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1 Introduction
It plays an important role to find exact solutions of

nonlinear evolution equations in the nonlinear studies.
Many new methods, such as the homogeneous balance
method,[1−3] the hyperbolic tangent function expansion
method,[4−6] the nonlinear transformation method,[7,8]

the trial function method,[9,10] sine-cosine method,[11] the
Jacobi elliptic function expansion method,[12,13] and so
on,[14−16] have been proposed and applied to get many
exact solutions, from which the richness of structures is
shown to exist in the different nonlinear wave equations.
Furthermore, in order to discuss the stability of these so-
lutions, it is necessary to superimpose a small disturbance
on these solutions and analyze the evolution of the small
disturbance.[17,18] This is equivalent to that the solutions
of nonlinear evolution equations are expanded as a power
series in terms of a small parameter ε, and multi-order ex-
act solutions are derived. In this paper, on the basis of the
Jacobi elliptic function expansion method, the multi-order
exact solutions of some nonlinear evolution equations are
obtained by means of the Jacobi elliptic functions and
Lame function.[18,19]

2 Lame Equation and Lame Functions
Usually, Lame equation[19] in terms of y(x) can be

written as
d2y

dx2
+ [λ− n(n + 1)m2sn2x]y = 0 , (1)

where λ is an eigenvalue, n is a positive integer, snx is
the Jacobi elliptic sin function with its modulus being m
(0 < m < 1).

Set
η = sn2x , (2)

then the Lame equation (1) becomes

d2y

dη2
+

1
2

(1
η

+
1

η − 1
+

1
η − h

) dy

dη

− µ + n(n + 1)η
4η(η − 1)(η − h)

y = 0 , (3)

where

h = m−2 > 1 , µ = −hλ . (4)

Equation (3) is a kind of Fuchs-typed equations with
four regular singular points η = 0, 1, h, and η = ∞, and
its solution is known as Lame function.

For example, when n = 3, λ = 4(1 + m2), i.e.
µ = −4(1 + m−2), the Lame function is

L3(x) = η1/2(1−η)1/2(1−h−1η)1/2 = snx cn xdnx . (5)

When n = 2, λ = 1 + m2, i.e. µ = −(1 + m−2), the
Lame function is

L2(x) = (1− η)1/2(1− h−1η)1/2 = cnxdn x . (6)

In Eqs. (5) and (6), cnx and dnx are the Jacobi ellip-
tic cosine function and the Jacobi elliptic function of the
third kind,[18,19] respectively. In the next sections, we will
apply these two kinds of Lame functions L3(x) and L2(x)
and their corresponding Lame equations to solve nonlin-
ear evolution systems and to derive their corresponding
multi-order exact solutions.

3 Application to (1 + 1)-Dimensional
Nonlinear Evolution Equation
In this section, we consider an application of Lame

equation to (1 + 1)-dimensional nonlinear evolution equa-
tions. Here we use combined mKdV-KdV equation to il-
lustrate this case.

The combined mKdV-KdV equation reads

∂u

∂t
+ (α + γu)u

∂u

∂x
+ β

∂3u

∂x3
= 0 . (7)

We seek its travelling wave solutions of the following
form:

u = u(ξ) , ξ = k(x− ct) , (8)
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where k and c are wave number and wave speed, respec-
tively.

Substituting Eq. (8) into Eq. (9), we have

−c
du

dξ
+ (α + γu)u

du

dξ
+ βk2 d3u

dξ3
= 0 . (9)

Integrating Eq. (9) once with respect to ξ and taking
the integration constants as zero, we get

βk2 d2u

dξ2
+

γ

3
u3 +

α

2
u2 − cu = 0 . (10)

Here we consider perturbation method and setting

u = u0 + εu1 + ε2u2 + · · · , (11)

where ε (0 < ε � 1) is a small parameter, u0, u1, and u2

represent the zeroth-order, first-order, and second-order
solutions, respectively.

Substituting Eq. (11) into Eq. (10), we derive the fol-
lowing systems of the zeroth-order, the first-order, and the
second-order equations

ε0 : βk2 d2u0

dξ2
+

γ

3
u3

0 +
α

2
u2

0 − cu0 = 0 , (12)

ε1 : βk2 d2u1

dξ2
+ [γu2

0 + αu0 − c]u1 = 0 , (13)

and

ε2 : βk2 d2u2

dξ2
+ [γu2

0 + αu0 − c]u2 = −
(
γu0 +

α

2

)
u2

1 .(14)

The zeroth-order equation (12) can be solved by the
Jacobi elliptic sine function expansion method. The
ansatz solution

u0 = a0 + a1 sn ξ (15)

can be assumed.
Substituting Eq. (15) into Eq. (12), the expansion co-

efficients a0 and a1 can be easily determined as

a0 = − α

2γ
, a1 = ±

√
−6β

γ
mk ,

c = −α2

6γ
, k2 = − α2

12βγ(1 + m2)
, (16)

so the zeroth-order exact solution is

u0 = − α

2γ
±

√
−6β

γ
mk sn ξ . (17)

Substituting the zeroth-order exact solution (17) into
the first-order equation Eq. (13) yields

d2u1

dξ2
+ [(1 + m2)− 6m2sn2ξ]u1 = 0 , (18)

which obviously is just a Lame equation as Eq. (1) with
n = 2 and λ = (1 + m2), then the Lame equation Eq. (1)
reduces to

d2y

dx2
+ [(1 + m2)− 6m2sn2x]y = 0 . (19)

So the solution of Eq. (18) is

u1 = AL2(ξ) = A cn ξ dn ξ , (20)

where A is an arbitrary constant, and equation (20) is the
first-order exact solution of combined mKdV-KdV equa-
tion (7).

In order to solve the second-order equation (14), the
zeroth-order exact solution Eq. (17) and the first-order ex-
act solution Eq. (20) have to be substituted into Eq. (14),
thus the second-order equation (14) is rewritten as

d2u2

dξ2
+ [(1 + m2)− 6m2sn2ξ]u2

= ±
√
−6γ

β

mA2

k
sn ξ cn 2ξ dn 2ξ . (21)

It is obvious that this is an inhomogeneous Lame equation
with n = 2 and λ = (1+m2). Its solution of homogeneous
equation is just the same as Eq. (20) and its special solu-
tion of inhomogeneous terms can be assumed to be

u2 = b1 sn ξ + b3 sn 3ξ . (22)

Substituting Eq. (22) into Eq. (21), we can determine
the expansion coefficients b1 and b3 as

b1 = ∓1 + m2

12m

√
−6γ

β

A2

k
, b3 = ±1

6

√
−6γ

β

mA2

k
, (23)

so the second-order exact solution of combined mKdV-
KdV equation Eq. (7) can be written as

u2 = ∓
√
−6γ

β

(1 + m2)A2

12mk
sn ξ

[
1− 2m2

1 + m2
sn2ξ

]
. (24)

4 Application to (1 + 2)-Dimensional
Nonlinear Evolution Equation
In the above section, we discuss the application of

the Lame equation under the condition of n = 2 and
λ = (1 + m2) to the (1 + 1)-dimensional nonlinear evo-
lution equation and get the multi-order exact solutions to
combined mKdV-KdV equation. We know that the Lame
equation Eq. (1) has another form under the condition of
n = 3 and λ = 4(1 + m2). There it reduces to

d2y

dx2
+ [4(1 + m2)− 12m2sn2x]y = 0 , (25)

and the solution to Eq. (25) is Eq. (5). Next, we will
illustrate the application of Eq. (25) to solve (1 + 2)-
dimensional nonlinear evolution equations. Here we use
KP equation as an example.

KP equation reads

∂

∂x

(∂u

∂t
+ u

∂u

∂x
+ β

∂3u

∂x3

)
+

c0

2
∂2u

∂y2
= 0 . (26)

We seek its travelling wave solution in the following
frame:

u = u(ξ) , ξ = kx + ly − ωt , (27)

where k and l are wave number in the directions of x and
y, respectively and ω is angular frequency. Then equa-
tion (27) can be rewritten as

k
d
dξ

(
−ω

du

dξ
+ ku

du

dξ
+ βk3 d3u

dξ3

)
+

c0

2
l2

d2u

dξ2
= 0 , (28)
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which can be integrated twice with respect to ξ and if the
integration constants are set at zero, then equation (28)
becomes

βk4 d2u

dξ2
+

k2

2
u2 −

(
ωk − c0

2
l2

)
u = 0 . (29)

Set

c1 =
ω

k
− c0

2
l2

k2
, (30)

thus equation (29) is rewritten as

βk2 d2u

dξ2
+

1
2
u2 − c1u = 0 . (31)

Combining Eqs. (11) and (31), we can get the multi-
order expansion equations, for example, the zeroth-order
equation is

ε0 : βk2 d2u0

dξ2
+

1
2
u2

0 − c1u0 = 0 , (32)

the first-order equation is

ε1 : βk2 d2u1

dξ2
+ (u0 − c1)u1 = 0 , (33)

and the second-order equation is

ε2 : βk2 d2u2

dξ2
+ (u0 − c1)u2 = −1

2
u2

1 . (34)

The zeroth-order equation (32) can be solved by the
Jacobi elliptic sine function expansion method when the
ansatz solution

u0 = a0 + a1 sn ξ + a2sn2ξ (35)

is introduced.
Substituting Eq. (35) into Eq. (32) leads to

u0 = c1 + 4(1 + m2)βk2 − 12m2βk2sn2ξ , (36)

which is the zeroth-order exact solution of KP equation.
Substituting the zeroth-order exact solution (36) into

the first-order equation (33) results in

d2u1

dξ2
+ [4(1 + m2)− 12m2sn2x]u1 = 0 , (37)

which is just the same as Eq. (25), so its solution is

u1 = AL3(ξ) = A sn ξ cn ξ dn ξ , (38)

where A is an arbitrary constant.
In order to solve the second-order equation (34), it is

necessary to substitute the zeroth-order solution (36) and
the first-order solution (38) into Eq. (34), then we can get

d2u2

dξ2
+[4(1+m2)−12m2sn2x]u2 =−A2

2
sn2ξcn2ξdn2ξ , (39)

from which the second-order exact solution can be deter-
mined as

u2 = − A2

48m2βk2
[1− 2(1 + m2)sn2ξ + 3m2sn4ξ] . (40)

5 Application to Coupled Nonlinear System
In the above two sections, we discussed the application

of the Lame equation and Lame functions to single non-
linear equations, and their different multi-order solutions

are given. In this section, we will apply the Lame equation
and Lame functions to coupled nonlinear systems. Here
we consider coupled KdV equations, which reads

∂u

∂t
+ αu

∂u

∂x
+ β

∂3u

∂x3
+ µv

∂v

∂x
= 0 , (41a)

∂v

∂t
+ γv

∂v

∂x
+ δ

∂(uv)
∂x

= 0 . (41b)

We solve it in the following frame:

u = u(ξ) , v = v(ξ), ξ = k(x− ct) , (42)

thus equation (41) becomes

βk2 d2u

dξ2
+

α

2
u2−cu+

µ

2
v2 = 0 , δuv+

γ

2
v2−cv = 0 , (43)

where integration has been taken once with respect to ξ,
and integration constants are set at zero.

The solutions to Eq. (43) can be expanded as a multi-
order power series by applying perturbation method, i.e.,

u = u0 + εu1 + ε2u2 + · · · , (44a)

v = v0 + εv1 + ε2v2 + · · · , (44b)

where ε (0 < ε � 1) is a small parameter.
Substituting Eq. (43) into Eq. (44) leads to the multi-

order equations, for example, the first three-order equa-
tions are

βk2 d2u0

dξ2
+

α

2
u2

0 − cu0 +
µ

2
v2
0 = 0 , (45a)

δu0v0 +
γ

2
v2
0 − cv0 = 0 , (45b)

βk2 d2u1

dξ2
+ (αu0 − c)u1 + µv0v1 = 0 , (46a)

δ(u0v1 + v0u1) + γv0v1 − cv1 = 0 , (46b)

and

βk2 d2u2

dξ2
+ (αu0 − c)u2 + µv0v2 = −α

2
u2

1 −
µ

2
v2
1 , (47a)

δ(u0v2 + v0u2) + γv0v2 − cv2 = −δu1v1 −
γ

2
v2
1 . (47b)

The zeroth-order equation Eq. (45) can be solved by
Jacobi elliptic sine function expansion method when the
ansatz solution

u0 = a0 + a1 sn ξ + a2sn2ξ , v0 = b0 + b1snξ + b2sn2ξ .(48)

Substituting Eq. (48) into Eq. (45) yields

u0 =
(4µδ + γ2)c
4µδ2 + αγ2

+
4(1 + m2)βγ2k2

4µδ2 + αγ2

− 12m2βγ2k2

4µδ2 + αγ2
sn2ξ , (49a)

v0 = − 2(δ − α)γc

4µδ2 + αγ2
− 8(1 + m2)βγδk2

4µδ2 + αγ2

+
24m2βγδk2

4µδ2 + αγ2
sn2ξ . (49b)

It is obvious that there exists the following relation be-
tween u0 and v0,

γv0 + 2δu0 = 2c . (50)
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Considering the relation Eq. (50), we substitute the
zeroth-order solution Eq. (49) into the first-order equa-
tion (46) to get

d2u1

dξ2
+ [4(1 + m2)− 12m2sn2ξ]u1 = 0 , (51a)

v1 = −2δ

γ
u1 . (51b)

Obviously, equation (51a) is the Lame-typed equation
Eq. (25), the first-order exact solution to Eq. (51) is

u1 = AL3(ξ) , v1 = −2δ

γ
AL3(ξ) . (52)

In order to solve the second-order equations of coupled
KdV equations (47), we have to substitute the zeroth-
order solution (49) and the first-order solution (52) into
Eq. (47), then we can obtain the rewritten second-order
equations

d2u2

dξ2
+ [4(1 + m2)− 12m2sn2ξ]u2

= − (4µδ2 + αγ2)A2

2βγ2k2
sn2ξcn2ξdn2ξ , (53a)

v2 = −2δ

γ
u2 . (53b)

Similarly, its solution is

u2 = − (4µδ2 + αγ2)A2

48βγ2k2

× [1− 2(1 + m2)sn2ξ + 3m2 sn 4ξ] , (54a)

v2 = −2δ

γ
u2 =

(4µδ2 + αγ2)δA2

24βγ3k2

× [1− 2(1 + m2)sn2ξ + 3m2 sn 4ξ] . (54b)

6 Conclusion and Discussion
In this paper, the Lame equation and Lame functions

are applied to solve nonlinear (1+1)-dimensional, (1+2)-
dimensional and coupled evolution equations. When per-
turbation method and two kinds of Lame functions L3(x)
and L2(x) are considered, then the multi-order solutions
to these nonlinear evolution systems are obtained. The
results got in this paper are very important for nonlinear
instability analysis of nonlinear waves.
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