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Abstract

A fractional transformation is introduced to solve modified KdV (mKdV for short) equation, where this frac
transformation is used to map the solutions of an elliptic equation to another elliptic equation. Thus, more new kinds of s
are obtained, such as rational periodic wave solutions, rational solitary wave solutions and so on. It is shown that this m
more powerful to give more kinds of solutions.
 2004 Elsevier B.V. All rights reserved.

PACS: 03.65.Ge

Keywords: Elliptic equation; Jacobi elliptic function; Fractional transformation; Solitary wave solution; Periodic wave solution

1. Introduction

Since much attention has been paid to the study how to solve nonlinear models, many methods have b
posed to construct exact solutions to nonlinear equations. Among them are the sine–cosine method [1], the
neous balance method [2,3], the hyperbolic tangent expansion method [4,5],the Jacobi elliptic function expansio
method [6,7], the nonlinear transformation method [8,9], the trial function method [10,11] and others [12–1

Apart from methods mentioned above, direct algebra method [15,16] has its own advantages: it is sim
has a strong operability, where the solutions of nonlinear wave equations are mapped to those of simple equatio
In Refs. [17–19], elliptic equations have been applied as amapping to obtain many kindsof periodic solutions.

In this Letter, we will reconsider elliptic equation [20]

(1)y ′2 = a0 + a1y
2 + a2y

4,

i.e.,

(2)y ′′ = a1y + 2a2y
3,
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elliptic
where the prime denotes the derivatives in terms of its argument and apply it to solve mKdV equation fo
kinds of solutions.

2. mKdV equation

mKdV equation reads [20]:

(3)ut + αu2ux + βuxxx = 0

and it is met in many fields, such as shallow water model, plasma science, biophysics and etc.
We seek its traveling wave solutions in the following frame

(4)u = u(ξ), ξ = k(x − ct),

herec is wave velocity,k is wave number.
Substituting Eq. (4) into Eq. (3) and integrating once yield

(5)−cu + α

3
u3 + βk2u′′ = D,

whereD is an integration constant.
For Eq. (5), there are two cases needed to consider, the first one isD = 0, Eq. (5) can be rewritten as

(6)u′′ = c

βk2u − α

3βk2u3

obviously, this is just the elliptic equation (2) with

(7)a1 = c

βk2
, a2 = − α

6βk2

it has many more kinds of solutions, we will show some next expressed in terms of different Jacobi
functions [20].

(1) If a0 = 1, a1 = c/(βk2) = −(1+ m2) anda2 = −α/(6βk2) = m2, then the solution is

(8)u1 = sn(ξ,m),

where 0� m � 1, is called modulus of Jacobi elliptic functions, see [20–24], and sn(ξ,m) is Jacobi elliptic
sine function, see [20–24].

(2) If a0 = 1− m2, a1 = c/(βk2) = 2m2 − 1 anda2 = −α/(6βk2) = −m2, then the solution is

(9)u2 = cn(ξ,m),

where cn(ξ,m) is Jacobi elliptic cosine function, see [20–24].
(3) If a0 = 1− m2, a1 = c/(βk2) = 2− m2 anda2 = −α/(6βk2) = −1, then the solution is

(10)u3 = dn(ξ,m),

where dn(ξ,m) is Jacobi elliptic function of the third kind, see [20–24].
(4) If a0 = m2, a1 = c/(βk2) = −(1+ m2) anda2 = −α/(6βk2) = 1, then the solution is

(11)u4 = ns(ξ,m) ≡ 1

sn(ξ,m)
.
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(5) If a0 = −m2, a1 = c/(βk2) = 2m2 − 1 anda2 = −α/(6βk2) = 1− m2, then the solution is

(12)u5 = nc(ξ,m) ≡ 1

cn(ξ,m)
.

(6) If a0 = −1, a1 = c/(βk2) = 2− m2 anda2 = −α/(6βk2) = m2 − 1, then the solution is

(13)u6 = nd(ξ,m) ≡ 1

dn(ξ,m)
.

(7) If a0 = 1, a1 = c/(βk2) = 2− m2 anda2 = −α/(6βk2) = 1− m2, then the solution is

(14)u7 = sc(ξ,m) ≡ sn(ξ,m)

cn(ξ,m)
.

(8) If a0 = 1, a1 = c/(βk2) = 2m2 − 1 anda2 = −α/(6βk2) = (m2 − 1)m2, then the solution is

(15)u8 = sd(ξ,m) ≡ sn(ξ,m)

dn(ξ,m)
.

(9) If a0 = 1− m2, a1 = c/(βk2) = 2− m2 anda2 = −α/(6βk2) = 1, then the solution is

(16)u9 = cs(ξ,m) ≡ cn(ξ,m)

sn(ξ,m)
.

(10) If a0 = 1, a1 = c/(βk2) = −(1+ m2) anda2 = −α/(6βk2) = m2, then the solution is

(17)u10 = cd(ξ,m) ≡ cn(ξ,m)

dn(ξ,m)
.

(11) If a0 = m2(m2 − 1), a1 = c/(βk2) = 2m2 − 1 anda2 = −α/(6βk2) = 1, then the solution is

(18)u11 = ds(ξ,m) ≡ dn(ξ,m)

sn(ξ,m)
.

(12) If a0 = m2, a1 = c/(βk2) = −(1+ m2) anda2 = −α/(6βk2) = 1, then the solution is

(19)u12 = dc(ξ,m) ≡ dn(ξ,m)

cn(ξ,m)
.

There still exist many other kinds of Jacobi elliptic functions, we do not show here. It is known that whenm → 1,
sn(ξ,m) → tanhξ , cn(ξ,m) → sechξ , dn(ξ,m) → sechξ and whenm → 0, sn(ξ,m) → sinξ , cn(ξ,m) → cosξ ,
so we also can derive solutions expressed in terms of hyperbolic functions and trigonometric functions.

The second case for Eq. (5) isD �= 0, there will exist different kinds of solutions. In order to solve Eq. (5),
introduce a fractional transformation, i.e.,

(20)u(ξ) = b0 + b1y
2(ξ)

1+ b2y2(ξ)
,

wherey(ξ) is given by Eqs. (1) and (2).
In order to obtain nontrivial solutions, there is a constraint

(21)b0b2 − b1 �= 0

for the fractional transformation. Through the fractional transformation (20), the solutions of Eq. (5) withD �= 0
are mapped to those of the elliptic equation (1) or (2).
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Considering the fractional transformation (20) and the elliptic equation (1) or (2), we have

(22)u′′ = 2(b1 − b0b2)
a0 + (2a1 − 3a0b2)y

2 + (3a2 − 2a1b2)y
4 − a2b2y

6

(1+ b2y2)3
,

(23)u3 = b3
0 + 3b2

0b1y
2 + 3b0b

2
1y

4 + b3
1y

6

1+ 3b2y2 + 3b2
2y

4 + b3
2y

6
.

Substituting Eqs. (20), (22) and (23) into Eq. (5) results in[
2a0βk2(b1 − b0b2) + α

3
b3

0 − cb0 − D

]

+ [
2βk2(b1 − b0b2)(2a1 − 3a0b2) + αb2

0b1 − c(2b0b2 + b1) − 3Db2
]
y2

+ [
2βk2(b1 − b0b2)(3a2 − 2a1b2) + αb0b

2
1 − c

(
b0b

2
2 + 2b1b2

) − 3Db2
2

]
y4

(24)+
[
−2βk2(b1 − b0b2)a2b2 + α

3
b3

1 − cb1b
2
2 − Db3

2

]
y6 = 0.

The arbitrariness of argumentξ for functiony(ξ) leads to the consistency conditions

(25)2a0βk2(b1 − b0b2) + α

3
b3

0 − cb0 − D = 0,

(26)2βk2(b1 − b0b2)(2a1 − 3a0b2) + αb2
0b1 − c(2b0b2 + b1) − 3Db2 = 0,

(27)2βk2(b1 − b0b2)(3a2 − 2a1b2) + αb0b
2
1 − c

(
b0b

2
2 + 2b1b2

) − 3Db2
2 = 0,

(28)−2βk2(b1 − b0b2)a2b2 + α

3
b3

1 − cb1b
2
2 − Db3

2 = 0.

We can see that there are rich structures resulted from Eqs. (25), (26), (27) and (28) in the range of param
values of (5). Here we show two special cases.

Case 1. b0 = 0, b1 �= 0 and b2 �= 0

In this case, Eqs. (25), (26), (27) and (28) are rewritten as

(29)2a0βk2b1 − D = 0,

(30)2βk2b1(2a1 − 3a0b2) − cb1 − 3Db2 = 0,

(31)2βk2b1(3a2 − 2a1b2) − 2cb1b2 − 3Db2
2 = 0,

(32)−2βk2a2b1b2 + α

3
b3

1 − cb1b
2
2 − Db3

2 = 0,

from which we can obtain

(33)b1 = D

2a0βk2
, b2 = 4a1βk2 − c

12a0βk2

with constraints

(34)c2 = 16β2k4(a2
1 − 3a0a2

)
and

(35)
(
4a1βk2 − c

)3 + 6c
(
4a1βk2 − c

)2 + 144a0a2β
2k4(4a1βk2 − c

) − 72αD2 = 0.
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From constraint (34), we know that

(36)a2
1 − 3a0a2 � 0.

Recalling the solutions to Eqs. (1) or (2), i.e., solutions fromu1 to u12, we can obtain another new ration
periodic solutions.

(1) If a0 = 1, a1 = −(1+ m2) anda2 = m2, thena2
1 − 3a0a2 = 1− m2 + m4 > 0 and the solution is

(37)y1 = sn(ξ,m),

(38)u1a = 6Dy2(ξ)

12a0βk2 + (4a1βk2 − c)y2(ξ)
= 6D sn2(ξ,m)

12a0βk2 + (4a1βk2 − c)sn2(ξ,m)
.

(2) If a0 = 1− m2, a1 = 2m2 − 1 anda2 = −m2, thena2
1 − 3a0a2 = 1− m2 + m4 > 0 and the solution is

(39)y2 = cn(ξ,m),

(40)u2a = 6Dy2(ξ)

12a0βk2 + (4a1βk2 − c)y2(ξ)
= 6D cn2(ξ,m)

12a0βk2 + (4a1βk2 − c)cn2(ξ,m)
.

(3) If a0 = 1− m2, a1 = 2− m2 anda2 = −1, thena2
1 − 3a0a2 = 7− 7m2 + m4 > 0 and the solution is

(41)y3 = dn(ξ,m),

(42)u3a = 6Dy2(ξ)

12a0βk2 + (4a1βk2 − c)y2(ξ)
= 6D dn2(ξ,m)

12a0βk2 + (4a1βk2 − c)dn2(ξ,m)
.

(4) If a0 = m2, a1 = −(1+ m2) anda2 = 1, thena2
1 − 3a0a2 = 1− m2 + m4 > 0 and the solution is

(43)y4 = ns(ξ,m) ≡ 1

sn(ξ,m)
,

(44)u4a = 6Dy2(ξ)

12a0βk2 + (4a1βk2 − c)y2(ξ)
= 6D ns2(ξ,m)

12a0βk2 + (4a1βk2 − c)ns2(ξ,m)
.

(5) If a0 = −m2, a1 = 2m2 − 1 anda2 = 1− m2, thena2
1 − 3a0a2 = 1− m2 + m4 > 0 and the solution is

(45)y5 = nc(ξ,m) ≡ 1

cn(ξ,m)
,

(46)u5a = 6Dy2(ξ)

12a0βk2 + (4a1βk2 − c)y2(ξ)
= 6D nc2(ξ,m)

12a0βk2 + (4a1βk2 − c)nc2(ξ,m)
.

(6) If a0 = −1, a1 = 2− m2 anda2 = m2 − 1, thena2
1 − 3a0a2 = 1− m2 + m4 > 0 and the solution is

(47)y6 = nd(ξ,m) ≡ 1

dn(ξ,m)
,

(48)u6a = 6Dy2(ξ)

12a0βk2 + (4a1βk2 − c)y2(ξ)
= 6D nd2(ξ,m)

12a0βk2 + (4a1βk2 − c)nd2(ξ,m)
.

(7) If a0 = 1, a1 = 2− m2 anda2 = 1− m2, then thea2
1 − 3a0a2 = 1− m2 + m4 > 0 and solution is

(49)y7 = sc(ξ,m) ≡ sn(ξ,m)

cn(ξ,m)
,

(50)u7a = 6Dy2(ξ)

12a0βk2 + (4a1βk2 − c)y2(ξ)
= 6D sc2(ξ,m)

12a0βk2 + (4a1βk2 − c)sc2(ξ,m)
.
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(8) If a0 = 1, a1 = 2m2 − 1 anda2 = (m2 − 1)m2, thena2
1 − 3a0a2 = 1− m2 + m4 > 0 and the solution is

(51)y8 = sd(ξ,m) ≡ sn(ξ,m)

dn(ξ,m)
,

(52)u8a = 6Dy2(ξ)

12a0βk2 + (4a1βk2 − c)y2(ξ)
= 6D sd2(ξ,m)

12a0βk2 + (4a1βk2 − c)sd2(ξ,m)
.

(9) If a0 = 1− m2, a1 = 2− m2 anda2 = 1, thena2
1 − 3a0a2 = 1− m2 + m4 > 0 and the solution is

(53)y9 = cs(ξ,m) ≡ cn(ξ,m)

sn(ξ,m)
,

(54)u9a = 6Dy2(ξ)

12a0βk2 + (4a1βk2 − c)y2(ξ)
= 6D cs2(ξ,m)

12a0βk2 + (4a1βk2 − c)cs2(ξ,m)
.

(10) If a0 = 1, a1 = −(1+ m2) anda2 = m2, thena2
1 − 3a0a2 = 1− m2 + m4 > 0 and the solution is

(55)y10 = cd(ξ,m) ≡ cn(ξ,m)

dn(ξ,m)
,

(56)u10a = 6Dy2(ξ)

12a0βk2 + (4a1βk2 − c)y2(ξ)
= 6D cd2(ξ,m)

12a0βk2 + (4a1βk2 − c)cd2(ξ,m)
.

(11) If a0 = m2(m2 − 1), a1 = 2m2 − 1 anda2 = 1, thena2
1 − 3a0a2 = 1− m2 + m4 > 0 and the solution is

(57)y11 = ds(ξ,m) ≡ dn(ξ,m)

sn(ξ,m)
,

(58)u11a = 6Dy2(ξ)

12a0βk2 + (4a1βk2 − c)y2(ξ)
= 6D ds2(ξ,m)

12a0βk2 + (4a1βk2 − c)ds2(ξ,m)
.

(12) If a0 = m2, a1 = −(1+ m2) anda2 = 1, thena2
1 − 3a0a2 = 1− m2 + m4 > 0 and the solution is

(59)y12 = dc(ξ,m) ≡ dn(ξ,m)

cn(ξ,m)
,

(60)u12a = 6Dy2(ξ)

12a0βk2 + (4a1βk2 − c)y2(ξ)
= 6D dc2(ξ,m)

12a0βk2 + (4a1βk2 − c)dc2(ξ,m)
.

Case 2. b0 �= 0, b1 = 0 and b2 �= 0

In this case, from Eqs. (25), (26), (27) and (28), we can derive

(61)b0 = D

2a2βk2b2, b2 = 12a2βk2

4a1βk2 − c

with constraints (34) and (35). Similarly, we can obtain solutions just similar to solutions fromu1a to u12a , here
we omit the details.

3. Conclusion

In this Letter, we reconsider elliptic equation in applying to solve nonlinear wave equations, taking mK
equation as an example, more kinds of solutions are derived from there, including rational periodic solution
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similar

16 and
rational solitary wave solutions constructed in terms ofhyperbolic functions, periodic solutions expressed b
trigonometric functions and periodic solutions dealing with elliptic functions. In order to derive rational typ
solutions, a fractional transformation must be introduced. Of course, whether there is application of
fractional transformation to other nonlinear wave equations is still an open question.
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