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Abstract

New Jacobi elliptic functions are applied in Jacobi elliptic function expansion method to construct the exact periodic solutions
of nonlinear wave equations. It is shown that more new periodic solutions can be obtained by this method and more shock wave
solutions or solitary wave solutions can be got at their limit condition. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Much effort has been spent on the construction of
exact solutions of nonlinear equations, for their impor-
tant role in understanding the nonlinear problems. Re-
cently, many methods have been proposed, such as the
homogeneous balance method [1–3], the hyperbolic
tangent expansion method [4–6], the trial function
method [7,8], the nonlinear transformation method
[9,10] and sine–cosine method [11]. Many exact solu-
tions have been obtained, however, these methods can
only obtain the shock and solitary wave solutions and
cannot obtain the periodic solutions of nonlinear wave
equations. Although Porubov et al. [12–14] have ob-
tained some exact periodic solutions to some nonlin-
ear wave equations, they use the Weierstrass elliptic
function and involve complicated deducing. We [15]
have proposed the Jacobi elliptic function expansion
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method and applied it to some nonlinear wave equa-
tions. Many periodic solutions based on the Jacobi el-
liptic sine function finite expansion were obtained by
this method, including some shock wave solutions and
solitary wave solutions. Further studies show that new
periodic solutions can be got in solving some nonlin-
ear wave equations, if we apply different Jacobi ellip-
tic function expansions. In this Letter, we will show
the details about these new Jacobi elliptic function ex-
pansion and new periodic solutions.

2. Jacobi elliptic function expansion method

Consider a given nonlinear wave equation

(1)N

(
u,

∂u

∂t
,
∂u

∂x
,
∂2u

∂t2
,
∂2u

∂x2
, . . .

)
= 0,

we seek its wave solutions

(2)u = u(ξ), ξ = k(x − ct),
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wherek andc are the wavenumber and wave speed,
respectively.

In [15], u(ξ) is expressed as a finite series of Jacobi
elliptic sine function, snξ (a brief introduction to
the definition of Jacobi elliptic functions is given in
Appendix A), i.e., the ansatz

(3)u(ξ) =
n∑

j=0

aj snj ξ

is made and its highest degree is

(4)O
(
u(ξ)

) = n.

Notice that

(5)
du

dξ
=

n∑
j=0

jaj snj−1 ξ cnξ dnξ,

where cnξ and dnξ are the Jacobi elliptic cosine func-
tion and the Jacobi elliptic function of the third kind,
respectively. And

(6)cn2 ξ = 1− sn2 ξ, dn2 ξ = 1− m2 sn2 ξ

with the modulusm (0 < m < 1). Since

d

dξ
snξ = cnξ dnξ,

d

dξ
cnξ = −snξ dnξ,

(7)
d

dξ
dnξ = −m2 snξ cnξ,

the highest degree ofdu/dξ is taken as

(8)O

(
du

dξ

)
= n + 1

and

O

(
u

du

dξ

)
= 2n + 1, O

(
d2u

dξ2

)
= n + 2,

(9)O

(
d3u

dξ3

)
= n + 3.

Thus we can selectn in (3) to balance the highest order
of derivative term and nonlinear term in (1).

We know that, whenm → 1, then snξ → tanhξ ,
thus (3) degenerates as the following form:

(10)u(ξ) =
n∑

j=0

aj tanhj ξ.

So shock wave or solitary wave solutions can be ob-
tained by the Jacobi elliptic function expansion meth-
od, too.

We can get periodic solutions and solitary solutions
to some nonlinear wave equations for selectedn. Ac-
tually, we can get the same periodic solutions (includ-
ing solitary wave solutions) based on different Jacobi
elliptic functions for some nonlinear wave equations,
detailed results have been shown in Ref. [15] that the
same solution can be expressed in term of different
Jacobi elliptic functions. But we can get different pe-
riodic solutions and solitary wave solutions based on
different Jacobi elliptic functions for some other non-
linear wave equations. We will show the detailed re-
sults for two equations, mKdV equation and nonlinear
Klein–Gordon equation.

3. mKdV equation

(11)
∂u

∂t
+ αu2 ∂u

∂x
+ β

∂3u

∂x3
= 0.

Substituting (2) into (11) yields

(12)−c
du

dξ
+ αu2 du

dξ
+ βk2d3u

dξ3
= 0.

3.1. Jacobi elliptic sine function expansion

Considering (4), (8) and (9) to balance the highest
order of derivative term and nonlinear term in (11), we
can get

(13)n = 1,

so the ansatz solution of (11) in term of snξ is

(14)u = a0 + a1 snξ.

Substituting (14) into (12) yields[−c + αa2
0 − β

(
1+ m2)k2]a1 cnξ dnξ

+ 2αa0a
2
1 snξ cnξ dnξ

(15)+ (
αa2

1 + 6βm2k2)a1 sn2 ξ cnξ dnξ = 0,

from which it is determined that

a0 = 0, a1 = ±
√

−6β

α
mk,

(16)c = −β
(
1+ m2)k2.
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Thus the periodic solution of (11) is

u = ±
√

−6β

α
mk snξ

(17)

= ±
√

6c

α(1 + m2)
msn

√
− c

β(1+ m2)
(x − ct),

which demands thatc > 0, α > 0, β < 0 or c < 0,
α < 0, β > 0. And its corresponding shock wave
solution is

u = ±
√

−6β

α
k tanhξ

(18)= ±
√

3c

α
tanh

√
− c

2β
(x − ct).

3.2. Jacobi elliptic cosine function expansion

Apart from the expansion of Jacobi elliptic sine
function expansion, other Jacobi elliptic function ex-
pansions can also be applied to construct the periodic
solutions of nonlinear wave equations. The ansatz so-
lution in term Jacobi elliptic cosine function expansion
can be written as

(19)u(ξ) =
n∑

j=0

bj cnj ξ.

To balance the highest order of derivative term and
nonlinear term in (11), we can get the ansatz solution
of (11) in term of cnξ :

(20)u = b0 + b1 cnξ.

Substituting (20) into (12), we have

(21)

u = ±
√

6c

α(2m2 − 1)
mcn

√
c

β(2m2 − 1)
(x − ct).

This is another periodic solution of (11). Form → 1,
cnξ → sechξ , thus (21) degenerates as the following
form:

(22)u = ±
√

6c

α
sech

√
c

β
(x − ct).

This is the solitary solution of (11).

3.3. The third kind of Jacobi elliptic function
expansion

The ansatz solution in term of the third kind of
Jacobi elliptic function expansion can be written as

(23)u(ξ) =
n∑

j=0

cj dnj ξ.

To balance the highest order of derivative term and
nonlinear term in (11), we can get the ansatz solution
of (11) in term dnξ :

(24)u = c0 + c1 dnξ.

Substituting (24) into (12), we have

(25)u = ±
√

6c

α(2 − m2)
dn

√
c

β(2− m2)
(x − ct).

This is another periodic solution of (11). Form → 1,
dnξ → sechξ , thus (25) degenerates as (22), the sol-
itary solution of (11).

3.4. The Jacobi elliptic function csξ expansion

The ansatz solution in term of Jacobi elliptic func-
tion csξ expansion can be written as

(26)u(ξ) =
n∑

j=0

dj csj ξ,

where csξ = cnξ/snξ . To balance the highest order
of derivative term and nonlinear term in (11), we can
get the ansatz solution of (11) in term csξ :

(27)u = d0 + d1 csξ.

Substituting (27) into (12), we have

(28)u = ±
√

− 6c

α(2− m2)
cs

√
c

β(2− m2)
(x − ct).

This is another periodic solution of (11). Form → 1,
csξ → cschξ , thus (28) degenerates as

(29)u = ±
√

−6c

α
csch

√
c

β
(x − ct),

which is another solitary solution of (11).
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4. Nonlinear Klein–Gordon equation

We discuss the following nonlinear Klein–Gordon
equation:

(30)
∂2u

∂t2
− c2

0
∂2u

∂x2
+ αu − βu3 = 0.

Substituting (2) into (30) yields

(31)k2(c2 − c2
0

)d2u

dξ2 + αu − βu3 = 0.

Its corresponding ansatz solution in term of snξ is (14)
and exact periodic solution can be obtained as

(32)

u = ±
√

2m2α

β(1+ m2)
sn

√
α

(c2 − c2
0)(1+ m2)

(x − ct),

which demandsα > 0,β > 0,c2 > c2
0 or α < 0,β < 0,

c2 < c2
0. Its shock wave solution is

(33)u = ±
√

α

β
tanh

√
α

2(c2 − c2
0)

(x − ct).

The ansatz solution to (31) in term of cnξ is (20)
and exact periodic solution is

u = ±
√

2m2α

β(2m2 − 1)
cn

√
α

(c2 − c2
0)(2m2 − 1)

(34)× (x − ct).

Its corresponding solitary wave solution is

(35)u = ±
√

2α

β
sech

√
α

(c2 − c2
0)

(x − ct).

The ansatz solution to (31) in term of dnξ is (24)
and exact periodic solution is

(36)

u = ±
√

2α

β(2− m2)
dn

√
α

(c2 − c2
0)(2− m2)

(x − ct),

whose corresponding solitary wave solution is (35).
The ansatz solution to (31) in term of csξ is (27)

and exact periodic solution is

u = ±
√

− 2α

β(2− m2)
cs

√
− α

(c2 − c2
0)(2− m2)

(37)× (x − ct),

whose corresponding solitary wave solution is

(38)u = ±
√

−2α

β
csch

√
− α

(c2 − c2
0)

(x − ct).

5. Conclusion

In this Letter, the Jacobi elliptic function expansion
method based on different Jacobi elliptic functions is
applied to some nonlinear wave equations. And it is
shown that the periodic wave solutions obtained by the
Jacobi elliptic function expansion based on different
Jacobi elliptic functions may be different, so many
new periodic solutions can be got, so many new shock
wave or solitary wave solutions can also be obtained.
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Appendix A

Notice that

u(t) =
φ∫

0

1√
1− m2 sin2 ϕ

dϕ

(A.1)=
t≡sinϕ∫

0

1√
(1− x2)(1− m2x2)

dx

is called the Legendre elliptic integral of the first
kind, wherem is a parameter which is known as the
modulus. The inverse functiont ≡ sinϕ is called the
Jacobi elliptic sine function which is represented by

(A.2)t = snu.

Similarly,
√

1− t2 and
√

1− m2t2 are defined as the
Jacobi elliptic cosine function and Jacobi elliptic func-
tion of the third kind, respectively. They are expressed
as

(A.3)
√

1− t2 = cnu,
√

1− m2t2 = dnu,

respectively.



76 Z. Fu et al. / Physics Letters A 290 (2001) 72–76

We see from (A.1) that, whenm → 0, snu, cnu

and dnu degenerate as sinu, cosu and 1, respectively;
while, whenm → 1, snu, cnu and dnu degenerate
as tanhu, sechu and sechu, respectively. Detailed
explanations about Jacobi elliptic functions can be
found in Refs. [16,17].
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