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Abstract

A transformation is introduced on the basis of the projective Riccati equations, and it is applied as an interme
expansion method to solve mKdV equation. Many kinds of travelling wave solutions including solitary wave solut
obtained, in which some are found for the first time.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A number of problems are described in terms of suitable nonlinear models, such as nonlinear Sch
equations in plasma physics[1], KdV equation in shallow water model[2] and so on, in branches of physic
mathematics and other interdisciplinary sciences. Recently, special attention has been devoted in liter
solving nonlinear evolution equations, and many methods have been proposed to construct exact sol
nonlinear equations, such as the homogeneous balance method[3,4], the nonlinear transformation method[5,6],
the trial function method[7,8] and so on. Among them the function transformation method[9,10], the hyperbolic
function expansion method[11,12], the Jacobi elliptic function expansion method[13,14] and the sine–cosin
method[15] can be taken as expansion methods, in which some basic functions or transformations fro
famous equation(s) are needed. For example, the basic transformation in the function transformation me[10]
is obtained from sine-Gordon equation[16], the bases in the hyperbolic function expansion method[11,12] are
hyperbolic functions, the bases in the Jacobi elliptic function expansion method[13,14] are the Jacobi elliptic
functions[16–19]and the bases in the sine–cosine method[15] are sine and cosine functions.

In this Letter, we will reconsider this case. A transformation is obtained from the well-known projective Riccati
equations[20–22], and then this transformation is taken as an intermediate to solve mKdV equation. Many
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of travelling wave solutions including solitary wave solutions are derived, among them some are found for the
time.

2. Analysis on the projective Riccati equations

The well-known projective Riccati equations[20–22]read

(1a)f ′(ξ) = pf (ξ)g(ξ),

(1b)g′(ξ) = q + pg2(ξ) − rf (ξ),

wherep �= 0 is a real constant,q andr are two real constants. Whenp = −1 andq = 1, Eqs. (1)reduce to the
coupled equations given in the references[20,21], and whenp = ±1 andq � 0, Eqs. (1)reduce to the couple
equations given in the Ref.[22].

Next, we will analyze the solutions toEqs. (1). FromEq. (1a), one has

(2)g = 1

p

f ′

f
.

SubstitutingEq. (2)into Eq. (1b)leads to

(3)f ′′f − 2f ′2 − pqf 2 + prf 3 = 0.

In order to solveEq. (3), we introduce the following transformation

(4)f = 1

w
,

then

(5)
f ′

f
= −w′

w
, g = − 1

p

w′

w

and

(6)w′′ + pqw − pr = 0.

For the solutions toEq. (6), two basic cases need to be considered. The first basic case is

Case A: q �= 0
There are still two cases need to be considered. The first one is

Case A1: pq < 0
Then we can assumek2 = −pq , theEq. (6)can be rewritten as

(7)w′′ − k2w − pr = 0,

and the general solution toEq. (7)is

(8)w = a0 + a1 sinhkξ + a2 coshkξ,

wherea0 = r/q , i.e.,

(9)w = r

q
+ a1 sinh(

√−pqξ) + a2 cosh(
√−pqξ).
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Considering the relation inEq. (5), here we select two special solutions fromEq. (9). The first one is

(10)w = r

q
+ 1

q
sinh(

√−pqξ),

then

(11)f1 = 1

w
= q

r + sinh(
√−pqξ)

and

(12)g1 = − 1

p

w′

w
= − 1

p

√−pq cosh(
√−pqξ)

r + sinh(
√−pqξ)

.

FromEqs. (11) and (12)one can derive the relation betweenf (ξ) andg(ξ)

(13)g2
1 = − 1

p

[
q − 2rf1 + r2 + 1

q
f 2

1

]
.

The second one is

(14)w = r

q
+ 1

q
cosh(

√−pqξ),

then

(15)f2 = 1

w
= q

r + cosh(
√−pqξ)

and

(16)g2 = − 1

p

w′

w
= − 1

p

√−pq sinh(
√−pqξ)

r + cosh(
√−pqξ)

.

FromEqs. (15) and (16)one can derive the relation betweenf (ξ) andg(ξ)

(17)g2
2 = − 1

p

[
q − 2rf2 + r2 − 1

q
f 2

2

]
.

Case A2: pq > 0
Then we can assumek2 = pq , theEq. (6)can be rewritten as

(18)w′′ + k2w − pr = 0,

and the general solution toEq. (18)is

(19)w = a0 + a1 sinkξ + a2 coskξ,

wherea0 = r/q , i.e.,

(20)w = r

q
+ a1 sin(

√
pqξ) + a2 cos(

√
pqξ).

Considering the relation inEq. (5), here we also select two special solutions fromEq. (20). The first one is

(21)w = r

q
+ 1

q
sin(

√
pqξ),
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then

(22)f3 = 1

w
= q

r + sin(
√

pqξ)

and

(23)g3 = − 1

p

w′

w
= − 1

p

√
pq cos(

√
pqξ)

r + sin(
√

pqξ)
.

FromEqs. (22) and (23)one can derive the relation betweenf (ξ) andg(ξ) is just the same as(17).
The second one is

(24)w = r

q
+ 1

q
cos(

√
pqξ),

then

(25)f4 = 1

w
= q

r + cos(
√

pqξ)

and

(26)g4 = − 1

p

w′

w
= 1

p

√
pq sin(

√
pqξ)

r + cos(
√

pqξ)
.

FromEqs. (25) and (26)one can derive the relation betweenf (ξ) andg(ξ) is just the same as(17).

The second basic case is

Case B: q = 0
ThenEq. (6)can be rewritten as

(27)w′′ − pr = 0.

Its general solution is

(28)w = pr

2
ξ2 + a1ξ + a0,

wherea1 anda0 are two arbitrary real constants.
FromEq. (28), one has

(29)f5 = 1

w
= 1

pr
2 ξ2 + a1ξ + a0

and

(30)g5 = − 1

p

w′

w
= − 1

p

prξ + a1
pr
2 ξ2 + a1ξ + a0

.

Remark 1. In the Refs.[20,21], they considered the case forq = 1 andp = −1, so there is only a special case
Eqs. (15) and (16).

Remark 2. In the Ref.[22], they considered the case forq � 0 andp = ±1, so there are only some special ca
of case A and case B. It is worthy noting that the solutions tog given in the Ref.[22] are wrong (in Ref.[22],
corresponding solutions areτ1 ∼ τ4).

Remark 3. In the Ref.[22], the given relation betweenf andg is corresponding toEq. (17)whenp = ±1, but no
relation(13), so it is wrong for the case(11)and(12).
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3. Application of solutions from the projective Riccati equations

In the above section, we discuss the solutions to the projective Riccati equationsunder some conditions. In fac
the solutions to the projective Riccati equations combining the relations between the solutions can construct
intermediate transformation, and this transformation can be applied to solve nonlinear evolution equatio
whenq �= 0, the solutions tof andg are taken as two bases in the expansion method, i.e.,

(31)u(ξ) =
n∑

i=1

f i−1(ξ)
[
Aif (ξ) + Big(ξ)

] + A0, A2
n + B2

n �= 0,

whereu(ξ) is a nonzero solution to any nonlinear evolution equation,n can be determined by balancing the high
order derivative term with the high degree nonlinear term in the given nonlinear evolution equation. Andf andg

satisfy the projective Riccati equations(1), there is the relation betweenf andg

(32)g2
j = − 1

p

[
q − 2rfj + r2 + δ

q
f 2

j

]
, j = 1,2,3,4,

whereδ = ±1, if j = 1, thenδ = 1, otherwise,δ = −1.
Next, we take mKdV equation as an example to illustrate the application of the solutions from the pro

Riccati equations. The mKdV equation reads

(33)
∂u

∂t
+ αu2 ∂u

∂x
+ β

∂3u

∂x3
= 0,

whereu is a real function, andα andβ are real numbers. We seek its travelling wave solution, i.e.,

(34)u = u(ξ), ξ = x − ct,

wherec is wave speed. SubstitutionEq. (34)into Eq. (33)yields

(35)−c
du

dξ
+ αu2du

dξ
+ β

d3u

dξ3 = 0,

i.e.,

(36)−cu + α

3
u3 + β

d2u

dξ2
= c0,

wherec0 is an integration constant.
Applying expansion method, if we take the expansion order ofu asO(u) = n and considering the relations(1),

thenO(du
dξ

) = n + 1, so partial balance between the highest degree nonlinear term and the highest order d
term leads ton = 1. Obviously, the formal solution can be written as

(37)u = A0 + A1f (ξ) + B1g(ξ), A2
1 + B2

1 �= 0.

Considering the relation(32), from Eq. (37)one can has

u3 =
[
A3

0 − 3q

p
A0B

2
1

]
+

[
3A2

0B1 − q

p
B3

1

]
g +

[
3A2

0A1 − 3q

p
A1B

2
1 + 6r

p
A0B

2
1

]
f

+
[
6A0A1B1 + 2r

p
B3

1

]
fg +

[
3A0A

2
1 + 6r

p
A1B

2
1 − 3(r2 + δ)

pq
A0B

2
1

]
f 2

(38)+
[
3A2

1B1 − (r2 + δ)

pq
B3

1

]
f 2g +

[
A3

1 − 3(r2 + δ)

pq
A1B

2
1

]
f 3
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and

(39)
d2u

dξ2 = −pqA1f + prB1fg + 3prA1f
2 − 2p(r2 + δ)

q
B1f

2g − 2p(r2 + δ)

q
A1f

3.

SubstitutingEqs. (37), (38) and (39)into Eq. (36)yields[
−cA0 + α

3

(
A3

0 − 3q

p
A0B

2
1

)
− c0

]
+

[
−cA1 + α

3

(
−3q

p
A1B

2
1 + 6r

p
A0B

2
1 + 3A2

0A1

)
− βpqA1

]
f

+
[
−cB1 + α

3

(
− q

p
B3

1 + 3A2
0B1

)]
g +

[
α

3

(
2r

p
B3

1 + 6A0A1B1

)
+ βprB1

]
fg

+
[
α

3

(
6r

p
A1B

2
1 − 3(r2 + δ)

pq
A0B

2
1 + 3A0A

2
1

)
+ 3βprA1

]
f 2

+
[
α

3

(
3A2

1B1 − (r2 + δ)

pq
B3

1

)
− 2βp(r2 + δ)

q
B1

]
f 2g

(40)+
[
α

3

(
A3

1 − 3(r2 + δ)

pq
A1B

2
1

)
− 2βp(r2 + δ)

q
A1

]
f 3 = 0.

The arbitrariness of the argumentξ results in the following algebraic equations

(41a)−cA0 + α

3

(
A3

0 − 3q

p
A0B

2
1

)
− c0 = 0,

(41b)−cA1 + α

3

(
−3q

p
A1B

2
1 + 6r

p
A0B

2
1 + 3A2

0A1

)
− βpqA1 = 0,

(41c)−cB1 + α

3

(
− q

p
B3

1 + 3A2
0B1

)
= 0,

(41d)
α

3

(
2r

p
B3

1 + 6A0A1B1

)
+ βprB1 = 0,

(41e)
α

3

(
6r

p
A1B

2
1 − 3(r2 + δ)

pq
A0B

2
1 + 3A0A

2
1

)
+ 3βprA1 = 0,

(41f)
α

3

(
3A2

1B1 − (r2 + δ)

pq
B3

1

)
− 2βp(r2 + δ)

q
B1 = 0,

(41g)
α

3

(
A3

1 − 3(r2 + δ)

pq
A1B

2
1

)
− 2βp(r2 + δ)

q
A1 = 0,

from which the parameters can bedetermined. For example, forδ = −1, there are the following solutions

Case 1. If A1 = 0, A0 = 0, r = 0, then

(42)B1 = ±
√

−6βp2

α
, pq = c

2β
,

obviously, there is the constraintαβ < 0.
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Case 2. If A1 = 0, A0 = 0, r �= 0, then

(43)B1 = ±
√

−3βp2

2α
, pq = 2c

β
, r = ±1,

obviously, there is the constraintαβ < 0, too.

Case 3. If B1 = 0, A0 = 0, then

(44)A1 = ±
√

6β2p2

αc
, pq = − c

β
, r = 0.

Case 4. If B1 = 0, A0 �= 0, then

(45)A1 = ±
√

3β2p2(r2 + 2)

αc
, A0 = ±

√
3cr2

α(r2 + 2)
, pq = 2(r2 − 1)c

β(r2 + 2)
,

there is the constraintr �= 0 andr2 �= 1.

Case 5. If A0 = 0, A1 �= 0, B1 �= 0, then

(46)A1 = ±
√

3β2p2(r2 − 1)

4αc
, B1 = ±

√
−3βp2

2α
, pq = 2c

β

with the constraintr2 �= 1.

For δ = 1, there are the following solutions

Case 1. If A1 = 0, A0 = 0, r = 0, then

(47)B1 = ±
√

−6βp2

α
, pq = c

2β
,

obviously, there is the constraint thatαβ < 0.

Case 2. If B1 = 0, A0 = 0, then

(48)A1 = ±
√

−6β2p2

αc
, pq = − c

β
, r = 0.

Case 3. If B1 = 0, A0 �= 0, then

(49)A1 = ±
√

3β2p2(r2 − 2)

αc
, A0 = ±

√
3cr2

α(r2 − 2)
, pq = 2(r2 + 1)c

β(r2 − 2)
,

there is the constraintr �= 0 andr2 �= 2.

Case 4. If A0 = 0, A1 �= 0, B1 �= 0, then

(50)A1 = ±
√

3β2p2(r2 + 1)

4αc
, B1 = ±

√
−3βp2

2α
, pq = 2c

β
.
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Combining the results(11), (12), (15), (16), (22), (23), (25) and(26) with (37) and from(42) to (50), we can
obtain many kinds of travelling wave solutions to mKdV equation(33):

Type 1. For δ = −1, if αβ < 0 andcβ < 0, then the solution to mKdV equation(33) is

(51)u1 = B1g = ∓
√

3c

α
tanh

(√
− c

2β
ξ

)
.

Type 2. For δ = −1, if αβ < 0 andcβ > 0, then the solution to mKdV equation(33) is

(52)u2 = B1g = ∓
√

−3c

α
cot

(√
c

2β
ξ

)

and

(53)u3 = B1g = ±
√

−3c

α
tan

(√
c

2β
ξ

)
.

Type 3. For δ = −1, if αβ < 0 andcβ < 0, then the solution to mKdV equation(33) is

(54)u4 = B1g = ∓
√

3c

α

sinh
(√−2c

β
ξ
)

cosh
(√−2c

β
ξ
) ± 1

.

Type 4. For δ = −1, if αβ < 0 andcβ > 0, then the solution to mKdV equation(33) is

(55)u5 = B1g = ∓
√

−3c

α

cos
(√2c

β
ξ
)

sin
(√2c

β
ξ
) ± 1

and

(56)u6 = B1g = ±
√

−3c

α

sin
(√2c

β
ξ
)

cos
(√2c

β
ξ
) ± 1

.

Type 5. For δ = −1, if αc > 0 andcβ > 0, then the solution to mKdV equation(33) is

(57)u7 = A1f = ∓
√

6c

α
sech

(√
c

β
ξ

)
.

Type 6. For δ = −1, if αc > 0 andcβ < 0, then the solution to mKdV equation(33) is

(58)u8 = A1f = ±
√

6c

α
csc

(√
− c

β
ξ

)

and

(59)u9 = A1f = ±
√

6c

α
sec

(√
− c

β
ξ

)
.
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Type 7. For δ = −1, if αc > 0 and(r2 − 1)cβ < 0, then the solution to mKdV equation(33) is

(60)u10 = A0 + A1f = ±
√

3cr2

α(r2 + 2)
± 2(r2 − 1)c

pβ(r2 + 2)

√
3β2p2(r2 + 2)

αc

1

cosh
(√2(1−r2)c

β(r2+2)
ξ
) + r

with the constraint thatr �= 0 andr2 �= 1.

Type 8. For δ = −1, if αc > 0 and(r2 − 1)cβ > 0, then the solution to mKdV equation(33) is

(61)u11 = A0 + A1f = ±
√

3cr2

α(r2 + 2)
± 2(r2 − 1)c

pβ(r2 + 2)

√
3β2p2(r2 + 2)

αc

1

sin
(√2(r2−1)c

β(r2+2)
ξ
) + r

and

(62)u12 = A0 + A1f = ±
√

3cr2

α(r2 + 2)
± 2(r2 − 1)c

pβ(r2 + 2)

√
3β2p2(r2 + 2)

αc

1

cos
(√2(r2−1)c

β(r2+2)
ξ
) + r

with the constraint thatr �= 0 andr2 �= 1.

Type 9. For δ = −1, if αβ < 0, cβ < 0 andr2 > 1, then the solution to mKdV equation(33) is

(63)u13 = A1f + B1g = ± 2c

βp

√
3β2p2(r2 − 1)

4αc

1

cosh
(√−2c

β
ξ
) + r

∓
√

3c

α

sinh
(√−2c

β
ξ
)

cosh
(√−2c

β
ξ
) + r

with the constraintr2 �= 1.

Type 10. For δ = −1, if αβ < 0, cβ > 0 andr2 < 1, then the solution to mKdV equation(33) is

(64)u14 = A1f + B1g = ± 2c

βp

√
3β2p2(r2 − 1)

4αc

1

sin
(√2c

β
ξ
) + r

∓
√

−3c

α

cos
(√2c

β
ξ
)

sin
(√2c

β
ξ
) + r

and

(65)u15 = A1f + B1g = ± 2c

βp

√
3β2p2(r2 − 1)

4αc

1

cos
(√2c

β
ξ
) + r

±
√

−3c

α

sin
(√2c

β
ξ
)

cos(
√

2c
β

ξ) + r

with the constraintr2 �= 1.

Type 11. For δ = 1, if αβ < 0 andcβ < 0, then the solution to mKdV equation(33) is

(66)u16 = B1g = ∓
√

3c

α
coth

(√
− c

2β
ξ

)
.

Type 12. For δ = 1, if αc < 0 andcβ > 0, then the solution to mKdV equation(33) is

(67)u17 = A1f = ∓
√

−6c

α
csch

(√
c

β
ξ

)
.
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Type 13. For δ = 1, if αc(r2 − 2) > 0 and(r2 − 2)cβ < 0, then the solution to mKdV equation(33) is

(68)u18 = A0 + A1f = ±
√

3cr2

α(r2 − 2)
± 2(r2 + 1)c

pβ(r2 − 2)

√
3β2p2(r2 − 2)

αc

1

sinh
(√2(1+r2)c

β(2−r2)
ξ
) + r

with the constraint thatr �= 0 andr2 �= 2.

Type 14. For δ = 1, if αβ < 0 andcβ < 0, then the solution to mKdV equation(33) is

(69)u19 = A1f + B1g = ± 2c

βp

√
3β2p2(r2 + 1)

4αc

1

sinh
(√−2c

β
ξ
) + r

∓
√

3c

α

cosh
(√−2c

β
ξ
)

sinh
(√−2c

β
ξ
) + r

.

Obviously, the solutionsu1, u2, u3, u7, u8, u9, u16 andu17 are general solitary wave solutions and perio
solutions expressed by sine–cosine functions which can be found in the usual expansion methods, su
function transformation method[9,10], the hyperbolic function expansion method[11,12], the Jacobi elliptic
function expansion method[13,14]and the sine–cosine method[15]. But the solutionsu4, u5, u6, u10, u11, u12,
u13, u14, u15, u18 andu19 cannot be obtained in these expansion methods. These solutions are new type solit
wave solutions or new type periodic solutions expressed by sine–cosine functions, and some of them have
found before.

4. Conclusion

In this Letter, we introduce a new transformation from the projective Riccati equations and apply it to solve
mKdV equation. Many solutions are obtained for this mKdV equation, such as solitary wave solutions cons
in terms of hyperbolic functions, periodic solutions expressed in terms of sine and cosine functions, some s
are not given in literature to our knowledge. Of course, this transformation can be also applied to other nonlin
wave equations. Furthermore, in this Letter, we correct some errors found in some literature.
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