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New Solutions to Generalized mKdV Equation∗
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Abstract Trial function method is applied to solve generalized mKdV (GmKdV for short) equations. It is shown
that GmKdV equations with a real number parameter can be solved directly by this method without a transformation,
and more new kinds of solitary wave solutions are obtained.
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1 Introduction
In Ref. [1], a transformation is introduced to transform

the generalized mKdV (GmKdV for short) equations to be
solvable for Jacobi elliptic function expansion method (Ac-
tually this kind of transformation is needed for all expan-
sion methods to solve GmKdV equation). And there for
specific values of γ, periodic solutions and solitary wave so-
lutions are derived. In fact, as more problems in branches
of physics, mathematics, and other interdisciplinary sci-
ences are described in terms of suitable nonlinear mod-
els, such as nonlinear Schrödinger equations in plasma
physics,[2] KdV equation in shallow water model,[3] and so
on. Recently, special attention has been devoted to solving
nonlinear evolution equations, and many methods have
been proposed to construct exact solutions to nonlinear
equations. Among them are the function transformation
method,[4,5] the homogeneous balance method,[6,7] the hy-
perbolic function expansion method,[8,9] the Jacobi ellip-
tic function expansion method,[10,11] the nonlinear trans-
formation method,[12,13] the trial function method,[14,15]

and others.[16−19] But not all these methods are suit-
able for directly solving some special kinds of nonlin-
ear evolution equations, such as GmKdV equation. For
expansion methods, such as the function transformation
method,[4,5] the homogeneous balance method,[6,7] the hy-
perbolic function expansion method,[8,9] and the Jacobi el-
liptic function expansion method,[10,11] the expansion or-
der must be a positive integer. However, for more non-
linear evolution equations, the expansion order (obtained
from the partial balance between the highest degree non-
linear terms and the highest order derivative terms) is not
a positive integer, it may be a negative integer, or it may
be just a real number. When the expansion order is not a
positive integer, the expansion method cannot be applied
to solving the corresponding nonlinear equation directly.

Then some kinds of transformations or some other meth-
ods are needed.

In this paper, we will consider this case. Trial function
method is applied to solving GmKdV equation directly
without a transformation, and more new kinds of solitary
wave solutions are obtained.

The GmKdV equation considered here is introduced
by Fedele,[20] which reads

∂u

∂t
+ αuγ ∂u

∂x
+ β

∂3u

∂x3
= 0 , (1)

where u is a real function, and α, β, and γ are real num-
bers. We seek its travelling wave solution, i.e.

u = u(ξ) ξ = x− ct , (2)

where c is the wave speed. Substitution Eq. (2) into
Eq. (1) yields

−c
du

dξ
+ αuγ du

dξ
+ β

d3u

dξ3
= 0 . (3)

Integrating Eq. (3) with respect to ξ once yields

−cu +
α

γ + 1
uγ+1 + β

d2u

dξ2
= A , (4)

where A is an integration constant.
In order to simplify computation, without loss of gen-

erality, we take A = 0, then equation (4) can be rewritten
as

−cu +
α

γ + 1
uγ+1 + β

d2u

dξ2
= 0 . (5)

In the next sections, we will apply trial function
method to solve Eq. (5), and then obtain solutions to
GmKdV equation (1).

2 Solutions to GmKdV Equation
According to the trial function method,[14,21] the

ansatz solution to Eq. (5) can be taken as

u =
B ebξ

(1 + d eaξ)p
, 0 ≤ b ≤ ap , ad 6= 0 , (6)
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where B, a, b, d, and p are undetermined constants. Dif-
ferently from the assumption given in Refs. [14] and [21],
here constant p can be any real number, and d is not al-
ways set as 1, but can take other values.

Because of 0 ≤ b ≤ ap, we can take the order of u as

O(u) = p , (7)

then, it is easily derived that

O
( du

dξ

)
= p + 1 ,

O
( dnu

dξn

)
= p + n (n = 1, 2, 3, . . .) . (8)

Partial balance between the highest degree nonlinear

terms and the highest order derivative terms arrives at

O
( d3u

dξ3

)
= O

(
uγ du

dξ

)
, (9)

i.e.,
p + 3 = γp + p + 1 , (10)

from which p can be determined as

p =
2
γ

. (11)

So the ansatz solution (6) can be rewritten as

u =
B ebξ

(1 + d eaξ)2/γ
, 0 ≤ b ≤ 2a

γ
, ad 6= 0 . (12)

From Eq. (12), one has

du

dξ
=

B ebξ

(1 + d eaξ)2/γ

(
b− 2ad

γ

eaξ

1 + d eaξ

)
, (13)

d2u

dξ2
=

B ebξ

(1 + d eaξ)2/γ

[
b2 − 4abd

γ

eaξ

1 + d eaξ
− 2a2d

γ

eaξ

(1 + d eaξ)2
+

4a2d2

γ2

e2aξ

(1 + d eaξ)2
]
, (14)

and

uγ+1 =
B ebξ

(1 + d eaξ)2/γ

Bγ ebγξ

(1 + d eaξ)2
. (15)

Substituting Eqs. (12), (14), and (15) into Eq. (5) yields

−c +
α

γ + 1
Bγ ebγξ

(1 + d eaξ)2
+ β

[
b2 − 4abd

γ

eaξ

1 + d eaξ
− 2a2d

γ

eaξ

(1 + d eaξ)2
+

4a2d2

γ2

e2aξ

(1 + d eaξ)2
]

= 0 , (16)

i.e.,

(βb2 − c) +
α

γ + 1
Bγ ebγξ +

[
β
(
2b2 − 4ab

γ
− 2a2

γ

)
− 2c

]
d eaξ +

[
β
(
b2 − 4ab

γ
+

4a2

γ2

)
− c

]
d2 e2aξ = 0 . (17)

For Eq. (17), there are three cases needed to be considered: (a) bγ = 0, (b) bγ = a, and (c) bγ = 2a, we will give
detailed discussions below.
Case (a) bγ = 0

From bγ = 0, one has b = 0, then equation (17) can be rewritten as( α

γ + 1
Bγ − c

)
+

(
−2βa2

γ
− 2c

)
d eaξ +

(4βa2

γ2
− c

)
d2 e2aξ = 0 . (18)

Due to the arbitrariness of ξ, equation (18) results in
the following algebraic equations,

α

γ + 1
Bγ − c = 0 ,

(
−2βa2

γ
− 2c

)
d = 0 ,

(4βa2

γ2
− c

)
d2 = 0 . (19)

From Eqs. (19), one can determine the undetermined
constants as

B =
(
− α

3c

)1/4

, γ = −4 , a = ±
√

4c

β
, (20)

and d 6= 0 is an arbitrary constant. So the solution to

Eq. (1) is

u1 =
(
− α

3c

)1/4(
1 + d e±

√
4c/βξ

)1/2

. (21)

This is a new generalized solution to Eq. (1) that we did
not given in Ref. [1]. When d = 1, solution (21) reduces
to

u2 =
(
− α

3c

)1/4
(

2
1± tanh

√
c/βξ

)1/2

, (22)

and when d = −1, solution (21) reduces to

u3 =
(
− α

3c

)1/4
(

2
coth

√
c/βξ ± 1

)1/2

. (23)

To our knowledge, solutions (22) and (23) have not been
obtained before.
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Case (b) bγ = a

If bγ = a, then b = a/γ. Substituting b = a/γ into
Eq. (17) leads to

(
β

a2

γ2
− c

)
+

[ α

γ + 1
Bγ − β

(2a2

γ2
+

2a2

γ

)
d− 2cd

]
eaξ +

(
β

a2

γ2
− c

)
d2 e2aξ = 0 . (24)

The arbitrariness of ξ makes Eq. (24) become the following algebraic equations,

β
a2

γ2
− c = 0 ,

α

γ + 1
Bγ − β

(2a2

γ2
+

2a2

γ

)
d− 2cd = 0 ,

(
β

a2

γ2
− c

)
d2 = 0 . (25)

From Eqs. (25), the undetermined constants can be determined as

B =
[2dc(γ + 1)(γ + 2)

α

]1/γ

, a = ±

√
cγ2

β
, (26)

where d 6= 0 is an arbitrary constant and γ 6= 0 is any real number. So the solution to Eq. (10 is

u4 =
[2dc(γ + 1)(γ + 2)

α

]1/γ e±
√

cγ2/β ξ/γ

[1 + d e±
√

cγ2/β ξ]2/γ
. (27)

This is another new generalized solution to Eq. (1) we did not give in Ref. [1]. When d = 1, solution (27) reduces to

u5 =
[c(γ + 1)(γ + 2)

2α

]1/γ
(

sech

√
cγ2

4β
ξ

)2/γ

. (28)

This kind of solution has been given in Ref. [1]. When d = −1, solution (27) reduces to

u6 =
[
−c(γ + 1)(γ + 2)

2α

]1/γ
(

csch

√
cγ2

4β
ξ

)2/γ

. (29)

This is a new solution to Eq. (1) that we did not give in Ref. [1].
Case (c) bγ = 2a

If bγ = 2a, then b = 2a/γ. Similarly, from Eq. (17) one has(
β

4a2

γ2
− c

)
+

(
−2βa2

γ
− 2c

)
d eaξ +

( α

γ + 1
Bγ − cd2

)
e2aξ = 0 . (30)

The arbitrariness of ξ makes Eq. (30) become the following
algebraic equations,

β
4a2

γ2
− c = 0 ,

βa2

γ
+ c = 0 ,

α

γ + 1
Bγ − cd2 = 0 . (31)

From Eqs. (31), the undetermined constants can be
determined as

γ = −4 , B =
(
− α

3d2c

)1/4

, a = ±
√

4c

β
, (32)

where d 6= 0 is an arbitrary constant. So the solution to
Eq. (1) is

u7 =
(
− α

3d2c

)1/4(
d + e±

√
4c/βξ

)1/2

. (33)

This is another new generalized solution to Eq. (1) that
we did not give in Ref. [1]. When d = 1, solution (33)

reduces to

u8 =
(
− α

3c

)1/4( 2
1± tanh

√
c/βξ

)1/2

, (34)

which is the same one as solution (22). When d = −1,
solution (33) reduces to

u9 =
(
− α

3c

)1/4( 2
±1− coth

√
c/βξ

)1/2

, (35)

which is a new solution to Eq. (1) that we did not give in
Ref. [1], either.

3 Conclusion
In this paper, we apply trial function method to

solve GmKdV equation directly without a transforma-
tion. Many solutions are obtained for this generalized
mKdV equation, including solitary wave solutions con-
structed in terms of hyperbolic functions, which are some
special cases of the generalized solutions, and some solu-
tions are not given in literatures to our knowledge. Of
course, the similar proceedings can be applied to other
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nonlinear wave equations that cannot be solved directly by expansion methods.
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