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Abstract

New transformations from the nonlinear sine-Gordon equation are shown in this Letter, based on them a new approach is
proposed to construct exact periodic solutions to nonlinear equations. It is shown that more new periodic solutions can be
obtained by this new approach and more shock wave solutions or solitary wave solutions can be got under their limit condition.
 2002 Elsevier Science B.V. All rights reserved.
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1. New transformations from sine-Gordon
equation

In Ref. [1], based on the sine-Gordon equation, a
transformation

(1)
dω

dξ
= sinω,

was obtained and applied to solve nonlinear wave
equations, many exact solutions have been got since
then by that so-called sine–cosine method. We will
explain in this Letter that this transformation is just
a special case under the limit condition. So we begin
with the sine-Gordon equation

(2)utt − c2
0uxx + f 2

0 sinu = 0.

* Corresponding author.
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To get transformation from Eq. (2), we solve it in the
following frame

(3)u = u(ξ), ξ = x − ct,

wherec is wave velocity. Then Eq. (2) becomes

(4)
(
c2 − c2

0

) d2u

dξ2 + f 2
0 sinu = 0.

Integrating this equation, we get

(5)

(
dω

dξ

)2

+ f 2
0

c2 − c2
0

sin2 ω = H

2
,

whereH is integration constant,ω = u/2. There are
two cases to be considered:
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Case 1. c2 > c2
0

Set λ2
0 = f 2

0
c2−c2

0
and H = 2λ2

0m
2, Eq. (5) can be

rewritten as

(6)
dω

dξ
= ±λ0

√
m2 − sin2 ω.

Eq. (6) is the first transformation we get from the
nonlinear sine-Gordon equation. Then set sinω =
m sinϕ, Eq. (6) reads

(7)
dϕ

dξ
= ±λ0

√
1− m2 sin2 ϕ.

Case 2. c2 < c2
0

Similarly, we can get

(8)
dω

dξ
= ±λ1

√
m′2 − cos2 ω,

whereλ2
1 = −λ2

0 andm′2 = 1− m2, this is the second
transformation we get from the nonlinear sine-Gordon
equation. We can see that the transformation (1) is just
a special case of transformation (8) when “+” is taken
in Eq. (8) andλ1 = 1, m′2 = 1.

Actually, from Eq. (7) we know that the transfor-
mation (6) admits the following solution

(9)sinω = ±m sn(λ0ξ,m),

and then we get

(10)cosω = ±dn(λ0ξ,m),

where sn(λ0ξ,m) and dn(λ0ξ,m) are Jacobi elliptic
sine function and Jacobi elliptic function of the third
kind, m andm′ are modulus and co-modulus, respec-
tively. Details about Jacobi elliptic functions can be
found in Appendix A and references therein.

Similarly, the transformation (8) admits the follow-
ing solution

(11)cosω = ±m′ sn
(
λ1ξ,m′),

and then we get

(12)sinω = ±dn
(
λ1ξ,m′).

2. New approach to find exact solutions to
nonlinear equations

Many methods have been proposed to construct ex-
act solutions to nonlinear equations for their important
role in understanding the nonlinear problems. Among
them there are the sine–cosine method [1], the homo-
geneous balance method [2–4], the hyperbolic tangent
expansion method [5–7], the Jacobi elliptic function
expansion method [8,9], the nonlinear transformation
method [10,11], the trial function method [12,13] and
others [14–16].

In the following, we will introduce another method
based on the transformations given in the former
section. Consider a given nonlinear wave equation

(13)N(u,ut , ux,utt , uxx, . . .) = 0.

We seek its wave solutions in the frame of (3), then
Eq. (13) can be rewritten as

(14)N

(
u,

du

dξ
,
d2u

dξ2 , . . .

)
= 0,

andu(ξ) can be expressed as a finite series of sinω

and cosω, i.e., the ansatz

(15)u(ξ) =
n∑

j=1

cosj−1 ω(aj cosω + bj sinω) + a0,

whereω satisfies transformations (6) or (8). In this
Letter, we only consider the following case:

(16)
dω

dξ
=

√
m2 − sin2 ω,

then

(17)
d2ω

dξ2 = −cosω sinω.

And other forms for the transformations (6) or (8)
can be similarly applied to construct exact solutions
to nonlinear wave equations.

The highest degree of (15) is

(18)O
(
u(ξ)

) = n,

then the highest degree ofdu
dξ

can be taken as

(19)O

(
du

dξ

)
= n + 1,
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and

O

(
u

du

dξ

)
= 2n + 1, O

(
d2u

dξ2

)
= n + 2,

(20)O

(
d3u

dξ3

)
= n + 3.

Thus we can selectn in (15) to balance the highest or-
der of derivative term and nonlinear term in (14). Then
substitute (15) into (14), determine the expansion co-
efficients and other undetermined constants, combine
the results from the transformation (16), one can got
exact solutions to the given nonlinear equations.

We know that whenm′ → 1, then the transforma-
tion (8) degenerates as the transformation (1), so the
solutions got from the above expansion contain the re-
sults obtained by sine–cosine method given by [1].

3. Applications

In this Letter, we will demonstrate the above ap-
proach on two examples: mKdV equation and system
of variant Boussinesq equations [2].

3.1. mKdV equation

mKdV equation reads

(21)ut + αu2ux + βuxxx = 0.

Substituting (3) into (21) yields

(22)−c
du

dξ
+ αu2 du

dξ
+ β

d3u

dξ3
= 0.

Integrating this equation yields

(23)−cu + α

3
u3 + β

d2u

dξ2 = C0,

whereC0 is integration constant.
Considering (18), (19) and (20) to balance the

highest order of derivative term and nonlinear term
in (23), we can get

(24)n = 1,

so the ansatz solution of (21) in term of sinω and
cosω is

(25)u = a0 + a1 cosω + b1 sinω.

We know that

(26)
du

dξ
= (b1 cosω − a1 sinω)

dω

dξ
,

(27)

d2u

dξ2
= (b1 cosω − a1 sinω)

d2ω

dξ2

− (a1 cosω + b1 sinω)

(
dω

dξ

)2

= −(
1+ m2)b1 sinω − m2a1 cosω

+ 2a1 cosω sin2 ω + 2b1 sin3 ω,

(28)

u3 = (
a3

0 + 3a0a
2
1

) + 3
(
a2

0 + a2
1

)
b1 sinω

+ (
3a2

0 + a2
1

)
a1 cosω + 6a0a1b1 cosω sinω

+ 3a0
(
b2

1 − a2
1

)
sin2 ω

+ (
3b2

1 − a2
1

)
a1 cosω sin2 ω

+ (
b2

1 − 3a2
1

)
b1 sin3 ω.

So substituting (25) into (23) yields

[−ca0 + α
(
a3

0 + 3a0a
2
1

)/
3− C0

]
+ [−cb1 + α

(
a2

0 + a2
1

)
b1 − β

(
1+ m2)b1

]
sinω

+ [−ca1 + α
(
3a2

0 + a2
1

)
a1/3− βm2a1

]
cosω

+ 2αa0a1b1 cosω sinω + αa0
(
b2

1 − a2
1

)
sin2 ω

+ [
α
(
3b2

1 − a2
1

)
a1/3+ 2βm2a1

]
cosω sin2 ω

(29)+ [
α
(
b2

1 − 3a2
1

)
b1/3+ 2βm2b1

]
sin3 ω = 0,

from which set the coefficients of(cosω sinω)0, sinω,
cosω, cosω sinω, sin2 ω, cosω sin2 ω and sin3 ω to be
zeros, we can get the algebraic equations abouta0, a1,
b1, C0 andc

(30a)−ca0 + α
(
a3

0 + 3a0a
2
1

)/
3− C0 = 0,

(30b)−cb1 + α
(
a2

0 + a2
1

)
b1 − β

(
1+ m2)b1 = 0,

(30c)−ca1 + α
(
3a2

0 + a2
1

)
a1/3− βm2a1 = 0,

(30d)2αa0a1b1 = 0,

(30e)αa0
(
b2

1 − a2
1

) = 0,

(30f)α
(
3b2

1 − a2
1

)
a1/3+ 2βm2a1 = 0,

(30g)α
(
b2

1 − 3a2
1

)
b1/3+ 2βm2b1 = 0.

Solving Eqs. (30a)–(30g) yield the following solu-
tions for two cases:
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Case 1. a1 = 0

C0 = 0, a0 = 0,

(31)b1 = ±
√

−6β

α
, c = −(

1+ m2)β.

Case 2. b1 = 0

C0 = 0, a0 = 0,

(32)a1 = ±
√

6β

α
, c = −m2β.

Thus the periodic solutions of (21) are

(33)u1 = b1 sinω = ±
√

−6β

α
m sn(x − ct),

and

(34)u2 = a1 cosω = ±
√

6β

α
dn(x − ct).

Whenm → 1, snξ → tanhξ and dnξ → sechξ , so
the solutions (33) and (34) degenerate as another two
solutions

(35)u3 = ±
√

−6β

α
tanh(x − ct),

and

(36)u4 = ±
√

6β

α
sech(x − ct),

which are shock wave solution and solitary wave
solution, respectively.

3.2. System of variant Boussinesq equations

System of variant Boussinesq equations reads [2]

(37a)Ht + (Hu)x + uxxx = 0,

(37b)ut + Hx + uux = 0.

We solve it in the following frame

(38)H = H(ξ), u = u(ξ), ξ = x − ct.

So system (37) can be rewritten as

(39a)−c
dH

dξ
+ d(Hu)

dξ
+ d3u

dξ3
= 0,

(39b)−c
du

dξ
+ dH

dξ
+ u

du

dξ
= 0.

Integrating system (39) yields

(40a)−cH + Hu + d2u

dξ2
= 0,

(40b)−cu + H + u2/2 = 0.

where integration constants are set to be zero.
We suppose the ansatz solution to system (40) is

H(ξ) =
n1∑

j=1

cosj−1 ω(aj cosω + bj sinω)

(41a)+ a0,

u(ξ) =
n2∑
l=1

cosl−1 ω(Al cosω + Bl sinω)

(41b)+ A0,

whereω satisfies the transformation (16).
Substituting (41) into (40) to balance the nonlinear

term and highest degree differential term givesn1 = 2
andn2 = 1.

So the ansatz solution to system (37) is

(42a)

H(ξ) = a0 + a1 cosω + b1 sinω + a2 cos2 ω

+ b2 sinω cosω,

(42b)u(ξ) = A0 + A1 cosω + B1 sinω.

Substituting ansatz solution (42) into system (40)
results in
[−c(a0 + a2) + a0A0 + a2A0 + a1A1

]
+ [−ca1 + (a1A0 + a0A1 + a2A1) − m2A1

]
cosω

+ [−cb1 + (b1A0 + b2A1 + a0B1 + a2B1)

− (
1− m2)B1

]
sinω

+ [−cb2 + (b2A0 + b1A1 + a1B1)
]
cosω sinω

+ [
ca2 + (b1B1 − a2A0 − a1A1)

]
sin2 ω

+ [
(b2B1 − a2A1) + 2A1

]
cosω sin2 ω

(43a)+ [−(b2A1 + a2B1) + 2B1
]
sin3 ω = 0,[−cA0 + (a0 + a2) + (

A2
0 + A2

1

)/
2
]

+ [−cA1 + a1 + A0A1]cosω

+ [−cB1 + b1 + A0B1]sinω

+ [b2 + A1B1]cosω sinω

(43b)+ [−a2 + (
B2

1 − A2
1

)/
2
]
sin2 ω = 0.
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Setting the coefficients of(cosω sinω)0, sinω,
cosω, cosω sinω, sin2 ω, cosω sin2 ω and sin3 ω to
be zeros, we can get the algebraic equations about
expansion coefficients andc

(44a)−c(a0 + a2) + a0A0 + a2A0 + a1A1 = 0,

(44b)−ca1 + (a1A0 + a0A1 + a2A1) − m2A1 = 0,

−cb1 + (b1A0 + b2A1 + a0B1 + a2B1)

(44c)− (
1+ m2)B1 = 0,

(44d)−cb2 + (b2A0 + b1A1 + a1B1) = 0,

(44e)ca2 + (b1B1 − a2A0 − a1A1) = 0,

(44f)(b2B1 − a2A1) + 2A1 = 0,

(44g)−(b2A1 + a2B1) + 2B1 = 0,

(44h)−cA0 + (a0 + a2) + (
A2

0 + A2
1

)/
2 = 0,

(44i)−cA1 + a1 + A0A1 = 0,

(44j)−cB1 + b1 + A0B1 = 0,

(44k)b2 + A1B1 = 0,

(44l)−a2 + (
B2

1 − A2
1

)/
2= 0,

from which solutions for the three cases can be got.

Case 1. B1 = a1 = b1 = b2 = 0

A0 = c, A1 = ±2i,

(45)a0 = m2 − 2, a2 = 2,

wherei = √−1.

Case 2. A1 = a1 = b1 = b2 = 0

A0 = c, B1 = ±2,

(46)a0 = m2 − 1, a2 = 2.

Case 3. a1 = b1 = 0

A0 = c, A1 = ±i, B1 = −sgn(±i) · sgn(±i),

(47)a0 = m2 − 1, a2 = 1, b2 = ±i.

Then the solutions to system (37) can be got as
follows:

(48a)H1 = a0 + a2 cos2 ω = m2 − 2+ 2 dn2 ξ,

(48b)u1 = A0 + A1 cosω = c ± 2i dnξ,

(49a)H2 = a0 + a2 cos2 ω = m2 − 1+ 2 dn2 ξ,

(49b)u2 = A0 + B1 sinω = c ± 2m snξ,

H3 = a0 + a2 cos2 ω + b2 cosω sinω

(50a)= m2 − 1+ dn2 ξ ± im dnξ snξ,

u3 = A0 + A1 cosω + B1 sinω

(50b)= c ± i dnξ − sgn(±i) · sgn(±i)m snξ.

Whenm → 1, sn→ tanhξ and dnξ → sechξ , so
under limit condition, the solutions above degenerate
as another three solutions

(51a)H4 = 2 sech2 ξ − 1,

(51b)u4 = c ± 2i sechξ,

(52a)H5 = 2 sech2 ξ,

(52b)u5 = c ± 2 tanhξ,

(53a)H6 = sech2 ξ ± i sechξ tanhξ,

(53b)u6 = c ± i sechξ − sgn(±i) · sgn(±i) tanhξ.

4. Conclusion

In this Letter, new transformations from nonlinear
sine-Gordon equation are obtained and based on them
a new approach is proposed to construct the exact
solutions to nonlinear equations. And it is shown that
the periodic wave solutions obtained by this method
can degenerate to generalized solitary wave solutions,
so other forms of transformations (6) or (8) may be
applied to get more new shock wave or solitary wave
solutions.
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Appendix A

Notice that

u(t) =
φ∫

0

1√
1− m2 sin2 ϕ

dϕ

(A.1)=
t≡sinϕ∫

0

1√
(1− x2)(1− m2x2)

dx
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is called the Legendre elliptic integral of the first
kind, wherem is a parameter which is known as the
modulus. The inverse functiont ≡ sinϕ is called the
Jacobi elliptic sine function which is represented by

(A.2)t = sinϕ = snu.

Similarly,
√

1− t2 and
√

1− m2t2 are defined as
the Jacobi elliptic cosine function and Jacobi elliptic
function of the third kind, respectively. They are
expressed as

(A.3)
√

1− t2 = cnu,
√

1− m2t2 = dnu,

respectively.
We see from (A.1) that whenm → 0, snu, cnu

and dnu degenerate as sinu, cosu and 1, respectively;
while whenm → 1, snu, cnu and dnu degenerate
as tanhu, sechu and sechu, respectively. Detailed
explanations about Jacobi elliptic functions can be
found in Refs. [17,18].
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