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Abst ract : J acobi elliptic function expansion method is extended to construct the exact

solutions to another kind of KdV equations , which have variable coefficients or forcing

terms . And new periodic solutions obtained by this method can be reduced to the soliton-

typed solutions under the limited condition.
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I nt rod uction

The variable-coefficient KdV equation

ut + α( t) uux + β( t) uxxx = 0 (1)

was originally proposed in Ref . [1 ] , whereα( t) andβ( t) are arbitrary analytic functions . And it

is also rewritten as the general variable-coefficient KdV equation[2 ]

ut + 2β( t) u + [α( t) + β( t) x ] ux - 3 cγ( t) uux + γ( t) uxxx = 0 (2)

which can be reduced to other more physical forms , for example , the cylinder KdV equation[3 ]

reads

ut +
1

2 t
u + 6 uux + uxxx = 0 (3)

which has been widely applied in plasma physics and other specific physics.
Many methods have been proposed to solve constant-coefficient nonlinear equations and

much more exact solitary wave solutions or periodic solutions were obtained[4～19] . But we know

that the constant coefficients are just highly idealized assumptions , which care only some degree
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about realistic physical importance. So more attention[20～26 ] has been paid to studying the

integrability and symmetry of variable-coefficient nonlinear equations , since numerous application

in physical sciences and engineering deal with variable-coefficient nonlinear equations . Actually ,
variable-coefficient nonlinear equations are seldom considered for their complexity. In this paper ,
we will extend the Jacobi elliptic function expansion method[19 ] and apply it to get the periodic

solutions and corresponding shock or solitary wave solutions to variable-coefficient or forced KdV

equations .

1 　Exte n de d J acobi Ellip tic Fu nction Exp a nsion

Considering the general variable-coefficient nonlinear equation

N ( u , ut , ux , utt , uxx , ⋯) = 0. (4)

We seek its general travelling wave solution

u = u (ξ) ,ξ = f ( t) x + g ( t) , (5)

where f ( t) and g ( t) are undetermined functions of t . Assuming that u (ξ) has the following

ansatz solution :

u (ξ) = 6
n

j = 0

aj ( t) sn jξ, (6)

we can select n to balance the derivative term of the highest order and nonlinear term in (4) , then

we have the final determined expansion form.
When m →1 , snξ→tanhξ, so (6) degenerates to

u (ξ) = 6
n

j = 0

aj ( t) tanh jξ. (7)

Notice that

cn2ξ = 1 - sn2ξ (8)

and when m →1 , cnξ→sechξ, so we get cnoidal wave solution and its corresponding solitary

wave solution.
In the following sections , we will apply ( 5) and ( 6 ) to solve another kind of KdV

equations .

2 　Sol utions to A not he r Ki n d of KdV Eq uations

2. 1 　Sol utions t o a ki nd of KdV e quation

Here , the considered KdV equation takes the following form :

vt + avvy + bvyyy +
δ
t

v = 0 , (9)

where a and b are the constants . It is obvious that this is a generalized kind of variant KdV

equation. Whenδ = 0 , Eq . (9) is just the constant coefficient KdV equation , i . e . ,
vt + avvy + bvyyy = 0. (10)

While whenδ = 1 , Eq . (9) is just spherical KdV equation , i . e . ,

vt + avvy + bvyyy +
1
t

v = 0. (11)

While whenδ = 1Π2 , Eq . (9) is just cylindrical KdV equation , i . e . ,

vt + avvy + bvyyy +
1
2 t

v = 0 , (12)
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which can be re-scaled to the form of Eq. (3) .
In order to solve Eq. (9) , first the transformation

u = tδv (13)

is taken , then Eq . (9) can be rewritten as

ut + at -δuuy + buyyy = 0 (14)

and then the independent variable takes the following transformation :
x = t -δΠ2 y . (15)

Equation (14) is re-scaled as

ut + at - 3δΠ2 uux + bt - 3δΠ2 uxxx = 0. (16)

Setting the coefficients as

at - 3δΠ2 = α( t) , bt - 3δΠ2 = β( t) , (17)

then Eq. (16) takes the same form as Eq. (1) , so one can solve Eq. (1) in order to solve Eq. (9) .
Substituting (5) and (6) into (1) and balancing the derivative term of the highest order and

nonlinear term to determine n yield the ansatz solution

u = a0 ( t) + a1 ( t) snξ+ a2 ( t) sn2ξ. (18)

Notice that

ut = a′0 + a′1 snξ+ a′2 sn2ξ+ ( a1 + 2 a2 snξ) ( f ′x + g′) cnξdnξ, (19)

ux = f ( a1 + 2 a2 snξ) cnξdnξ, (20)

uux = f [ a0 a1 + ( a2
1 + 2 a0 a2) snξ+ 3 a1 a2 sn2ξ+ 2 a2

2 sn3ξ]cnξdnξ, (21)

uxx = f 2[2 a2 - (1 + m2 ) a1 snξ - 4 (1 + m2 ) a2 sn2ξ+

　　　2 m2 a1 sn3ξ+ 6 m2 a2 sn4ξ] , (22)

uxxx = f 3[ - (1 + m2 ) a1 - 8 (1 + m2) a2 snξ+

　　　6 m2 a1 sn2ξ+ 24 m2 a2 sn3ξ]cnξdnξ, (23)

where m (0 < m < 1) is modulus .
Substituting (19) , (21) and (23) into (1) yields

　　 a′0 + a′1 snξ+ a′2 sn2ξ+ a1 [ f ′x + g′+ αf a0 -

　　　　(1 + m2)βf 3a2 ]cnξdnξ+ [2 a2 ( f ′x + g′) + αf ( a2
1 + 2 a0 a2) -

　　　　8 (1 + m2 )βf 3a2 ]snξcnξdnξ+ 3 a1 f [αa2 + 2 m2βf 2]sn2ξcnξdnξ+

　　　　2 a2 f [αa2 + 12 m2βf 2]sn3ξcnξdnξ = 0. (24)

Thus we have

　　 a′0 ( t) = a′1 ( t) = a′2 ( t) = 0 , (25)

a1 [ f ′x + g′+ αf a0 - (1 + m2 )βf 3 a2 ] = 0 , (26)

2 a2 ( f ′x + g′) + αf ( a2
1 + 2 a0 a2 ) - 8 (1 + m2 )βf 3a2 = 0 , (27)

a1 f [αa2 + 2 m2βf 2] = 0 , (28)

a2 f [αa2 + 12 m2βf 2] = 0. (29)
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From which we can determine the constraint between variable coefficients
β( t)
α( t)

= γ　　(γ = const . ≠0) (30)

and

f ( t) = k , g ( t) = - kc∫
t

α(τ) dτ　　( k = const . , c = const . ) , (31)

a0 = c + 4 (1 + m2 )γk2 , a1 = 0 , a2 = - 12 m2γk2 . 　　　　　　 (32)

　　It is obvious that the constraint (30) requires that the variable coefficients are linearly

dependent , just the same as the assumption given in Ref . [26 ] . From (17) , one can see that this

constraint is satisfied andγ = bΠa .

So the exact solution is

　 u = c + 4 (1 + m2)γk2 - 12 m2γk2 sn2ξ = ( c + 4 (1 - 2 m2 )γk2 + 12 m2γk2cn2ξ (33)

which is the cnoidal wave- like solution to (1) , whereξ = k x - c∫
t

α(τ) dτ .

When m →1 , (33) reduces to

u = c + 8γk2 - 12γk2tanh2ξ = c - 4γk2 + 12γk2 sech2ξ (34)

which is siliton- type solution to (1) .
So the cnoidal wave- like solution to (9) is

　　　　　 v = t -δ[ c + 4 (1 + m2 )γk2 - 12 m2γk2 sn2ξ] =
　　　　　　　t -δ[ c + 4 (1 - 2 m2 )γk2 + 12 m2γk2cn2ξ] , (35)

its corresponding siliton- type solution is

　　 v = t -δ[ c + 8γk2 - 12γk2tanh2ξ] = t -δ[ c - 4γk2 + 12γk2 sech2ξ] , (36)

where

ξ = kt -δΠ2 y -
2 ac

2 - 3δt1-δ . (37)

We consider three special cases :
Case A :δ = 0 , the constant coefficient KdV equation , the cnoidal wave solution is

　　　　　 v = c + 4 (1 + m2 )γk2 - 12 m2γk2 sn2ξ =
　　　　　　　c + 4 (1 - 2 m2)γk2 + 12 m2γk2cn2ξ, (38)

its corresponding siliton solution is

v = c + 8γk2 - 12γk2tanh2ξ = c - 4γk2 + 12γk2 sech2ξ, (39)

where
ξ = k ( y - act) . (40)

　　Case B :δ = 1 , the spherical KdV equation , the cnoidal wave- like solution is

　　　　　 v = t - 1 [ c + 4 (1 + m2)γk2 - 12 m2γk2 sn2ξ] =
　　　　　　　t - 1 [ c + 4 (1 - 2 m2 )γk2 + 12 m2γk2cn2ξ] , (41)

its corresponding siliton- typed solution is

v = t - 1 [ c + 8γk2 - 12γk2tanh2ξ] = t - 1 [ c - 4γk2 + 12γk2 sech2ξ] , (42)

where
ξ = kt - 1Π2 ( y + 2 ac) . (43)

　　Case C :δ = 1Π2 , the cylindrical KdV equation , the cnoidal wave- like solution is

　　 v = t - 1Π2 [ c + 4 (1 + m2 )γk2 - 12 m2γk2 sn2ξ] =
　　 　　t - 1Π2 [ c + 4 (1 - 2 m2 )γk2 + 12 m2γk2cn2ξ] , (44)
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its corresponding siliton- typed solution is

v = t - 1Π2 [ c + 8γk2 - 12γk2tanh2ξ] = t - 1Π2 [ c - 4γk2 + 12γk2 sech2ξ] , (45)

where

ξ = kt - 1Π4 ( y - 4 act1Π2 ) . (46)

2. 2 　Sol utions t o t he f orce d KdV e quation

The forced KdV equation reads

vt + αvvx + βvxxx = F( t) , (47)

where F( t) is forcing varying with time t ; αandβare the constants .

First , we make a transformation about v , i ,e . ,

v = u + Γ( t) , Γ( t) =∫
t

F(τ) dτ, (48)

then we have

ut + α[Γ( t) + u ] ux + βuxxx = 0 (49)

　　It can be easily obtained that the equation (49) has the ansatz solution (18) . Sub-stituting

(18) into (49) yields

　　 a′0 + a′1 snξ+ a′2 sn2ξ+ a2 [ f ′x + g′+ αf a0 + αfΓa1 -

　　　　(1 + m2)βf 3 ]cnξdnξ+ [2 a2 ( f ′x + g′) + αf ( a2
1 + 2 a0 a2 ) +

　　　　2αΓf a2 - 8 (1 + m2 )βf 3a2 ]snξcnξdnξ+ 3 a1 f [αa2 +

　　　　2 m2βf 2]sn2ξcnξdnξ+ 2 a2 f (αa2 + 12 m2βf 2) sn3ξcnξdnξ = 0 (50)

from which the undetermined parameters and functions can be determined

f = k , g = - kct - kα∫
t

Γ(τ) dτ (51)

and

a0 =
c
α + 4 (1 + m2 ) k2 β

α , a1 = 0 , a2 = - 12 m2 k2 β
α , (52)

where k and c are the constants .

So the solution to the forced KdV equation can be written as

v =
c
α - 4 (2 m2 - 1) k2 β

α +∫
t

F(τ) dτ+ 12 m2 k2 β
αcn2ξ (53)

and its corresponding soliton- like solution is

v =
c
α - 4 k2 β

α +∫
t

F(τ) dτ+ 12 k2 β
αsech2ξ, (54)

where

ξ = k x - ct - α∫
t

∫
τ

F(ψ) dψdτ .

3 　Concl usion

In this paper , the exact periodic- like solutions to some variable-coefficient or forced KdV

equations are obtained by use of Jacobi elliptic sine function expansion method. The periodic- like

solutions got by this method can degenerate to the soliton- like solutions . Similarly , this solving
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process can be applied to other variable-coefficient nonlinear equations , such as variable-
coefficient KP ( Kadomtsev- Petviashvili) equation and some others .
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