
Commun. Theor. Phys. (Beijing, China) 41 (2004) pp. 675–680
c© International Academic Publishers Vol. 41, No. 5, May 15, 2004

Elliptic Equation and Its Direct Applications to Nonlinear Wave Equations∗
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Abstract Elliptic equation is taken as an ansatz and applied to solve nonlinear wave equations directly. More kinds
of solutions are directly obtained, such as rational solutions, solitary wave solutions, periodic wave solutions and so on.
It is shown that this method is more powerful in giving more kinds of solutions, so it can be taken as a generalized
method.
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1 Introduction
Since more and more problems have to involve nonlin-

earity, how to solve these nonlinear models attracts much
attention. Many methods have been proposed to con-
struct exact solutions to nonlinear equations up to now.
Among them are the sine-cosine method,[1] the homoge-
neous balance method,[2,3] the hyperbolic tangent expan-
sion method,[4,5] the Jacobi elliptic function expansion
method,[6,7] the nonlinear transformation method,[8,9] the
trial function method,[10,11] and others.[12−14]

Apart from methods mentioned above, direct algebra
method[15,16] has its own advantages: it is simple and has
a strong operability. Hu et al.[15] introduced an ansatz

u′ = (Au− a)(Bu− b) , (1)

where A,B, a, and b are constants to be determined, and
u′ is derivative in terms of its argument. They gave some
examples to illustrate the applications of Eq. (1) and the
solutions they obtained are mainly different rational solu-
tions and solutions of twisted kink forms.

In this paper, we will consider elliptic equation,[17]

y′2 =
i=4∑
i=0

aiy
i , (2)

and take it as a new ansatz to solve nonlinear wave equa-
tions. Obviously, equation (1) is just a special case of
Eq. (2), so application of Eq. (2) to nonlinear wave equa-
tions will lead to more kinds of solutions. In the following
sections, applications of ansatz (2) to some well-known
equations will be given.

2 KdV Equation
KdV equation reads[17]

ut + uux + βuxxx = 0 , (3)

and it is met in many fields, such as shallow water model,
plasma science, biophysics, etc.

We seek its travelling wave solutions in the following
frame,

u = u(ξ) , ξ = k(x− ct) , (4)

where c is wave velocity, and k is wave number.
Substituting Eq. (4) into Eq. (3) and integrating once

yields

−cu +
1
2
u2 + βk2u′′ = D , (5)

where D is integration constant. And we consider elliptic
equation (2) and take it as ansatz

u′2 =
i=4∑
i=0

aiu
i , (6)

where ai (i = 0, 1, 2, 3, 4) are constants determined by
specific nonlinear model, and then

u′′ =
a1

2
+ a2u +

3a3

2
u2 + 2a4u

3 . (7)

From Eqs. (5) and (7), one has

βk2a1

2
= D ,

2βk2a4 = 0 ,

a2 − c = 0 ,

1
2

+
3
2
a3βk2 = 0 . (8)

So the coefficients of ansatz (6) can be determined as

a0 = C0 , a1 = C1 , a2 = c ,

a3 = − 1
3βk2

, a4 = 0 , (9)
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where C0, C1, and c are arbitrary constants. Thus we
derive the ansatz suitable for KdV equation,

u′2 =
i=3∑
i=0

aiu
i , (10)

from which more kinds of solutions can be obtained. We
will give some discussions about some of these solutions.
Case A Consider a0 = a1 = a2 = 0, i.e. c = 0. This is a
non-travelling solution, then

u′2 = a3u
3 , (11)

from which one has

u = −12β

x2
. (12)

This is a rational solution. The rational solutions are a
disjoint union of manifolds and the particle system de-
scribing the motion of pole of rational solutions, which
have been discussed in many literatures, such as Refs. [18]
and [19].
Case B Consider a0 = a1 = 0, then

u′2 = a2u
2 + a3u

3 , (13)

from which if a2 = c > 0, one has

u = 3cβk2sech2
(√c

2
ξ
)
. (14)

This is a bell-soliton solution.
If a2 = c < 0, one has

u = 3cβk2sec2
(√−c

2
ξ
)

. (15)

This is a kind of solutions dealing with “hot spots” or
“blow-up” of solutions,[20−23] which can develop singular-
ity at a finite point.
Case C Consider a0 = 0, then

u′2 = a1u + a2u
2 + a3u

3 , (16)

from which many more solutions expressed in terms of
different elliptic functions[17] can be reached.

(i) If a1 = 4, a2 = c = −4(1 + m2), and a3 = 4m2

(where 0 ≤ m ≤ 1, is called modulus of Jacobi elliptic
functions, see Refs. [17], and [24] ∼ [26], one has

u = sn2(ξ, m) , (17)

where sn(ξ,m) is the Jacobi elliptic sine function, see
Refs. [17], and [24] ∼ [26].

(ii) If a1 = 4(1 − m2), a2 = c = 4(2m2 − 1), and
a3 = −4m2, one has

u = cn2(ξ, m) , (18)

where cn(ξ, m) is the Jacobi elliptic cosine function, see
Refs. [17], and [24] ∼ [26].

(iii) If a1 = −4(1 − m2), a2 = c = 4(2 − m2), and
a3 = −4, one has

u = dn2(ξ, m) , (19)

where dn(ξ, m) is the Jacobi elliptic function of the third
kind, see Refs. [17], and [24] ∼ [26].

Of course, we can have more generalized solutions, for
example,

(iv) If a1 = 4A, a2 = c = −4(1+m2), and a3 = 4m2/A,
one has

u = Asn2(ξ, m) = −12m2βk2sn2(ξ,m) . (20)

(v) If a1 = 4(1 − m2)A, a2 = c = 4(2m2 − 1), and
a3 = −4m2/A, one has

u = Acn2(ξ, m) = 12m2βk2cn2(ξ,m) . (21)

(vi) If a1 = −4(1 − m2)A, a2 = c = 4(2 − m2), and
a3 = −4/A, one has

u = Adn2(ξ,m) = 12βk2dn2(ξ, m) . (22)

(vii) If a1 = 4Aµ2, a2 = c = −4µ2(1 + m2), and a3 = 4µ2m2/A, one has

u = Asn2(µξ,m) =
3cβm2k2

1 + m2
sn2

(
±

√
− c

4(1 + m2)
ξ, m

)
. (23)

(viii) If a1 = 4µ2(1−m2)A, a2 = c = 4µ2(2m2 − 1), and a3 = −4µ2m2/A, one has

u = Acn2(µξ,m) =
3cβm2k2

2m2 − 1
cn2

(
±

√
c

4(2m2 − 1)
ξ, m

)
. (24)

(ix) If a1 = −4µ2(1−m2)A, a2 = c = 4µ2(2−m2), and a3 = −4µ2/A, one has

u = Adn2(µξ,m) =
3cβk2

2−m2
dn2

(
±

√
c

4(2−m2)
ξ, m

)
. (25)

There still exist many other kinds of Jacobi elliptic functions, which we do not show here. It is known that when
m→ 1, sn(ξ, m)→ tanh ξ, cn(ξ,m)→ sech ξ, dn(ξ, m)→ sech ξ, and when m→ 0, sn(ξ, m)→ sin ξ, cn(ξ, m)→ cos ξ,
so we also can derive solutions expressed in terms of hyperbolic functions and trigonometric functions.
Case D If the ansatz is just the same one as Eq. (10), then we have two possible solutions:

(i) If a0 = −Au1u2u3, a1 = A(u1u2 + u2u3 + u3u1), a2 = c = −A(u1 + u2 + u3), and a3 = −1/3βk2 = A (A >
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0, u3 ≤ u2 ≤ u1), then

u = u3 + (u2 − u3)sn2
[√
−u1 − u3

12βk2
ξ, m

]
,

(
u3 ≤ u ≤ u2,m =

√
u2 − u3

u1 − u3

)
. (26)

(ii) If a0 = Au1u2u3, a1 = −A(u1u2 + u2u3 + u3u1), a2 = c = −A(u1 + u2 + u3), and a3 = −1/3βk2 = −A (A >

0, u3 ≤ u2 ≤ u1), then

u = u2 + (u1 − u2)cn2
[√u1 − u2

12βk2
ξ, m

]
,

(
u3 ≤ u ≤ u2,m =

√
u1 − u2

u1 − u3

)
. (27)

(iii) If a0 = −g3, a1 = −g2, a2 = c = 0, and a3 = −1/3βk2 = 4, then

u = ℘(ξ; g2; g3) , (28)

where ℘(ξ; g2; g3) is Weierstrass function, see Refs. [17] and [24] ∼ [26].
We have given an example to show the application of the elliptic equation taking the form of Eq. (10) to solve

KdV equation. Many more kinds of solutions have been obtained there, too. Maybe one thinks it unnecessary to
introduce Eq. (2) as an ansatz to solve nonlinear evolution equations. Actually, this is right for some cases where the
nonlinear evolution equations taking simple forms to allow us to transform nonlinear equations to the elliptic equation
(2) directly. For more cases, one cannot transform nonlinear equations to the elliptic equation (2) directly, then the
ansatz solution is needed, for example, the fifth-order dispersion equation,

ut + αuxuxx + βuxxxxx = 0 . (29)

In the frame of Eq. (4), it can be transformed to

βk4u(4) +
αk2

2
(u′)2 − cu = D , (30)

where D is integration constant. Applying Eq. (6) as its ansatz solution, then

u(4) =
(
3a0a3 +

a1a2

2

)
+

(
12a0a4 + a2

2 +
9a1a3

2

)
u +

(15a2a3

2
+ 15a1a4

)
u2

+
(15a2

3

2
+ 20a2a4

)
u3 + 30a3a4u

4 + 24a2
4u

5 . (31)

So we can have

a4 = 0 , a3 = − α

15βk2
, a2 = c1 , a1 =

5c

αk2
− 5βk2c2

1

α
= c2 , a0 = D − 5βk2c1c2

3α
= c3 , (32)

where D, c1, c2, and c3 are arbitrary constants. Obvi-
ously, we can get many kinds of solutions as done to KdV
equation, here we omit these details.

3 Klein–Gordon Equation
In the last section, we get a kind of elliptic equation of

the form (10), which can be applied to solve some nonlin-
ear wave equations. In this section, we will show that an-
other kind of elliptic equation (2) can be applied to solve
some other nonlinear wave equations. Here we consider
nonlinear Klein–Gordon equation as an example.

Nonlinear Klein–Gordon equation[17] reads

utt − c2
0uxx + αu− βu3 = 0 . (33)

Substituting Eq. (4) into Eq. (33) leads to

u′′ + α1u− β1u
3 = 0 , (34)

where

α1 =
α

k2(c2 − c2
0)

, β1 =
β

k2(c2 − c2
0)

. (35)

Similarly, we assume that the solutions of Eq. (33)
takes the form of ansatz Eq. (6), then substituting Eq. (7)
into Eq. (34) leads to

a1 = 0 , a2 = −α1 , a3 = 0 , a4 =
β1

2
, (36)

so the ansatz suitable for Klein-Gordon equation takes the
following form

u′2 = a0 + a2u
2 + a4u

4 . (37)

This is another kind of elliptic equation, which also has
many more kinds of solutions (some discussions about
Eq. (37) are given in Ref. [27]). We will show some next.
Case A Consider a0 = 0, then we have two kinds of
solutions.

(i) If a2 = −α1 > 0 and a4 = β1/2 > 0, the solution is

u = ±
√
−2α1

β1
csch(

√
−α1ξ)
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= ±
√
−2α

β
csch

(√
− α

k2(c2 − c2
0)

ξ
)
. (38)

(ii) If a2 = −α1 > 0 and a4 = β1/2 < 0, the solution
is

u = ±
√

2α1

β1
sech(

√
−α1ξ)

= ±
√

2α

β
sech

(√
− α

k2(c2 − c2
0)

ξ
)
. (39)

Case B The ansatz just takes the form of Eq. (37),
there will exist many more kinds of solutions expressed
in terms of different Jacobi elliptic functions.[17] We show
some next.

(i) If a0 = 1, a2 = −α1 = −(1+m2), and a4 = β1/2 =
m2, then the solution is

u = sn(ξ,m) . (40)

(ii) If a0 = 1 − m2, a2 = −α1 = 2m2 − 1, and
a4 = β1/2 = −m2, then the solution is

u = cn(ξ,m) . (41)

(iii) If a0 = 1 − m2, a2 = −α1 = 2 − m2, and
a4 = β1/2 = −1, then the solution is

u = dn(ξ, m) . (42)

(iv) If a0 = m2, a2 = −α1 = −(1 + m2), and
a4 = β1/2 = 1, then the solution is

u = ns(ξ,m) ≡ 1
sn(ξ, m)

. (43)

(v) If a0 = −m2, a2 = −α1 = 2m2 − 1, and a4 =
β1/2 = 1−m2, then the solution is

u = nc(ξ, m) ≡ 1
cn(ξ, m)

. (44)

(vi) If a0 = −1, a2 = −α1 = 2−m2, and a4 = β1/2 =

m2 − 1, then the solution is

u = nd(ξ, m) ≡ 1
dn(ξ, m)

. (45)

(vii) If a0 = 1, a2 = −α1 = 2 −m2, and a4 = β1/2 =
1−m2, then the solution is

u = sc(ξ, m) ≡ sn(ξ,m)
cn(ξ,m)

. (46)

(viii) If a0 = 1, a2 = −α1 = 2m2−1, and a4 = β1/2 =
(m2 − 1)m2, then the solution is

u = sd(ξ, m) ≡ sn(ξ, m)
dn(ξ,m)

. (47)

(ix) If a0 = 1 − m2, a2 = −α1 = 2 − m2, and
a4 = β1/2 = 1, then the solution is

u = cs(ξ, m) ≡ cn(ξ,m)
sn(ξ,m)

. (48)

(x) If a0 = 1, a2 = −α1 = −(1+m2), and a4 = β1/2 =
m2, then the solution is

u = cd(ξ, m) ≡ cn(ξ, m)
dn(ξ,m)

. (49)

(xi) If a0 = m2(m2 − 1), a2 = −α1 = 2m2 − 1, and
a4 = β1/2 = 1, then the solution is

u = ds(ξ, m) ≡ dn(ξ,m)
sn(ξ, m)

. (50)

(xii) If a0 = m2, a2 = −α1 = −(1 + m2), and
a4 = β1/2 = 1, then the solution is

u = dc(ξ, m) ≡ dn(ξ,m)
cn(ξ, m)

. (51)

Of course, we can get more generalized solutions just
like what we have done in the former section.

(xiii) If a0 = µ2A2, a2 = −α1 = −µ2(1 + m2), and
a4 = β1/2 = µ2m2/A2, then the solution is

u = ±

√
2m2α

(1 + m2)β
sn

(
±

√
α

(1 + m2)k2(c2 − c2
0)

ξ,m
)
. (52)

(xiv) If a0 = µ2(1−m2)A2, a2 = −α1 = µ2(2m2 − 1), and a4 = β1/2 = −µ2m2/A2, then the solution is

u = ±

√
2m2α

(2m2 − 1)β
cn

(
±

√
− α

(2m2 − 1)k2(c2 − c2
0)

ξ, m
)

. (53)

(xv) If a0 = µ2(1−m2)A2, a2 = −α1 = µ2(2−m2), and a4 = β1/2 = −µ2/A2, then the solution is

u = ±

√
2α

(2−m2)β
dn

(
±

√
− α

(2−m2)k2(c2 − c2
0)

ξ, m
)

. (54)

(xvi) If a0 = µ2m2A2, a2 = −α1 = −µ2(1 + m2), and a4 = β1/2 = µ2/A2, then the solution is

u = ±

√
2α

(1 + m2)β
ns

(
±

√
α

(1 + m2)k2(c2 − c2
0)

ξ, m
)

. (55)
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(xvii) If a0 = −µ2m2A2, a2 = −α1 = µ2(2m2 − 1), and a4 = β1/2 = µ2(1−m2)/A2, then the solution is

u = ±

√
−2(1−m2)α

(2m2 − 1)β
nc

(
±

√
− α

(2m2 − 1)k2(c2 − c2
0)

ξ, m
)

. (56)

(xviii) If a0 = −µ2A2, a2 = −α1 = µ2(2−m2), and a4 = β1/2 = µ2(m2 − 1)/A2, then the solution is

u = ±

√
2(1−m2)α
(2−m2)β

nd
(
±

√
− α

(2−m2)k2(c2 − c2
0)

ξ,m
)

. (57)

(xix) If a0 = µ2A2, a2 = −α1 = µ2(2−m2), and a4 = β1/2 = µ2(1−m2)/A2, then the solution is

u = ±

√
−2(1−m2)α

(2−m2)β
sc

(
±

√
− α

(2−m2)k2(c2 − c2
0)

ξ, m
)
. (58)

(xx) If a0 = µ2A2, a2 = −α1 = µ2(2m2 − 1), and a4 = β1/2 = µ2(m2 − 1)m2/A2, then the solution is

u = ±

√
2m2(1−m2)α

(2m2 − 1)β
sd

(
±

√
− α

(2m2 − 1)k2(c2 − c2
0)

ξ, m
)

. (59)

(xxi) If a0 = µ2(1−m2)A2, a2 = −α1 = µ2(2−m2), and a4 = β1/2 = µ2/A2, then the solution is

u = ±

√
− 2α

(2−m2)β
cs

(
±

√
− α

(2−m2)k2(c2 − c2
0)

ξ,m
)

. (60)

(xxii) If a0 = µ2A2, a2 = −α1 = −µ2(1 + m2), and a4 = β1/2 = µ2m2/A2, then the solution is

u = ±

√
2m2α

(1 + m2)β
cd

(
±

√
α

(1 + m2)k2(c2 − c2
0)

ξ, m
)

. (61)

(xxiii) If a0 = µ2m2(m2 − 1)A2, a2 = −α1 = µ2(2m2 − 1), and a4 = β1/2 = µ2/A2, then the solution is

u = ±

√
− 2α

(2m2 − 1)β
ds

(
±

√
− α

(2m2 − 1)k2(c2 − c2
0)

ξ, m
)

. (62)

(xxiv) If a0 = µ2m2A2, a2 = −α1 = −µ2(1 + m2), and a4 = β1/2 = µ2/A2, then the solution is

u = ±

√
2α

(1 + m2)β
dc

(
±

√
α

(1 + m2)k2(c2 − c2
0)

ξ, m
)

. (63)

It is known that when m → 1, sn(ξ,m) → tanh ξ,
cn (ξ, m) → sech ξ, dn (ξ, m) → sech ξ, and when m → 0,
sn(ξ,m) → sin ξ, cn(ξ, m) → cos ξ. And among the Ja-
cobi elliptic functions, Jacobi elliptic sine function, Jacobi
elliptic cosine function, and Jacobi elliptic function of the
third kind are three basic ones, and all other Jacobi el-
liptic functions can be expressed in terms of them. So
we can also arrive at more solutions expressed in terms of
hyperbolic functions and trigonometric functions.

4 Conclusion
In this paper, we consider elliptic equation as a new

ansatz to solve nonlinear wave equations directly. More
kinds of solutions are derived, including rational solutions,
solitary wave solutions constructed in terms of hyperbolic
functions, and periodic solutions expressed by trigonomet-

ric functions and periodic solutions dealing with elliptic
functions. It is obvious that ansatz (1) is just one spe-
cial case of ansatz (2) (it has two cases: ansatz (10) and
ansatz (37)). Ansatz (1) cannot be applied to solve that
kind of nonlinear equations solved by ansatz (10). From
this point, nonlinear wave equations can be classified into
two categories: one is solvable by ansatz (10), and the
other is solvable by ansatz (37).

For application of ansatz (2) to some nonlinear wave
equations, the obtained solutions consist of those from the
hyperbolic tangent expansion method,[4,5] the Jacobi ellip-
tic function expansion method,[6,7] the nonlinear transfor-
mation method,[8,9] and the trial function method,[10,11]

so it can be taken as a generalized method. More appli-
cations to solve other nonlinear wave equations are appli-
cable.
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