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Abstract

A Jacobi elliptic function expansion method, which is more general than the hyperbolic tangent function expansion method,
is proposed to construct the exact periodic solutions of nonlinear wave equations. It is shown that the periodic solutions obtained
by this method include some shock wave solutions and solitary wave solutions. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

It plays an important role to find the exact solutions of nonlinear wave equations in the nonlinear problems.
Recently, a number of methods have been proposed, such as the homogeneous balance method [1–3], the hyperbolic
tangent function expansion method [4–6], the trial function method [7,8], the nonlinear transformation method
[9,10] and sine–cosine method [11]. However, these methods can only obtain the shock and solitary wave solutions
and cannot obtain the periodic solutions of nonlinear wave equations. Although Porubov et al. [12–14] have
obtained some exact periodic solutions to some nonlinear wave equations, they use the Weierstrass elliptic function
and involve complicated deducing. In this Letter, the Jacobi elliptic function expansion method, which is more
general than the hyperbolic tangent function expansion method, is proposed and applied to some nonlinear wave
equations. It is shown that the periodic solutions obtained by this method include some shock wave solutions and
solitary wave solutions.

2. Jacobi elliptic function expansion method

Consider a given nonlinear wave equation
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(1)N

(
u,

∂u

∂t
,
∂u

∂x
,
∂2u

∂t2
,
∂2u

∂x2
, . . .

)
= 0,

we seek its wave solutions of the following form:

(2)u = u(ξ), ξ = k(x − ct),

wherek andc are the wave number and wave speed, respectively.
By the Jacobi elliptic function expansion method,u(ξ) can be expressed as a finite series of Jacobi elliptic

function, snξ , i.e., the ansatz

(3)u(ξ) =
n∑

j=0

aj snj ξ

is made and its highest degree is

(4)O
(
u(ξ)

) = n.

Notice that

(5)
du

dξ
=

n∑
j=0

jaj snj−1 ξ cnξ dnξ,

where cnξ and dnξ are the Jacobi elliptic cosine function and the Jacobi elliptic function of the third kind,
respectively. And

(6)cn2 ξ = 1− sn2 ξ, dn2 ξ = 1− m2 sn2 ξ

with the modulusm (0 < m < 1). Since

(7)
d

dξ
snξ = cnξ dnξ,

d

dξ
cnξ = −snξ dnξ,

d

dξ
dnξ = −m2 snξ cnξ,

the highest degree ofdpu/dξp is taken as

(8)O

(
dpu

dξp

)
= n + p, p = 1,2,3, . . . ,

and

(9)O

(
uq dpu

dξp

)
= (q + 1)n + p, q = 0,1,2, . . . , p = 1,2,3, . . . .

Thus we can selectn in (3) to balance the derivative term of the highest order and the nonlinear term in (1).
We know that whenm → 1, snξ → tanhξ , thus (3) is degenerated as the following form:

(10)u(ξ) =
n∑

j=0

aj tanhj ξ.

So, the Jacobi elliptic function expansion method is more general than the hyperbolic tangent function expansion
method.

3. Applications

We illustrate the applications of the Jacobi elliptic sine function expansion method to some nonlinear wave
equations.
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3.1. Applications to single equation

3.1.1. KdV equation

(11)
∂u

∂t
+ u

∂u

∂x
+ β

∂3u

∂x3 = 0.

Substituting (2) into (11), we have

(12)−c
du

dξ
+ u

du

dξ
+ βk2d3u

dξ3
= 0.

Thus we can deduce from (3) that

(13)O

(
u

du

dξ

)
= 2n + 1, O

(
d3u

dξ3

)
= n + 3,

thus

(14)n = 2.

So the KdV equation (11) may have the following form travelling wave solution:

(15)u(ξ) = a0 + a1 snξ + a2 sn2 ξ

and

(16)
du

dξ
= (a1 + 2a2 snξ)cnξ dnξ,

(17)u
du

dξ
= [

a0a1 + (
a2

1 + 2a0a2
)
snξ + 3a1a2 sn2 ξ + 2a2

2 sn3 ξ
]
cnξ dnξ,

(18)
d2u

dξ2 = 2a2 − (
1+ m2)a1 snξ − 4

(
1+ m2)a2 sn2 ξ + 2m2a1 sn3 ξ + 6m2a2 sn4 ξ,

(19)
d3u

dξ3 = [−(
1+ m2)a1 − 8

(
1+ m2)a2 snξ + 6m2a1 sn2 ξ + 24m2a2 sn3 ξ

]
cnξ dnξ.

Substituting (15) into (12), we have

−[
c − a0 + (

1+ m2)βk2]a1 cnξ dnξ +
{
a2

1 − 2
[
c − a0 + 4

(
1+ m2)βk2]a2

}
snξ cnξ dnξ

(20)+ 3a1
(
a2 + 2m2βk2)sn2 ξ cnξ dnξ + 2a2

(
a2 + 12m2βk2)sn3 ξ cnξ dnξ = 0.

Thus we can determine the coefficients

(21)a1 = 0, a2 = −12m2βk2, a0 = c + 4
(
1+ m2)βk2.

Substituting (21) into (15), a final solution is given,

(22)u = c + 4
(
1+ m2)βk2 − 12m2βk2 sn2 ξ = c + 4

(
1− 2m2)βk2 + 12m2βk2 cn2 ξ,

which is the exact periodic solution of KdV equation (11). Usually, it is known as the cnoidal wave solution of
KdV equation.

Takingm = 1, then (22) is reduced to

(23)u = c − 4βk2 + 12βk2 sech2 ξ,
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which is the solitary wave solution of KdV equation. Especially, whenc = 4βk2, (23) becomes

(24)u = 3c sech2
√

c

4β
(x − ct).

Similarly, this method can be applied to other single equation, such as:

3.1.2. Boussinesq equation

(25)
∂2u

∂t2
− c2

0
∂2u

∂x2
− α

∂4u

∂x4
− β

∂2u2

∂x2
= 0.

Its ansatz solution is (15). Substituting (2) and (15) into (25) yields

2
[(

c2 − c2
0

)
a2 + 4

(
1+ m2)αk2a2 − β

(
a2

1 + 2a0a2
)] −

{(
1+ m2)(c2 − c2

0

) + αk2[(1+ m2)2 + 12m2]
+ 2β

[(
1+ m2)a0 − 6a2

]}
a1 snξ − 2

{
2
(
1+ m2)(c2 − c2

0

)
a2 + 4αk2[2(

1+ m2)2 + 9m2]a2

− 2β
[(

1+ m2)a2
1 + 2

(
1+ m2)a0a2 − 3a2

2

]}
a2 sn2 ξ + 2

{
m2(c2 − c2

0

) + 10m2(1+ m2)αk2

− β
[
2m2a0 − 9

(
1+ m2)a2

]}
a1 sn3 ξ + 2

{
3m2(c2 − c2

0

)
a2 + 60m2(1+ m2)αk2a2

− β
[
3m2a2

1 + 6m2a0a2 − 8
(
1+ m2)a2

]}
sn4 ξ − 24m2(m2αk2 + βa2

)
a1 sn5 ξ

(26)− 20m2(6m2αk2 + βa2
)
a2 sn6 ξ = 0,

from which it is determined that

(27)a1 = 0, a2 = − 6

β
m2αk2, a0 = c2 − c2

0

2β
+ 2

β

(
1+ m2)αk2.

Thus the periodic solution of (25) is

(28)u = c2 − c2
0

2β
+ 2

β

(
1+ m2)αk2 − 6

β
m2αk2 sn2 ξ = c2 − c2

0

2β
− 2

β

(
2m2 − 1

)
αk2 + 6

β
m2αk2 cn2 ξ.

Its corresponding solitary wave solution is

(29)u = c2 − c2
0

2β
− 2αk2

β
+ 6αk2

β
sech2 ξ.

3.1.3. mKdV equation

(30)
∂u

∂t
+ αu2∂u

∂x
+ β

∂3u

∂x3 = 0.

Its ansatz solution is

(31)u = a0 + a1 snξ.

Substituting (2) and (31) into (25) yields

(32)

[−c + αa2
0 − β

(
1+ m2)k2]a1 cnξ dnξ + 2αa0a

2
1 snξ cnξ dnξ + (

αa2
1 + 6βm2k2)a1 sn2 ξ cnξ dnξ = 0,

from which it is determined that

(33)a0 = 0, a1 = ±
√

−6β

α
mk, c = −β

(
1+ m2)k2.
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Thus the periodic solution of (30) is

(34)u = ±
√

−6β

α
mk snξ = ±

√
6c

α(1+ m2)
msn

√
− c

β(1+ m2)
(x − ct),

which demands thatc > 0, α > 0, β < 0 or c < 0, α < 0, β > 0. And its corresponding shock wave solution is

(35)u = ±
√

−6β

α
k tanhξ = ±

√
3c

α
tanh

√
− c

2β
(x − ct).

3.1.4. Nonlinear Klein–Gordon equation
We discuss the following two kinds of nonlinear Klein–Gordon equations:

(36)
∂2u

∂t2 − c2
0
∂2u

∂x2 + αu − βu2 = 0

and

(37)
∂2u

∂t2
− c2

0
∂2u

∂x2
+ αu − βu3 = 0.

Their corresponding ansatz solutions are (15) and (31), respectively. Similarly, their exact periodic solutions can
be obtained. For (36), it is

u = α

2β
− 2(1+ m2)

β
k2(c2 − c2

0

) + 6

β
m2k2(c2 − c2

0

)
sn2 ξ

(38)= α

2β
− 2(1− 2m2)

β
k2(c2 − c2

0

) − 6

β
m2k2(c2 − c2

0

)
cn2 ξ.

Its corresponding solitary wave solution is

(39)u = α

2β
− 2

β
k2(c2 − c2

0

) − 6

β
k2(c2 − c2

0

)
sech2 ξ.

For (37), it is

(40)u = ±
√

2m2k2(c2 − c2
0)

β
snξ = ±

√
2m2α

β(1+ m2)
sn

√
α

(c2 − c2
0)(1+ m2)

(x − ct),

which demandsα > 0, β > 0, c2 > c2
0 or α < 0, β < 0, c2 < c2

0. Its shock wave solution is

(41)u = ±
√

2k2(c2 − c2
0)

β
tanhξ = ±

√
α

β
tanh

√
α

2(c2 − c2
0)

(x − ct).

3.2. Applications to coupled equations

The Jacobi elliptic function expansion method can be also applied to coupled equations to obtain their exact
periodic solutions. We illustrate this by using the following variant Boussinesq equations:

(42)
∂u

∂t
+ u

∂u

∂x
+ ∂v

∂x
+ α

∂3u

∂t∂x2 = 0,
∂v

∂t
+ ∂(uv)

∂x
+ β

∂3u

∂x3 = 0.

Setting

(43)u = u(ξ), v = v(ξ), ξ = k(x − ct),
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obviously we can make the following ansatz solutions to (42):

(44)u(ξ) = a0 + a1 snξ + a2 sn2 ξ, v(ξ) = b0 + b1 snξ + b2 sn2 ξ.

Substituting (43) and (44) into (42) yields

u = c + β

2αc
− 4

(
1+ m2)αk2c + 12cm2αk2 sn2 ξ = c + β

2αc
− 4

(
1− 2m2)αk2c − 12cm2αk2 cn2 ξ,

(45)v = − β2

4c2α2 + 2
(
1+ m2)βk2 − 6m2βk2 sn2 ξ = − β2

4c2α2 + 2
(
1− 2m2)βk2 + 6m2βk2 cn2 ξ,

which is the exact periodic solution of (42), i.e., the cnoidal wave solution, their corresponding solitary wave
solution is

(46)u = c + β

2αc
+ 4αk2c − 12cαk2 sech2 ξ, v = − β2

4c2α2 − 2βk2 + 6βk2 sech2 ξ.

4. Conclusion

In this Letter, the Jacobi elliptic function expansion method is proposed and applied to some nonlinear wave
equations. It is shown that this method is more general than the hyperbolic tangent function expansion method.
And the periodic wave solutions obtained by the Jacobi elliptic function expansion method contain the shock wave
and solitary wave solutions. In the applications, it is shown that the Jacobi elliptic function expansion method can
be applied to both single equation and coupled equations. Actually, this method can be applied to obtain solutions to
more nonlinear wave equations, as long as the odd- and even-order derivative terms do not coexist in the nonlinear
wave equations.
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