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“Intrinsic” correlations and their 
temporal evolutions between 
winter-time PNA/EPW and winter 
drought in the west United States
Lin Piao1, Zuntao Fu1 & Naiming Yuan1,2

In this study, relations between winter-time Pacific-Northern America pattern (PNA)/East Pacific 
wave-train (EPW) and winter-time drought in the west United States over the period of 1951–2010 
are analyzed. Considering traditional Pearson’s Correlation Coefficient can be influenced by non-
stationarity and nonlinearity, a recently proposed method, Detrended Partial-Cross-Correlation 
Analysis (DPCCA) is applied. With DPCCA, we analyzed the “intrinsic” correlations between PNA/
EPW and the winter drought with possible effects of ENSO and PDO removed. We found, i) significant 
negative correlations between PNA/EPW and drought on time scales of 5–6 years after removing the 
effects of ENSO, ii) and significant negative correlations between PNA/EPW and drought on time scales 
of 15–25 years after removing the effects of PDO. By further studying the temporal evolutions of the 
“intrinsic” correlations, we found on time scales of 5–6 years, the “intrinsic” correlations between PNA/
EPW and drought can vary severely with time, but for most time, the correlations are negative. While on 
interdecadal (15–25 years) time scales, after the effects of PDO removed, unlike the relations between 
PNA and drought, the “intrinsic” correlations between EPW and drought takes nearly homogeneous-
sign over the whole period, indicating a better model can be designed by using EPW.

Recently the west U.S. has experienced severe dryness, which presents a challenge to humans and the ecosystem 
there. The impact of soil moisture deficits can be acute, including enhanced wildfire risk1, damage to habitat of 
vulnerable species2, and land subsidence from excessive groundwater withdrawals3. As a result, scientists have 
been trying the best to figure out what has caused the severe drought. Most recent analysis and forecasting about 
west U.S. drought have focused on the Pacific Ocean to find reasons, specifically on oceanic patterns such as the 
El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO)4–7. For instance, it has been 
found that the La Niña events can bring dry conditions to the west United States, especially when PDO is in its 
negative phase, the teleconnections between La Niña and the west U.S. drought tend to be strong and stable. As a 
result, strong drought event may happen during La Niña events. However, few studies have paid close attention 
to the impact of atmospheric patterns on droughts, such as Pacific-Northern America pattern (PNA) and East 
Pacific wave-train (EPW). As we all know, PNA is one of the most prominent internal modes of low-frequency 
variability in the Northern Hemisphere extratropics. Its positive phase indicates above-average heights in the 
vicinity of Hawaii and the intermountain region of North America, while below-average heights over south of the 
Aleutian Islands and the southeastern United Sates. Different from PNA, the EPW is generated in the lower trop-
osphere over the East Pacific and propagates predominantly eastward into North America and slightly upward, 
then eventually into stratosphere. Since the spatial and temporal variability of EPW is slightly different from that 
of PNA8–10, their influences may to some extent be different.

In this study, we focus on the influences of PNA and EPW on continental moisture balance which are 
quantified by self-calibrated Palmer Drought Severity Index (sc_PDSI) in the west U.S. on interannual and 
decadal-to-interdecadal time scales. These two timescales are the significant time scales for PNA and EPW which 
have been stated in Figs 1 and 2, see also10. Besides PNA and EPW, we also extract components of stationary 
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planetary wave scale with zonal wavenumber from b =  1 to b =  3 derived from EPW, written as EPW1to3. EPW1to3 
is discussed because motions of stationary planetary wave scale can reveal the impact of EPW on longer time 
scales11,12 noteworthily.

To study the possible influences of PNA and EPW on continental moisture balance, a straightforward way is 
to utilize the traditional Pearson’s correlation analysis. However, before analysis, we need to note that due to the 
effects of many nonlinear processes and external forcing in climate system, time series obtained in nature are 
usually characterized by multi-scaled structures and non-stationary13, and multi-series are normally linked via 
complex interactions. Therefore, the traditional Pearson’s correlation is not always appropriate and can provide 
erroneous results14 in some circumstances. For example, in14, the authors have argued that the calculated Pearson’s 
correlation coefficient of the summer rainfall over the middle-lower reaches of the Yangtze River (SRYR) and the 
previous winter-time (December, January and February) Niño3 Sea Surface Temperature Anomaly (Niño3-SSTA) 
is only 0.19 for the past 60 years (not statistically significant according to the student’s t-test), which is lower 
than expected since it is well acknowledged that SRYR are teleconnected with the previous winter-time East 
Pacific SSTA15. In this case, the traditional Pearson’s correlation seems to be insufficient. Considering ENSO 
has typical period of about 2 ~ 7 years, one may need to calculate better coefficients to reveal the correlations 
on multiple time scales, such as the DCCA cross-correlation coefficient16–18, which is based on the detrended 
cross-correlation analysis (DCCA)19, and can be used to quantify the levels of cross-correlations on different time 
scales20. However, as discussed in14, cross-correlations between two time series may also be altered by a common 
coupled third time series. Such as in our case, see Figs 1 and 2, PNA, EPW and EPW1to3 seem to be associated 
with ENSO and PDO simultaneously to some extent since the global wavelet spectrum analysis of the normalized 
indexes have shown that they have significant characteristic time scale of 3–5 years (ENSO typical period), while 
after 10 years low-pass filtering they have significant characteristic time scales of around 20 years (PDO typical 
period). Thus, it is necessary for us to capture the “intrinsic” correlations between two considered series on differ-
ent time scales, with potential influences of other unconsidered series removed. In this study, we choose to apply 
a recently developed new method, detrended partial-cross-correlation analysis (DPCCA). DPCCA is based on 
DCCA and improved by including partial-correlation technique, therefore it is useful in moving the potential 
influences of unconsidered series, and reveal the so called “intrinsic” correlations between the two considered 
time series. In this work, we use this method to study the correlations between winter-time PNA/EPW and winter 
drought, with the possible influence of ENSO and PDO removed.

In addition, due to the non-stationarity in climate system, “intrinsic” correlations averaged over the whole 
time span can be different from instantaneous “intrinsic” correlations over specific time intervals, as discussed 
in21, where the temporal relationship between the North Atlantic Oscillation (NAO) and ENSO has been found 
variable over time. Therefore, we should also pay attention to the relations between atmospheric patterns and 

Figure 1. Global wavelet spectrum of normalized atmospheric patterns and ENSO (black & solid). (a) is the 
result of PNAI, (b) is the result of EPWI, (c) is the result of EPWI1to3, and (d) is the result of Niño3.4-SSTA. The 
red dashed lines are the 95% confidence spectrum for the red-noise AR (1) process with lag-1 of 0.5.
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drought at different time intervals. In this case, besides applying DPCCA to the whole time span, we also do the 
same analysis to different time intervals. With the temporal evolution of “intrinsic” correlations calculated, we can 
better understand on what time scale and to what extent ENSO/PDO has influenced the “intrinsic” correlations 
between PNA/EPW and drought.

This paper is organized as follows. In the “Results” section, the “intrinsic” correlations and its temporal evo-
lution between PNA/EPW and drought in the west U.S. are shown, and the potential causes are discussed. Then 
a brief conclusion and discussion are made in the following section. In the end of this paper, the data and the 
methods are described in detail.

Results
The “intrinsic” correlations between atmospheric patterns and west U.S. drought. In this 
study, we are interested in finding the correlations between atmospheric patterns PNA/EPW (characterized by 
Pacific-Northern America pattern index (PNAI)/East Pacific wave-train index (EPWI)) and the drought condi-
tions in west United States. We mainly focus on the winter time since it has been recognized that the influences of 
the oceanic and atmospheric patterns are more significant during boreal winter22,23. We use the averaged sc_PDSI 
over west U.S. to characterize the moisture balance condition. The index is calculated according to station data 
and the detailed distribution of stations can be found in Fig. 3. Moreover, we characterize ENSO activity by 
using the Niño3.4 Sea Surface Temperature Anomaly (Niño3.4-SSTA) and PDO activity by using Pacific Decadal 
Oscillation index (PDOI).

In Fig. 4a–c, we analyze the correlations between PNAI/EPWI/EPWI1to3 and sc_PDSI by calculating DCCA 
cross-correlation coefficient ρDCCA, which has been widely used16–18,20, with the influence of other series not 
been removed, see the black lines. In Fig. 4a, sc_PDSI is weakly correlated with PNAI on time scale of 5–8 
years with cross-correlation coefficient ρDCCA close to − 0.2 (not exceeding 90% confidence level). As for the 
cross-correlations between EPWI and sc_PDSI, see Fig. 4b, the cross-correlation coefficient ρDCCA is nearly of the 
same value (− 0.25) on the time scale of 5 to 15 years (still not exceeding the 90% confidence level). But we could 
not say that there is no impact of PNA and EPW on moisture balance in west U.S., since the oceanic pattern such 
as the ENSO and PDO may play a role in the analysis. Therefore, we need to reveal the “intrinsic” correlations 
between PNAI and sc_PDSI, as well as the “intrinsic” correlations between EPWI/EPWI1to3 and sc_PDSI. After 
removing the influence of ENSO, whose typical period is 2–7 years, see the red solid line in Fig. 4a, significant 
negative cross-correlation coefficients ρDPCCA between PNAI and sc_PDSI are found over all time scales. On time 
scale of 5–6 years, the correlation even exceeds the 90% confidence level. This result is interesting, as we all know 
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Figure 2. Global wavelet spectrum of 10-years low-pass filtered normalized atmospheric patterns and 
PDO (black & solid). (a) is the result of PNAI, (b) is the result of EPWI, (c) is the result of EPWI1to3, and (d) is 
the result of PDOI. The red dashed lines are the 95% confidence spectrum for the red-noise AR (1) process with 
lag-1 of 0.5.
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that the relations between ENSO and PNA is quite controversial. In24, the authors argued that ENSO cannot force 
PNA at all during warm ENSO events by analyzing ensemble general circulation model (GCM) simulations. 
However, later researches pointed out that PNA is triggered by tropical conventions, maybe the Madden-Julian 
Oscillation (MJO)25,26. In fact, it has been well accepted that ENSO SST forcing can selectively amplify natural 
forms of internal variability from the perspective of the background flow (the strength of the horizontal wind 
shear and the meridional potential vorticity gradient), then the forcing may influence the PNA to some extent26,27. 
Our results, from another perspective, proved the influence of ENSO on the PNA. As for the cross-correlations 
between EPWI and sc_PDSI, see the red solid line in Fig. 4b, they also exceeded the 90% confidence level on 
the time scale of 5 years after removing the influence of ENSO. Results discussed above indicate that ENSO 
has remarkable influence on its typical time scale (5–6 years), which may cover the cross-correlations between 
PNAI/EPWI and sc_PDSI. Furthermore, from Fig. 4a,b, the impact of ENSO seems to be stronger on PNA than 
on EPW at interannual time scale, and this may be due to the fact that PNA develops closer to the equator than 
EPW. Concerning EPWI1to3, which represents the impacts from motions of stationary planetary wave scale, we 
find that the cross-correlation coefficient ρDCCA becomes more negative at all time scale in comparison with the 
cross-correlation coefficient ρDCCA between EPWI and sc_PDSI, especially on the time scale of 4–6 years (exceed-
ing the 90% confidence level), see Fig. 4c. This indicates that the motions of stationary planetary wave scale 
maybe the major factor that has influenced the winter-time drought in west U.S. Furthermore, after removing the 
influence of ENSO, see Fig. 4c, the cross-correlation coefficient ρDPCCA is only slightly different from ρDCCA, which 
suggest the relations between EPWI1to3 and sc_PDSI in the west U.S. is only weakly influenced by ENSO.

In Fig. 4d–f, we focus on the correlations between atmospheric patterns and sc_PDSI on decadal to inter-
decadal time scales. Marked differences in the outputs between DPCCA (removing the influence of PDO) and 
DCCA are found over all time scales. Neither the cross-correlation coefficients ρDCCA between PNAI and sc_PDSI, 
nor the ρDCCA between EPWI and sc_PDSI can exceed the 90% confidence level on decadal to interdecadal (11–30 
years) time scales. By comparison, the cross-correlation coefficient ρDPCCA between PNAI and sc_PDSI on time 
scale of 14–21 years (nearly − 0.5) and ρDPCCA between EPWI and sc_PDSI on time scale of 15–24 years (nearly 
− 0.5) are both above the 90% confidence level. When motions on stationary planetary wave scale are extracted 
from EPW, in Fig. 4f, the ρDPCCA between EPWI1to3 and sc_PDSI even exceeds the 90% confidence level over all 
time scales (11–30 years) and the cross-correlation can reach − 0.6 on the time scale of 20 years. Therefore, as 
expected, oceanic patterns like ENSO and PDO indeed can mask the “intrinsic” correlations between atmos-
pheric patterns and drought.

Temporal evolutions of “intrinsic” correlations between atmospheric patterns and 
drought. Concerning the nonlinear character of climate system, the cross-correlation between two 
non-stationary series obtained from nature may not always be in line with the time-averaged value and it var-
ies through time21. Therefore, in the following, we focus on the temporal evolutions of “intrinsic” correlations 
between PNAI/EPWI/EPWI1to3 and sc_PDSI.

To evaluate how the “intrinsic” correlations between PNAI/EPWI/EPWI1to3 and sc_PDSI in the west U.S. vary 
through time, we calculate ρDCCA (for the purpose of comparison) and ρDPCCA within sliding windows with sizes 
ranging from 5 to 30 years, and different window sizes represent different time scales. Then, we acquire the plots 
in Fig. 5.
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Figure 3. Geographic locations of the stations in the west U.S. 17 stations in the west U.S. are used, including 
9 stations in California and 8 stations in Nevada. Their locations are shown as the solid circles. We generate the 
figure by using Matlab.
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In Fig. 5a,d,g, on the time scale of 5–6 years, the values of cross-correlations coefficient ρDCCA between PNAI/
EPWI/EPWI1to3 and sc_PDSI varies from positive to negative or from negative to positive over time intermit-
tently. This result is in line with our concerns above, that the correlations between atmospheric pattern and 
drought are not always stationary through time, and the sign of correlation coefficient may switch frequently 
from positive to negative over the selected intervals. The positive correlations found in DCCA may be due to 
the influence of ocean pattern (ENSO) on interannual time scale, which is so strong that may mask the “original 
influence” (the negative cross-correlation). In order to confirm the hypothesis above and to understand when and 
to what extent that ENAO has influenced the “intrinsic” correlations between atmospheric patterns and drought, 
see Fig. 5b,e,h, we applied DPCCA. After removing the impact of ENSO, more negative cross-correlation coeffi-
cients ρDPCCA are found during the period when the ρDCCA are also negative, see Fig. 5a/d/g on the time scale of 5–6 

2 4 6 8 10 12 14 16
−0.6

−0.4

−0.2

0

C
or

re
la

ti
on

 C
oe

ff
ic

ie
nt

PNAI VS  sc_PDSI

a) ρ
DCCA

ρDPCCAenso

2 4 6 8 10 12 14 16
−0.6

−0.4

−0.2

0

C
or

re
la

ti
on

 C
oe

ff
ic

ie
nt

EPWI VS  sc_PDSI

b) ρ
DCCA

ρDPCCAenso

2 4 6 8 10 12 14 16
−0.6

−0.4

−0.2

0

Time Scale(year)

C
or

re
la

ti
on

 C
oe

ff
ic

ie
nt

EPWI1to3 VS  sc_PDSI

c) ρ
DCCA

ρDPCCAenso

10 15 20 25 30
−0.7

−0.5

−0.3

−0.1

0.1

0.3
PNAI  VS  sc_PDSI

d) ρ
DCCA

ρDPCCApdo

10 15 20 25 30
−0.7

−0.5

−0.3

−0.1

0.1

0.3
EPWI  VS  sc_PDSI

e) ρ
DCCA

ρDPCCApdo

10 15 20 25 30
−0.7

−0.5

−0.3

−0.1

0.1

0.3

Time Scale(year)

EPWI1to3  VS  sc_PDSI

f) ρ
DCCA

ρDPCCApdo

Figure 4. Correlations between atmospheric patterns and sc_PDSI. DCCA cross-correlation coefficients 
ρDCCA are shown in black color, while DPCCA coefficients ρDPCCA are shown in red. Results between PNAI and 
sc_PDSI are shown in (a)/(d), between EPWI and sc_PDSI are shown in (b)/(e), and between EPWI1to3 and 
sc_PDSI are shown (c)/(f). On the left hand side, we calculate ρDPCCA by removing the effects of ENSO, while on 
the right hand side, ρDPCCA is determined with the effects of PDO removed. The black dashed line represents the 
90% significance criterions of ρDCCA on different time scales, while the red dashed line represents the criterions 
of ρDPCCA. (They are both obtained from Monte-Carlo Simulations. We shuffled the considered time series and 
repeated the DCCA/DPCCA calculations for 5000 times. The top 5% smallest values (on different time scales) 
are given in the dashed lines.)
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years. Especially for the results between PNAI and sc_PDSI, which is in line with our findings in Fig. 4, that the 
influence of ENSO seems to be greater on the “intrinsic” correlations between PNAI and sc_PDSI.

The temporal evolutions of “intrinsic” correlations between atmospheric patterns and drought on the 
decadal-to-interdecadal time scale are revealed in Fig. 5c,f,i. On time scale of 15–25 years, significant differ-
ences between the results of DCCA and DPCCA are found. Nearly all positive values during the last half period 
in Fig. 5a,d,g disappear in Fig. 5c,f,i, which confirms the significant, negative, time-averaged cross-correlation 
coefficient ρDPCCA we found in Fig. 4d,e,f. As for the temporal evolutions of the “intrinsic” correlations between 
PNAI and sc_PDSI, the values are negative during the period of 1960–1985, but close to 0 during the period of 
1985–2000. In contrast, when it comes to the temporal evolutions of the “intrinsic” cross-correlations between 
EPWI/EPWI1to3 and sc_PDSI, we find nearly homogeneous-signed, negative values over the whole study period. 
This result makes EPWI/EPWI1to3 better potential predictors for building models to forecast dry-wet conditions 
in the west U.S. on the time scale of 15–25 years.

To sum up, from Fig. 5 we can clearly figure out on what scale and to what extent that ENSO/PDO can 
modulate the “intrinsic” correlations between atmospheric patterns and drought on the interannual/
decadal-to-interdecadal time scale over time. After removing the influence of ENSO, both PNA and EPW can 
negatively contribute to the west U. S. drought on interannual time scale, but not invariant through time. While 
after removing the influence of PDO, to our surprise, EPW can negatively contribute to the west U. S. drought 
during the whole study period on decadal-to-interdecadal time scale.

Conclusion and Discussion
In this paper, winter drought (sc_PDSI) in the west United States over the past 60 years are studied. Different from 
recent researches, where the influence of oceanic patterns (ENSO and PDO) are widely studied, we in this study 
mainly focus on the effects of atmospheric patterns (PNA/EPW).Considering both the atmospheric patterns 
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Figure 5. Temporal evolutions of the correlations between atmospheric patterns and sc_PDSI. Outputs of 
DCCA are shown in the first row (a,d,g); outputs of DPCCA (with the influence of ENSO removed) are shown 
in the second row (b,e,h); outputs of DPCCA (with the influence of PDO removed) are shown in the bottom 
row (c,f,i). The left column shows the results between PNAI and sc_PDSI (a–c), the middle column shows 
the results between EPWI and sc_PDSI (d–f), while the right column shows the results between EPWI1to3 and 
sc_PDSI (g–i).
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(PNA/EPW) and the west U.S. drought may be commonly influenced by ENSO and PDO (see Figs 1 and 2), a 
recently developed method, DPCCA, is applied in this study. With DPCCA, we revealed, for the first time, the 
“intrinsic” correlations between PNA/EPW and west U.S. drought on different time scales with possible influ-
ences of oceanic patterns (ENSO and PDO) removed. To illustrate the possible influences of ENSO and PDO, 
we also calculated the DCCA cross-correlation coefficient ρDCCA for comparison, which can only be applied to 
two time series, without removing the influence of other common coupled time series. From ρDCCA, we find that 
the atmospheric patterns PNA/EPW indeed have some correlations with sc_PDSI in the west U.S., but neither 
of them can exceed the 90% confidence level. Only when we study the relations between EPWI1to3 and sc_PDSI, 
significant correlations exceeding 90% confidence level can be found on time scale of 4–6 years. However, if we 
apply DPCCA, significant negative correlations between PNA/EPW and the winter drought are found on interan-
nual (5–6 years) time scales after removing the influence of ENSO, and significant negative correlations between 
PNA/EPW and the winter drought are found on time scales of 15–25 years after removing the impact of PDO. 
Furthermore, the temporal evolutions of the “intrinsic” correlations are also investigated, which reveal that the 
relations between the atmospheric patterns and the winter drought in west U.S. cannot always keep unchanged 
over time. On time scales of 5–6 years, after removing the effects of ENSO, the “intrinsic” correlations between 
PNA/EPW and drought can vary severely with time, but for most time, the correlations are negative. While on 
decadal-to-interdecadal (15–25) years, we are surprised to find that the cross-correlation coefficients ρDPCCA tend 
to become consistently negative over the whole time span after removing the impact of PDO, especially for the 
ρDPCCA between EPWI/EPWI1to3 and sc_PDSI. This indicates EPWI/EPWI1to3 may be better predictors for build-
ing models to forecast dry-wet conditions in the west U.S.

The “intrinsic” correlations and their temporal variations we found in this study proved that there are indeed 
close relations between PNA/EPW and the winter drought in west U.S., but we need to focus on specific time 
scales. In fact, the correlations we found can be explained from previous studies. For the negative correlations 
between PNAI and sc_PDSI, it has been widely accepted that the positive phase of PNA pattern is associated with 
above-average air temperatures over the west U.S., which will result in severe drought later (quantified by lower 
sc_PDSI). Concerning the “intrinsic” negative correlation between EPWI and sc_PDSI in the west U.S., we can 
explore it from the aspect of precipitation. In fact, it has been well acknowledged that precipitation deficit is a 
prerequisite for the moisture deficit, which will further lead to drought. In west U.S. the most important part of 
precipitation is winter/spring snow. When the active EPW happens, there will be recurring pole-ward deflection 
of the cool-season storm track forced by a region with persistent high atmospheric pressure, which steers Pacific 
storms away from the west U.S. and then leads to precipitation deficits7,28,29. As for the question of why ENSO/
PDO has so remarkable influence on the “intrinsic” correlations between PNAI/EPWI/EPWI1to3 and sc_PDSI, 
we may explain it as following: the El-Niño-related dry-wet changes can result in wetter conditions (quantified by 
larger sc_PDSI) at the southwest U.S., while La Niña-related dry-wet changes can lead to drier conditions there. 
Moreover, when ENSO is in phase with PDO, the ENSO-induced dry-wet changes are magnified7,30,31. Therefore, 
after removing the oceanic variability, we get magnified negative cross-correlations between atmospheric patterns 
and drought on the interannual (5–6years) and decadal-to-interdecadal (15–25 years) time scales.

Furthermore, we need to note that in this study we only take the influence of conventional El Niño (Eastern 
Pacific El Niño, EP-El Niño) into account for the interannual time scale. It has been widely acknowledged that 
El Niño Modoki (Central Pacific El Niño, CP-El Niño) appeared more frequently in recent years and its pattern 
is distinct from the pattern of the conventional El Niño32,33. Therefore, it should be helpful to include El Niño 
Modoki into our analysis. Besides, on decadal time scale, other factors such as the land surface processes may also 
need to be taken into account since it can feed back positively on the moisture balance. Therefore, more detailed 
analysis is still needed in future.

Data and Methods
Data. The data used in this study are Pacific-Northern America pattern index (PNAI) and East Pacific wave-
train index (EPWI) both representing atmospheric patterns. The PNAI which reflects a quadripole pattern 
of 500-millibar height anomalies is downloaded from the National Oceanic & Atmospheric Administration 
(NOAA) (http://www.esrl.noaa.gov/psd/data/climateindexes/). And the EPWI is defined as the volume-averaged 
vertical stationary wave fluxes in the domain (30°–60°N, 170°–120°W; 925–500hPa) using the three-dimensional 
wave fluxes proposed by34, the function is presented as below:
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where the vector WFs is the three-dimensional wave flux of the stationary waves, which is derived under the 
quasi-geostrophic approximation. In this function, p =  pressure/1000 hPa, z =  − Hlnp and H is a constant scale 
height (H is set equal to 7.5 km for all computations here). a, Ω , ϕ, λ represent the Earth’s radius, the Earth’s rota-
tion rate, latitude and longitude, respectively. ψ′  is the small perturbation of the streamfunction to its zonal mean. 
N is the buoyancy frequency. The EPWI is calculated by using the monthly mean gridded reanalysis data pro-
vided by the National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric 

http://www.esrl.noaa.gov/psd/data/climateindexes/
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Research (NCAR). More than that, we also extract components on stationary planetary wave scales with zonal 
wavenumber b =  1 to b =  3 derived from EPW and the stationary planetary wave scale index of EPW is written 
as EPWI1to3. EPWI1to3 is also discussed here because motions on stationary planetary wave scales can show the 
impact of EPW on longer time scales remarkably11,12.

We characterize ENSO activity using Niño3.4 Sea Surface Temperature Anomaly (Niño3.4-SSTA) and PDO 
activity using Pacific Decadal Oscillation index (PDOI). The Niño3.4-SSTA data is obtained from the website of 
KNMI Climate Explorer. The PDOI is acquired from the NOAA.

The drought index used here is sc_PDSI downloaded from (http://droughtatlas.unl.edu/Data.aspx). The sc_
PDSI is based on Palmer Drought Severity Index (PDSI) which is calculated from a water-balance model that is 
forced by observed precipitation and temperature and is closely related to precipitation and soil moisture content; 
the PDSI has been widely used to study aridity changes. To improve the spatial comparability, sc_PDSI is pro-
posed, which calibrates the PDSI using local, instead of using the fixed coefficients35. And the average sc_PDSI 
over the west U.S. is calculated according to 17 station data, see Fig. 3.

Owing to the length of available data, in this paper we only focus on the time period of 1951–2010, with 
only winter-time (December, January and February) data selected. Because the influences of the oceanic and 
atmospheric patterns in the Pacific ocean on climate are much significant in the boreal winter22,23. In addition, 
winter precipitation is an important predictor of annual tree growth, particularly in the west U.S., and the drought 
include persistence from prior winter30. All indexes are normalized to have unit variance.

Methods. In this subsection, we will explain DPCCA briefly.
Consider m time series of length L, y{ }i

1 , y{ }i
2 , ···, y{ }i

m , (i =  1, 2, 3, L). Firstly, the random walk profile is calcu-
lated by integrating the series, and the equation is stated as below:

∑= ,
( )=

Y y
2k

j

i

k

i
j

1

where j =  1, 2, 3, m, k =  1, 2, 3, , L. Secondly, each profile is divided into L −  s overlapping boxes. Each box con-
tains s +  1 values. For box that starts at i and ends at i +  s, we define the local trend 

∼
,Yk l
j  by using a polynomial fit. 

Then, we get the detrended walk as the difference between the original walk and the local trend, as:
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∼
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where l =  1, 2, 3, ···, (L −  s)(s +  1). By calculating the covariance between any two residuals, we get,
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where j1, j2 =  1, 2, 3, m. Then we can get a m ×  m covariance matrix,
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In the next step, the cross-correlation coefficients between any two time series are obtained according to the 
procedure proposed by16,18,
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and a m ×  m matrix can again be obtained,
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where each component in the above matrix ranges from − 1 to + 1 and represents the level of cross-correlation 
on time scale of s. If we only consider two time series (m =  2), ρ1,2(s) is the traditional DCCA cross-correlation 
coefficient ρDCCA(s). However, we should note that this matrix only provides correlation information of two time 
series without removing the influence of other coupled series. In order to remove the possible influence of other 
series, partial-correlation method is used as following.

One first calculate the inverse matrix of ρ(s),

ρ( ) = ( ) =
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Then the partial-cross-correlation between two time series y{ }i
j1  and y{ }i

j2  can be obtained as,

ρ ( , ) =
− ( )

( ) ( )
,

( )

,

, ,

j j s
A s

A s A s
;

9
DPCCA

j j

j j j j
1 2

1 2

1 2 2 2

The coefficient ρDPCCA(j1, j2; s) can be used to characterize the “intrinsic” correlations between two time series on 
time scale of s, with possible influence of other series y{ }i

j3 , y{ }i
j4 , ···, y{ }i

jm  removed14. By changing s, we can further 
get the partial-cross-correlation coefficients between two time series on different time scales.
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