^{2} b_{l} = \frac{1}{2} \left[\left(\frac{\omega^{2}}{c^{2}}\operatorname{Re} \epsilon_{l} - k^{2}\right) + \sqrt{\frac{\omega^{4}}{c^{4}}\operatorname{Im}^{2} \epsilon_{l}} + \left(\frac{\omega^{2}}{c^{2}}\operatorname{Re} \epsilon_{l} - k^{2}\right)^{2} \right].$$
$$2\operatorname{Im}^{2} b_{n} = -\left(\frac{\omega^{2}}{c^{2}} - k^{2}\right) + \left|\frac{\omega^{2}}{c^{2}} - k^{2}\right| \qquad k^{2} > \frac{\omega^{2}}{c^{2}}$$
For the real dielectric: $\operatorname{Im} \epsilon_{l} = 0 \qquad g^{l}(z, z, \omega) = 0$

A special case n=3: $r_{2-}^{p} = 1$ and $r_{2-}^{s} = -1$ $g^{2}(z, z, \omega) = \frac{\mu_{0}\omega^{2}}{8\pi^{2}} \int_{0}^{\infty} \frac{k dk}{|b_{3}|^{2}} e^{-2\operatorname{Im} b_{3}z} \left[\operatorname{Re} b_{2}(A_{+} + \bar{A})(1 - e^{-4\operatorname{Im} b_{2}\Delta d_{2}}) + \operatorname{Im} b_{2}(A_{-} - \bar{A})e^{-2\operatorname{Im} b_{2}\Delta d_{2}} \sin(2\operatorname{Re} b_{2}\Delta d_{2}) \right].$

If $2 \text{Im} b_2 \Delta d_2 > 1$, the dominated term of the transition rates will independent on Δd_2 and the result reduces to that obtained in half space dielectric case.

Assuming that the dielectric has a very small but nonzero $\text{Im }\epsilon_2$

The necessary condition that the finite thick slab can be treated as a half infinite thick substrate:

$$\frac{\operatorname{Im}\epsilon}{\sqrt{\operatorname{Re}\epsilon}-1}\frac{\Delta d}{\lambda_0} > 1$$

 $\lambda_0 = \frac{c}{\omega_0}$ is the transition wavelength of the atom

结 论

- 有限厚度的实电介质板没有非平衡热效应(CP力和 热化)
- 如果满足 $\frac{Im \epsilon}{\sqrt{Re \epsilon 1}} \frac{\Delta d}{\lambda_0} > 1$, 有限厚度的电介质可以当做 半无限厚的电介质来处理

谢谢大家