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In this paper, the bridge connecting the short pulse equation (SPE for short) with the sine-
Gordon equation is applied to construct the novel solutions to the short pulse equation. It is
shown that the solutions of the sine-Gordon equation can be used to obtain many different
kinds of solutions to the short pulse equation with the aid of symbolic computation and
plot representation of Maple.
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1. Introduction

The short pulse equation (SPE for short)

uxt ¼ uþ 1
6
ðu3Þxx; ð1Þ

was first introduced by Schäfer and Wayne [1] as a model equation to describe the propagation of ultra-short light pulses in
silica optical fibres. Different from the celebrated nonlinear Schrödinger equation (NLSE for short) which is used to model the
evolution of slowly varying wave trains, the SPE is proposed to describe the pulse whose spectrum is not narrowly localized
around the carrier frequency. It has been proven that as the pulse length shortens, the NLSE approximation describing the
optical pulses becomes steadily less accurate, while the SPE provides a better approximation [2].

Contrary to the well studied NLSE, we know a little to SPE. It has been proven that the SPE is an integrable equation pos-
sessing a Lax pair [3] of the Wadati–Konno–Ichikawa type [4] and the bi-Hamiltonian structure [5]. Usually, Eq. (1) is difficult
to solve, for example, if we solve Eq. (1) in the frame of the following traveling wave transformation:

f ¼ x�xt; ð2Þ

then Eq. (1) can be rewritten as

�xuff ¼ uþ uu2
f þ

1
2

u2uff: ð3Þ

Due to the coexistence of the terms uff, u and uu2
f , Eq. (3) is difficult to be solved by direct integration to derive explicit

analytical closed form, so some special transformations have to be introduced. For example, Parkes [6] introduced a new
dependent variable z

z ¼ u� v
jv j ; ð4Þ
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and assumed that z is an implicit or explicit function of g, where

g ¼ x� vt � x0; ð5Þ

v and x0 are arbitrary constants and v – 0. Through above transformations, he obtained periodic-hump solution, solitary loop
solution and periodic loop solution, ‘figure-eight’ solution and other type solution to Eq. (1). The solutions found in above
mentioned references have been shown to result from a delicate nonlocal balance between dispersion and nonlinearity,
and their stable propagation is confirmed by numerical simulations [7]. Most importantly, the transformation between
the SPE and the sine-Gordon equation was discovered in Ref. [3] and the derivation of this transformation was considerably
simplified in Ref. [8], and later it was used in Ref. [9] to obtain exact loop and pulse solutions of the SPE from the well-known
kink and breather solutions of the sine-Gordon equation. The recursion operator found in Ref. [3] was used to study the N-
loop soliton solutions to SPE [10].

Since SPE is a current research interest in nonlinear optical fibres theory, in this paper, based on the transformations
introduced by Sakovich and Sakovich [3], we will show systematical results for the SPE (1) by using the solutions of the
sine-Gordon equation [11,12] derived with the knowledge of elliptic equation and Jacobian elliptic functions [13–17], where
many novel solutions will be found.

2. Bridge connecting SPE to sine-Gordon equation

In order to solve the SPE, certain dependent or independent variable transformations must be introduced. Starting from
the Eq. (1), we define

x ¼ wðy; sÞ; t ¼ s; ð6Þ

then we have

@

@x
¼ 1

wy

@

@y
;

@

@t
¼ @

@s
�ws

wy

@

@y
: ð7Þ

Substituting this transformation into Eq. (1) yields

½w3
y þwyu2

y �u ¼ w2
yusy �wswyuyy � ðwsywy �wswyyÞuy �

1
2

wyu2uyy þ
1
2

wyyu2uy: ð8Þ

If we set

uðx; tÞ ¼ Rðy; sÞ; ð9Þ

then from Eq. (8) we have

½w3
y þwyR2

y �R ¼ w2
yRsy �wswyRyy � ðwsywy �wswyyÞRy �

1
2

wyR2Ryy þ
1
2

wyyR2Ry: ð10Þ

It is obvious that the key step to solve the Eq. (10) is to build the bridge between wðy; sÞ and Rðy; sÞ, in Ref. [3], the relation
between wðy; sÞ and Rðy; sÞ is

ws ¼ �
1
2

R2 ¼ �1
2

X2
s ;

wy ¼ cos X;
ð11Þ

and from the constraint

wsy ¼ wys; ð12Þ

one can derive the well-known sine-Gordon equation

Xsy ¼ sin Xðy; sÞ: ð13Þ

Since the solutions to the sine-Gordon equation has been well studied, we can apply the above relations to derive the
solutions to SPE easily. In this paper, applying the solutions of the sine-Gordon equation found in Ref. [11] by using the dif-
ferent transformations and the knowledge of elliptic equation and Jacobian elliptic functions [13–17], we will utilize the
above bridge to construct more novel solutions to SPE.

3. Exact traveling wave solutions to SPE

First of all, we will apply the solutions of the sine-Gordon equation expressed by the first kind of transformation used in
Ref. [11] X ¼ 2 tan�1 v , where three cases will be discussed in details, other cases can be considered similarly.
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Case 1a. X ¼ 2 tan�1 ðcschnÞ, where n ¼ kyþ 1
k t. Then we have

u ¼ Xt ¼ sech kyþ 1
k

t
� �

; ð14Þ

wt ¼ �
1
2

X2
t ¼ �

1
2

sech2 kyþ 1
k

t
� �

; ð15Þ

wy ¼ cos X ¼ 1� 2sech2 kyþ 1
k

t
� �

; ð16Þ

from which we can find the final solution to SPE is

u ¼ sech 2yþ 1
2

t
� �

;

x ¼ y� tanh 2yþ 1
2

t
� �

;

ð17Þ

this is a novel loop solitary solution to SPE different from that given in Ref. [9], and it moves from the right to the left with
unchanged shape as shown in Fig. 1. Actually, loop soliton solutions have been found in many different nonlinear systems,
such as loop soliton found by Matsuno in short-wave models for the Camassa–Holm and Degasperis-Procesi equations [18].

Case 1b. X ¼ 2 tan�1
ffiffiffiffiffiffiffiffiffi

m2

1�m2

q
cnn

� �
, where cnn is Jacobian elliptic cosine function [15,16], n ¼ ky� 1

k t. Then we have

u ¼ Xt ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ð1�m2Þ

p
k

sd ky� 1
k

t;m
� �

; ð18Þ

with sdn ¼ snn
dnn, where snn and dnn are Jacobian elliptic sine function and Jacobian elliptic function of the third kind [15,16].
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Fig. 1. The loop solitary solution uðx; tÞ (17). (a) t ¼ 0; y 2 ½�4;4� (top) and (b) t ¼ 6:0; y 2 ½�4;4� (bottom).
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wt ¼ �
1
2

X2
t ¼ �

1

k2 2ð1�m2Þnd2ðky� 1
k

t;mÞ � 1
� �

; ð19Þ

wy ¼ cos X ¼ 2ð1�m2Þnd2 ky� 1
k

t;m
� �

� 1; ð20Þ

with ndn ¼ 1
dnn, from which we can find the final solution to SPE is

u ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ð1�m2Þ

p
k

sd ky� 1
k

t;m
� �

;

x ¼ 1
k

2E ky� 1
k

t;m
� �

� 2m2sn ky� 1
k

t;m
� �

cd ky� 1
k

t;m
� �

� F ky� 1
k

t;m
� �� �

;

ð21Þ

with cdn ¼ cnn
dnn and

Fðu;mÞ ¼
Z u

0

dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2 sin2 h

p ; ð22Þ

called the normal elliptic integral of the first kind, and

Eðu;mÞ ¼
Z u

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2 sin2 h

p
dh; ð23Þ

called the normal elliptic integral of the second kind [17], where 0 6 m 6 1 is called modulus of Jacobi elliptic functions [15–
17]. Solution (21) is a novel solution expressed in terms of special function to SPE which has not been reported, and it can be
found that its shape depends on the modulus m, when the m is less than a critical value, the solution is single-valued (see
from Fig. 2a to c); when it is larger than this critical value, the solution is multiple-valued(see from Fig. 2d to f). At the same
time, when m is fixed, the shape of this solution will be constant when the time changes (see Fig. 2b and c).

Case 1c. X ¼ 2 tan�1 ðmsdnÞ, where n ¼ ky� 1
k t. Then we have

u ¼ Xt ¼ �
2m
k

cn ky� 1
k

t;m
� �

; ð24Þ

wt ¼ �
1
2

X2
t ¼ �

2m2

k2 cn2 ky� 1
k

t;m
� �

; ð25Þ

wy ¼ cos X ¼ 1� 2m2sn2 ky� 1
k

t;m
� �

; ð26Þ

from which we can find the final solution to SPE is
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Fig. 2. Novel solution uðx; tÞ (21) expressed in terms of Jacobian elliptic function and its integrals. (a) k ¼ 1; t ¼ 1;m ¼ 0:2; y 2 ½�6;10� (top and right), (b)
k ¼ 1; t ¼ 1; m ¼ 0:7; y 2 ½�6;10� (bottom and right), (c) k ¼ 1; t ¼ 0:0;m ¼ 0:7; y 2 ½�6;10� (middle and top), (d) k ¼ 1; t ¼ 0:0; m ¼ 0:725; y 2 ½�6;10�
(middle and bottom), (e) k ¼ 1; t ¼ 0:0;m ¼ 0:75; y 2 ½�6;10� (top and left) and (f) k ¼ 1; t ¼ 1:0; m ¼ 0:8; y 2 ½�6;10� (bottom and left).
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u ¼ �
ffiffiffi
2
p

k
cn ky� 1

k
t;

ffiffiffi
2
p

2

 !
;

x ¼ 1
k

2E ky� 1
k

t;

ffiffiffi
2
p

2

 !
� F ky� 1

k
t;

ffiffiffi
2
p

2

 !" #
;

ð27Þ

this is another novel solution to SPE expressed in terms of special function.
Secondly, we will apply the solutions of the sine-Gordon equation expressed by the fourth kind of transformation used in

Ref. [11] X ¼ 2 cos�1 v , where five cases will be discussed in details, other cases can be also considered similarly.

Case 2a. X ¼ 2 cos�1 ðmsnnÞ, where n ¼ kyþ 1
k t. Then we have

u ¼ Xt ¼ �
2m
k

cn kyþ 1
k

t;m
� �

; ð28Þ

wt ¼ �
1
2

X2
t ¼ �

2m2

k2 cn2 kyþ 1
k

t;m
� �

; ð29Þ

wy ¼ cos X ¼ 2m2sn2 kyþ 1
k

t;m
� �

� 1; ð30Þ

from which we can find the final solution to SPE is

u ¼ �
ffiffiffi
2
p

k
cn kyþ 1

k
t;

ffiffiffi
2
p

2

 !
;

x ¼ �1
k

2E kyþ 1
k

t;

ffiffiffi
2
p

2

 !
� F kyþ 1

k
t;

ffiffiffi
2
p

2

 !" #
;

ð31Þ

this is also a novel solution to SPE expressed in terms of special function.

Case 2b. X ¼ 2 cos�1 ðtanh nÞ, where n ¼ kyþ 1
k t. Then we have the final solution to SPE is

u ¼ �2
k

sech kyþ 1
k

t
� �

;

x ¼ y� 2
k

tanh kyþ 1
k

t
� �

;

ð32Þ

this is another loop (for k < 0) or anti-loop (for k > 0) solitary solution to SPE different from that given in Ref. [9], when
k ¼ �1, solution (32) recovers solution given in Ref. [9].

Case 2c. X ¼ 2 cos�1 ðsechnÞ, where n ¼ ky� 1
k t. Then we have the final solution to SPE is

u ¼ �2
k

sech ky� 1
k

t
� �

;

x ¼ 2
k

tanh ky� 1
k

t
� �

� 2y;
ð33Þ

this is also a loop or anti-loop solitary solution to SPE.

Case 2d. X ¼ 2 cos�1 ðdnnÞ, where n ¼ ky� 1
k t. For this case, the solution to the SPE will recover the solution given by (27).

Case 2e. X ¼ 2 cos�1 tanh n
1þsechn

� �
, where n ¼ kyþ 4

k t. Then we have the final solution to SPE is

u ¼ �4
k

sech
k
2

yþ 2
k

t
� �

;

x ¼ y� 4
k

tanh
k
2

yþ 2
k

t
� �

;

ð34Þ

this is still another loop or anti-loop solitary solution to SPE different from that given in Ref. [9], and it moves from the right
to the left (when k is positive) with unchanged shape as shown in Fig. 3 or moves from the left to the right (when k is neg-
ative) with unchanged shape (figure is not shown).
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4. Conclusion

In this paper, we presented the process to find exact solutions for the SPE with the help from the bridge connecting SPE to
the sine-Gordon equation and obtained some novel types of solutions, these solutions may be applied to describe and/or ex-
plain some phenomena found in the nonlinear optical fibres, since the model has been proposed to model short optical pulse.
Since we only considered the solutions of the sine-Gordon equation expressed in terms of single Jacobian elliptic function,
more solutions of the sine-Gordon equation found by other methods can be applied to obtain more types solutions to SPE,
this will be reported in our next paper.
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