LHC searches for the CP-odd Higgs by the jet substructure analysis

Yan-Dong Liu

Collaboration with N Chen, JM Li and ZW Liu

Peking University

November 9, 2014

Outline

1 Why A in 2HDM?

- 2HDM
- Current Constraints
- 2 Production and Decay at 14 TeV LHC
- 3 Collider Analysis

4 Conclusion

< ≣⇒

Outline

1 Why A in 2HDM?

- 2HDM
- Current Constraints

2 Production and Decay at 14 TeV LHC

3 Collider Analysis

4 Conclusion

イロト イヨト イヨト イヨト

L_2HDM

After Higgs discovery at LHC

 Deviation from the Standard Model prediction for Higgs couplings

- 4 回 2 4 三 2 4 三 2 4

L_2HDM

After Higgs discovery at LHC

- Deviation from the Standard Model prediction for Higgs couplings
- Extra scalar degrees of freedom in an extended electroweak symmetry breaking sector

< ≣ >

L_2HDM

New Physics in 2HDM

2HDM can accommodate

- Dark Matter
- CPV and Baryogenesis
- Flavor Physics

. . .

・ロン ・回と ・ ヨン・

└_2HDM

CPC 2HDM

$$\begin{split} V(\Phi_1 \, \Phi_2) &= m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + H.c.) \\ &+ \frac{1}{2} \lambda_1 |\Phi_1|^4 + \frac{1}{2} \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 \\ &+ \frac{1}{2} \lambda_5 \Big[(\Phi_1^{\dagger} \Phi_2) (\Phi_1^{\dagger} \Phi_2) + H.c. \Big] \,, \end{split}$$

$$\Phi_i = \begin{pmatrix} \pi_i^+ \\ (v_i + h_i + i\pi_i^0)/\sqrt{2} \end{pmatrix}, \quad i = 1, 2.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

L_2HDM

 Five Higgs bosons after EWSB CP-even h, H CP-odd A Charged H[±] h SM-like Higgs boson

・ロ・・ 日本・ ・ 日本・ ・ 日本・

L_2HDM

CPC 2HDM

- Five Higgs bosons after EWSB CP-even h, H CP-odd A Charged H[±] h SM-like Higgs boson
 - h and H degenrate J. F. Gunion, Y. Jiang, S. Kraml PRL 110, 051801

イロン イヨン イヨン イヨン

L_2HDM

CPC 2HDM

- Five Higgs bosons after EWSB CP-even h, H CP-odd A Charged H[±] h SM-like Higgs boson
 - h and H degenrate J. F. Gunion, Y. Jiang, S. Kraml PRL 110, 051801

	2HDM-I	2HDM-II
ξ^u_A	$1/t_{eta}$	$1/t_eta$
ξ^d_A	$-1/t_eta$	t_eta
ξ^ℓ_A	$-1/t_eta$	t_{eta}

Table: The Yukawa couplings of the SM quarks and charged leptons to the CP-odd Higgs boson *A* in the 2HDM-I and 2HDM-II.

・ロト ・回ト ・ヨト ・ヨト

3

Current Constraints

Fitting Higgs data

Right: TYPE-II. From 1305.2424

<ロ> (日) (日) (日) (日) (日)

Current Constraints

Fitting Higgs data

Right: TYPE-II. From 1305.2424

$$h^{SM} = \cos(\beta - \alpha)H + \sin(\beta - \alpha)h$$

イロト イヨト イヨト イヨト

Current Constraints

Fitting Higgs data

Right: TYPE-II. From 1305.2424

 $h^{\text{SM}} = \cos(\beta - \alpha)H + \sin(\beta - \alpha)h$ 2HDM - I: $c_{\beta - \alpha} = 0.2$, 2HDM - II: $c_{\beta - \alpha} = -0.02$ \Rightarrow $c_{\beta - \alpha}$ Yan-Dong Liu PKU

Current Constraints

 Charged Higgs boson H[±], CMS-HIG-14-020, ATLAS-CONF-2014-050

<ロ> (日) (日) (日) (日) (日)

Current Constraints

Extra Scalar Search

 Charged Higgs boson H[±], CMS-HIG-14-020, ATLAS-CONF-2014-050

• Neutral CP-odd Higgs boson A $A \rightarrow \bar{b}b$ CMS-HIG-12-033 $A \rightarrow \bar{\tau}\tau$ 1409.6064, CMS-HIG-11-029

-≣->

Outline

1 Why A in 2HDM?

2 Production and Decay at 14 TeV LHC

3 Collider Analysis

4 Conclusion

イロト イヨト イヨト イヨト

Figure: The Feynman diagrams for the production channels of the CP-odd Higgs boson *A*.

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

Production at 14 TeV LHC

Figure: The inclusive production cross section $\sigma[pp \rightarrow AX]$ for $M_A \in (300 \, GeV, 1 \, TeV)$ at the LHC 14 TeV runs. Left: 2HDM-I; Right: 2HDM-II.

A ■

Э

$$\begin{split} \Gamma[A \to \bar{f}f] &= \frac{N_{c,f} m_f^2 M_A}{8\pi v^2} (\xi_A^f)^2 \sqrt{1 - \frac{4m_f^2}{M_A^2}} \,, \\ \Gamma[A \to hZ] &= \frac{g^2 c_{\beta-\alpha}^2}{64\pi M_A c_W^2} \lambda^{1/2} \Big(1 \,, \frac{m_Z^2}{M_A^2} \,, \frac{M_h^2}{M_A^2} \Big) \\ &\times \left[m_Z^2 - 2(M_A^2 + M_h^2) + \frac{(M_A^2 - M_h^2)^2}{m_Z^2} \right] \,, \end{split}$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

$$\begin{split} \Gamma[A \to \bar{f}f] &= \frac{N_{c,f} m_f^2 M_A}{8\pi v^2} (\xi_A^f)^2 \sqrt{1 - \frac{4m_f^2}{M_A^2}} \,, \\ \Gamma[A \to hZ] &= \frac{g^2 c_{\beta-\alpha}^2}{64\pi M_A c_W^2} \lambda^{1/2} \Big(1 \,, \frac{m_Z^2}{M_A^2} \,, \frac{M_h^2}{M_A^2} \Big) \\ &\times \left[m_Z^2 - 2(M_A^2 + M_h^2) + \frac{(M_A^2 - M_h^2)^2}{m_Z^2} \right] \,, \end{split}$$

$$\Gamma[A \to hZ]_{\rm deg} = \Gamma[A \to hZ] + \Gamma[A \to HZ]$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Decay Branch Ratio

Figure: The decay branching ratios of the CP-odd Higgs boson BR[A] for the 2HDM-I case. Upper: $M_h = 125$ GeV; Lower: $M_h = M_H = 125$ GeV; Left: $t_\beta = 1$, Right: $t_\beta = 10$.

Decay Branch Ratio

Figure: The decay branching ratios of the CP-odd Higgs boson BR[A] for the 2HDM-II case. Upper: $M_h = 125$ GeV, Lower: $M_h = M_H = 125$ GeV; Left: $t_\beta = 1$, Right: $t_\beta = 10$.

 $pp \rightarrow AX \rightarrow hZ$

Figure: The $\sigma[pp \rightarrow AX] \times BR[A \rightarrow hZ]$ for $M_A \in (300 \text{ GeV}, 1 \text{ TeV})$ at the LHC 14 TeV runs. Upper: $M_h = 125 \text{ GeV}$ (a) for 2HDM-I, (b) for 2HDM-II. Lower: $M_h = M_H = 125 \text{ GeV}$ (c) for 2HDM-I, (d) for 2HDM-II.

Outline

1 Why A in 2HDM?

2 Production and Decay at 14 TeV LHC

3 Collider Analysis

4 Conclusion

- - 4 回 ト - 4 回 ト

Background

Signal Channel $A \rightarrow h(\rightarrow \bar{b}b)Z(\rightarrow l^+l^-)$

・ロン ・四と ・ヨと ・ヨン

Background

Signal Channel
$$A o h(o ar{b}b) Z(o I^+ I^-)$$

Background:

$$\begin{split} &\sigma(pp \to \bar{t}t) \approx 855 pb, \\ &\sigma(pp \to b\bar{b}\ell^+\ell^-) \approx 82 pb, \\ &\sigma(pp \to ZZ \to \bar{b}b\ell^+\ell^-) \approx 180 fb, \\ &\sigma(pp \to h_{\rm SM}Z \to \bar{b}b\ell^+\ell^-) \approx 34 fb. \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Cut 1: Opposite-sign-same-flavor (OSSF) dileptons $(\ell^+\ell^-)$

 $|\eta_\ell| < 2.5$, $p_T(\ell_1) \ge 20 \text{GeV}$, $p_T(\ell_2) \ge 10 \text{GeV}$

- Cut 2: Mass window of Z boson $|m_{\ell\ell} m_Z| \le 15 \,\mathrm{GeV}$.
- Cut 3: At least one filtered fat jet is required, which should also contain two leading subjets that pass the b-tagging and satisfy $p_T > 20 \,\text{GeV}$ and $|\eta| < 2.5$.

個 と く ヨ と く ヨ と …

• Cut 4: $M_h(\text{tagged}) \in (100 \text{GeV}, 150 \text{GeV}).$

- Collider Analysis

- Cut 5: p_{T,h}(tagged)_{cut} ∈ (50GeV, 500GeV), for the most optimal cuts on p_{T,h}(tagged) by counting the corresponding cut efficiencies of S/B.
- Cut 6: Mass window of the CP-odd Higgs boson A: $|M_{h,\ell^+\ell^-} - M_A| \le 100 \text{GeV}.$

個 と く ヨ と く ヨ と …

Cut Flow

Cuts	$A \rightarrow hZ$	Ŧt	$ar{b}b\ell^+\ell^-$	ZZ	hZ	S/B	S/\sqrt{I}
fb	500	$8.6 imes10^5$	$8.2 imes 10^4$	180	34	_	
Cut 1	10.76	$1.0 imes10^4$	$4.3 imes10^4$	98.94	0.81	$1.3 imes10^{-4}$	0.47
Cut 2	10.29	2061	$3.9 imes10^4$	93.49	0.78	$1.6 imes10^{-4}$	0.51
Cut 3	2.41	120.63	1,759	4.92	0.05	$8.2 imes10^{-4}$	0.56
Cut 4	1.38	13.12	100.54	1.12	0.03	$7.7 imes10^{-3}$	1.29
Cut 5	0.91	0.38	12.14	0.19	0.01	0.04	2.55
Cut 6	0.91	0.06	5.40	0.08	_	0.10	3.87

Table: The event cut efficiency for the $M_A = 600$ GeV case at the LHC 14 TeV running of the signal and background processes. We assume the nominal cross section for the signal process to be $\sigma[pp \rightarrow AX] \times BR[A \rightarrow hZ] = 500$ fb. The S/\sqrt{B} is evaluated for the $\int \mathcal{L}dt = 100$ fb⁻¹ case.

- ∢ ≣ ▶

Results

Figure: Black dashed curve is the the discovery limit of max{ $5\sqrt{B}$, 10}.

Yan-Dong Liu PKU

Results

Figure: Black dashed curve is the the discovery limit of max{ $5\sqrt{B}$, 10}.

Yan-Dong Liu PKU

- 2 Production and Decay at 14 TeV LHC
- 3 Collider Analysis

4 Conclusion

イロト イヨト イヨト イヨト

Figure: Parameter regions of (M_A, t_β) in blue are within the reach for each case.

Figure: Parameter regions of (M_A, t_β) in blue are within the reach for each case.

・ロト ・四ト ・ヨト ・ヨトー

Thanks!

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

Cut Optimization

Figure: $\delta_H(S/B)$ with the varying jet cone sizes R in the C/A jet algorithm. For comparison, we take a common cross section of $\sigma[pp \rightarrow AX \rightarrow hZ] = 100$ fb for all signal processes.

Cut Optimization

Figure: The most optimal cuts to the p_T of the tagged SM-like Higgs boson for different M_A inputs.

Э