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Periodic Structure of Equatorial Envelope Rossby Wave Under Influence of Diabatic

Heating∗
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Abstract A simple shallow-water model with influence of diabatic heating on a β-plane is applied to investigate the
nonlinear equatorial Rossby waves in a shear flow. By the asymptotic method of multiple scales, the cubic nonlinear
Schrödinger (NLS for short) equation with an external heating source is derived for large amplitude equatorial envelope
Rossby wave in a shear flow. And then various periodic structures for these equatorial envelope Rossby waves are
obtained with the help of Jacobi elliptic functions and elliptic equation. It is shown that phase-locked diabatic heating
plays an important role in periodic structures of rational form.
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1 Introduction
In the last decades, the theory of equatorial waves

has attracted much more attention on equatorial atmo-
spheric dynamics and nonlinear dynamics. It provides
a dynamical frame to analyze the slowly evolving large-
scale phenomena in low latitudes and underlining dynam-
ics. These theories of equatorial waves have been used for
various purposes, especially in explaining some fundamen-
tal features of tropical climate and global changes, such
as Walker circulation,[1] the low-frequency Madden–Julian
oscillation,[2] and ENSO.[3]

Among the nonlinear theories for equatorial waves,
many are related to nonlinear Rossby wave activity, for
it can manifest some of the prime events of geophysical
fluid flows, and this activity often leads to large-scale lo-
calized coherent structures that have remarkable perma-
nence and stability. When the zonal flow shear is taken to
be nonuniform, one can derive Rossby solitary waves and
envelope Rossby solitary waves. Benney,[4] Yamagata,[5]

and Zhao[6] investigated envelope Rossby solitary waves
in barotropic shear and uniform or nonuniform flows, in-
dependently. However, none of them considered the ef-
fect of external sources, especially the influence of diabatic
heating from oceans. In this paper, we will address this
issue by the method of multi-scale to derive the nonlin-
ear Schrödinger (NLS) equation with an external heating
source satisfied by the large-amplitude equatorial Rossby
waves. And then the basic structures of this NLS equa-
tion without and with phase-locked source are obtained
by using knowledge of Jacobi elliptic functions and ellip-
tic equation.

2 Derivation of NLS Equation with an
External Heating Source
The governing equation is quasi-geostrophic potential

vorticity equation of shallow-water model on an equatorial
β-plane with an external heating source, i.e.

( ∂

∂t∗
− ∂ψ∗
∂y∗

∂

∂x∗
+
∂ψ∗
∂x∗

∂

∂y∗

)(
βy∗ +∇2

∗ψ∗ −
β2y2

∗
c20

ψ∗

)
= Q∗(x∗, y∗, t∗) , (1)

where ψ∗ is the stream function, β > 0 is the planetary-
vorticity gradient, c0 is velocity of pure gravity waves,
and Q∗(x∗, y∗, t∗) is the diabatic heating due to the trop-
ical ocean, and ∇2

∗ is the horizontal Laplacian operator,
which is defined as

∇2
∗ =

∂2

∂x2
∗

+
∂2

∂y2
∗
. (2)

Since the equatorial waves are trapped near the equa-

tor, the appropriate boundary condition can be given as

∂ψ∗
∂x∗

→ 0 , as y∗ → ±∞ . (3)

Equation (3) can be nondimensionalized as

∂

∂t
∇̄2ψ + εJ(ψ, ∇̄2ψ) +

∂ψ

∂x
= µQ(x, y, t) (4)

with

J(a, b) =
∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
,
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∇̄2 = ∇2 − y2 , ∇2 =
∂2

∂x2
+

∂2

∂y2
, (5)

where ε is the equatorial Rossby number, µ is an ampli-
tude parameter, and they are all small numbers, near the
equator ε ∼ O(10−2). Here it is obvious that ε denotes the
magnitude of nonlinearity and µ represents the strength
of external forcing.

Due to the existence of these small parameters, the
multi-scale expansion method can be applied to solve the
problem Eq. (4), where the stretching coordinates of the

following form

∂

∂t
→ ∂

∂t
+ ε

∂

∂T1
+ ε2

∂

∂T2
,

∂

∂x
→ ∂

∂x
+ ε

∂

∂X1
+ ε2

∂

∂X2
(6)

are introduced with

T1 = εt , T2 = ε2t , X1 = εx , X2 = ε2x . (7)

Substituting Eq. (6) into Eq. (4) results in

{( ∂

∂t
+ ε

∂

∂T1
+ ε2

∂

∂T2

)
+ ε

[(∂ψ
∂x

+ ε
∂ψ

∂X1
+ ε2

∂ψ

∂X2

) ∂

∂y
− ∂ψ

∂y

( ∂

∂x
+ ε

∂

∂X1
+ ε2

∂

∂X2

)]}
×

[
∇̄2ψ + 2ε

∂2ψ

∂x∂X1
+ ε2

( ∂2ψ

∂X2
1

+ 2
∂2ψ

∂x∂X2

)
+ 2ε3

∂2ψ

∂X1∂X2
+ ε4

∂2ψ

∂X2
2

]
+

( ∂

∂x
+ ε

∂

∂X1
+ ε2

∂

∂X2

)
ψ = µQ(x, y, t;X1, T1;X2, T2) . (8)

In the presence of small parameters, the total stream function can be written as

ψ = −
∫ y

ū(s)ds+
∞∑

n=1

εnψn(x, y, t;X1, T1;X2, T2) . (9)

If the external forcing is weak, i.e. O(µ) ∼ O(ε3), then combining Eq. (8) with Eq. (9) leads to

O(ε) : ℘(ψ1) = 0 , (10)

O(ε2) : ℘(ψ2) = −
( ∂

∂T1
+ ū

∂

∂X1

)
∇̄2ψ1 − (1− ū′′) ∂ψ1

∂X1
− 2

( ∂

∂t
+ ū

∂

∂x

) ∂2ψ1

∂x∂X1
− J(ψ1, ∇̄2ψ1) , (11)

O(ε3) : ℘(ψ3) = −
( ∂

∂T2
+ ū

∂

∂X2

)
∇̄2ψ1 − (1− ū′′) ∂ψ1

∂X2
− 2

( ∂

∂T1
+ ū

∂

∂X1

) ∂2ψ1

∂x∂X1

− J
(
ψ1, 2

∂2ψ1

∂x∂X1

)
−

( ∂

∂t
+ ū

∂

∂x

)(∂2ψ1

∂X2
1

+ 2
∂2ψ1

∂x∂X2
+ 2

∂2ψ2

∂x∂X1

)
− ∂ψ1

∂X1

∂

∂y
∇̄2ψ1 +

∂ψ1

∂y

∂

∂X1
∇̄2ψ1 −

( ∂

∂T1
+ ū

∂

∂X1

)
∇̄2ψ2

− (1− ū′′) ∂ψ2

∂X1
− J(ψ1, ∇̄2ψ2)− J(ψ2, ∇̄2ψ1) +Q (12)

with the operator ℘ is defined as

℘( ) =
( ∂

∂t
+ ū

∂

∂x

)
∇̄2 + (1− ū′′) ∂

∂x
. (13)

Obviously, ψ1 satisfies the linear equation (10), whose solution can be taken as

ψ1 = A(X1, T1, X2, T2)Φ1(y)exp[i(λx− ω̄t)] + c.c. , (14)

where λ is the zonal wave number, ω̄ is the angular frequency, c.c. is an abbreviation for “complex conjugate” of its
preceding term. The latitudinal structure Φ1(y) can be determined by substituting Eq. (14) into Eq. (10), but the wave
amplitude A(X1, T1, X2, T2) can only be obtained from higher order equations. Substituting the first-order solution
(14) into the second-order expansion equation (11), we have

℘(ψ2) =
1− ū′′

ū− c
Φ1

( ∂A
∂T1

+ c1
∂A

∂X1

)
exp[i(λx− ω̄t)] + iλP (y)A2exp[2i(λx− ω̄t)] + c.c. (15)

with

c =
ω̄

λ
, c1 = c+

2λ2(ū− c)2

1− ū′′
, P (y) = Φ2

1

d
dy

(1− ū′′

ū− c

)
. (16)

It is obvious that the homogeneous part of Eq. (15) is identical to Eq. (10), and the solution to this portion is similar
to Eq. (14). The first part of inhomogeneous terms on the right hand is resonant with the homogeneous solution, thus
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in order to avoid secular growth, orthogonality must exist for the inhomogeneous terms, i.e.

lim
τ→∞

lim
x→∞

∫ x

−x

∫ ∞

−∞

∫ τ

0

ψ1[the inhomogeneous terms of Eq. (15)]dxdydt . (17)

And this orthogonality condition yields the following equation
∂A

∂T1
+ cg

∂A

∂X1
= 0 (18)

with

cg = c+
I1
I
, I =

∫ ∞

−∞

1− ū′′

(ū− c)2
Φ2

1dy , I1 = 2λ2

∫ ∞

−∞
Φ2

1dy , (19)

and special solution to Eq. (11) is

ψ2 = B(X1, T1, X2, T2)Φ2(y)exp[2i(λx− ω̄t)] + c.c. (20)

with the relation
B = A2 . (21)

If the external forcing takes the following form,

Q =
∞∑

n=0

Qnexp[ni(λx− ω̄t)] + c.c. , (22)

then combining the results for ψ1 and ψ2 with Eq. (12) reaches

℘(ψ3) =
{1− ū′′

ū− c

[ ∂A
∂T2

+ c1
∂A

∂X2
+ iλ

ū− c
1− ū′′

(c+ 2cg − 3ū)
∂2A

∂X2
1

]
Φ1

+ iλ
[Φ1

2
d
dy

( P

ū− c

)
+

P

ū− c
dΦ1

dy

]
|A|2A+Q1

}
exp[i(λx− ω̄t)] + c.c. +♦ , (23)

where ♦ are terms associated with exp[±2i(λx− ω̄t)], exp[±3i(λx− ω̄t)], and so on.
Similarly, the solvability of Eq. (23) results in the following NLS equation with an external heating source

i
( ∂A
∂T2

+ cg
∂A

∂X2

)
+ α

∂2A

∂X2
1

+ δ|A|2A = ηQ11(X1, T1, X2, T2) (24)

with

α =
I2
I
, δ =

I3
I
, η =

I4
I
, I2 = −λ

∫ ∞

−∞

(c+ 2cg − 3ū)
ū− c

Φ2
1dy ,

I3 = −λ
∫ ∞

−∞

1
ū− c

[Φ2
1

2
d
dy

( P

ū− c

)
+
PΦ1

ū− c
dΦ1

dy

]
dy , I4 = −i

∫ ∞

−∞

1
ū− c

Q1Φ1dy . (25)

If we introduce the following coordinates transformation
defined by Jeffrey,[7]

T = T2 , X =
1
ε
(X2 − cgT2) = X1 − cgT1 , (26)

then the NLS equation with an external heating source
(24) can be rewritten as the canonical form,

i
∂A

∂T
+ α

∂2A

∂X2
+ δ|A|2A = ηQ11(X,T ) , (27)

where Q11(X,T ) is the slowly varying external heating
source, and η denotes its strength.

Actually, there are multiple structures controlled by
Eq. (27), and in the next sections we will show some spe-
cial cases.

3 Solutions to NLS Equation Without a
Source
First of all, if there is no external heating source, i.e.

η = 0, then equation (27) reduces to

i
∂A

∂T
+ α

∂2A

∂X2
+ δ|A|2A = 0 . (28)

Equation (28) can be solved in the frame of travelling
wave,

A(X,T ) = φ(ξ) exp[i(kX − ωT )] ,

ξ = s(X − CgT ) . (29)

Then equation (28) is rewritten as

d2φ

dξ2
=

γ

αs2
φ− δ

αs2
φ3 (30)

with
Cg = 2αk , −γ = ω − αk2 . (31)

Obviously, equation (30) is an elliptic equation,[8]

z′2 = a0 + a1z
2 + a2z

4 , or z′′ = a1z + 2a2z
3 (32)
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with

a1 =
γ

αs2
, a2 = − δ

2αs2
, (33)

where the prime denotes the derivatives with respect to
its argument.

Equation (30) or (32) has many more kinds of solu-
tions, we will show some next, expressed in terms of dif-
ferent Jacobi elliptic functions.[8]

(i) If a0 = 1, a1 = γ/αs2 = −(1 + m2), and a2 =
−δ/2αs2 = m2, then the solution is

φ1 = sn(ξ,m) , (34)

where 0 ≤ m ≤ 1, is called modulus of Jacobi elliptic
functions, and sn(ξ,m) is Jacobi elliptic sine function (see
Refs. [8] ∼ [12]).

(ii) If a0 = 1 − m2, a1 = γ/αs2 = 2m2 − 1, and
a2 = −δ/2αs2 = −m2, then the solution is

φ2 = cn(ξ,m) , (35)

where cn(ξ,m) is Jacobi elliptic cosine function (see
Refs. [8] ∼ [12]).

(iii) If a0 = 1 − m2, a1 = γ/αs2 = 2 − m2, and
a2 = −δ/2αs2 = −1, then the solution is

φ3 = dn(ξ,m) , (36)

where dn(ξ,m) is Jacobi elliptic function of the third kind,
(see Refs. [8] ∼ [12].)

(iv) If a0 = m2, a1 = γ/αs2 = −(1 + m2), and
a2 = −δ/2αs2 = 1, then the solution is

φ4 = ns(ξ,m) ≡ 1
sn(ξ,m)

. (37)

(v) If a0 = −m2, a1 = γ/αs2 = 2m2 − 1, and
a2 = −δ/2αs2 = 1−m2, then the solution is

φ5 = nc(ξ,m) ≡ 1
cn(ξ,m)

. (38)

(vi) If a0 = −1, a1 = γ/αs2 = 2 − m2, and a2 =
−δ/2αs2 = m2 − 1, then the solution is

φ6 = nd(ξ,m) ≡ 1
dn(ξ,m)

. (39)

(vii) If a0 = 1, a1 = γ/αs2 = 2 − m2, and a2 =
−δ/2αs2 = 1−m2, then the solution is

φ7 = sc(ξ,m) ≡ sn(ξ,m)
cn(ξ,m)

. (40)

(viii) If a0 = 1, a1 = γ/αs2 = 2m2 − 1, and a2 =
−δ/2αs2 = (m2 − 1)m2, then the solution is

φ8 = sd(ξ,m) ≡ sn(ξ,m)
dn(ξ,m)

. (41)

(ix) If a0 = 1 − m2, a1 = γ/αs2 = 2 − m2, and
a2 = −δ/2αs2 = 1, then the solution is

φ9 = cs(ξ,m) ≡ cn(ξ,m)
sn(ξ,m)

. (42)

(x) If a0 = 1, a1 = γ/αs2 = −(1 + m2), and
a2 = −δ/2αs2 = m2, then the solution is

φ10 = cd(ξ,m) ≡ cn(ξ,m)
dn(ξ,m)

. (43)

(xi) If a0 = m2(m2 − 1), a1 = γ/αs2 = 2m2 − 1, and
a2 = −δ/2αs2 = 1, then the solution is

φ11 = ds(ξ,m) ≡ dn(ξ,m)
sn(ξ,m)

. (44)

(xii) If a0 = m2, a1 = γ/αs2 = −(1 + m2), and
a2 = −δ/2αs2 = 1, then the solution is

φ12 = dc(ξ,m) ≡ dn(ξ,m)
cn(ξ,m)

. (45)

There still exist many other kinds of solutions in terms
of Jacobi elliptic functions,[13−15] but we do not show
here. It is known that when m → 1, sn(ξ,m) → tanh ξ,
cn(ξ,m) → sech ξ, dn(ξ,m) → sech ξ, and when m → 0,
sn(ξ,m) → sin ξ, cn(ξ,m) → cos ξ, so we also can derive
solutions expressed in terms of hyperbolic functions and
trigonometric functions.

4 Periodic Structures to NLS Equation with
a Phase-Locked Source
The second case for the external heating source is an

external travelling wave source, i.e.

Q11(X,T ) = e i(kX−ωT) , (46)

then equation (27) reduces to

i
∂A

∂T
+ α

∂2A

∂X2
+ δ|A|2A = η e i(kX−ωT) , (47)

whose travelling wave solution, phase-locked with the ex-
ternal source, is taken as

A(X,T ) = φ(ξ) e i(kX−ωT ] , ξ = s(X − CgT ) , (48)

where k is the wave number, and ω is the angular fre-
quency in the space of (X,T ).

Separating the real and imaginary parts of Eq. (47),
one has

αs2φ′′ + δφ3 − γφ− η = 0 (49)

with
Cg = 2αk, γ = −(ω − αk2) . (50)

Based on the knowledge of Jacobi elliptic functions
and elliptic equations, we cannot directly find the solu-
tion to Eq. (49), here some special transformations must
be introduced. In fact, η 6= 0 will result in different struc-
tures. In order to solve Eq. (49), we introduce a fractional
transformation, i.e.

φ(ξ) =
b0 + b1z

2(ξ)
1 + b2z2(ξ)

, (51)

where z(ξ) is given by Eq. (32).
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In order to obtain nontrivial solutions, there is a con-
straint

b0b2 − b1 6= 0 (52)

for the fractional transformation. Through the fractional
transformation (51), the solutions of Eq. (49) with η 6= 0
are mapped to those of the elliptic equation (32).

We can see that there are rich structures resulted from
Eq. (49) in the range of parameter values. Here we show
two special cases.
Case 1 b0 = 0, b1 6= 0, and b2 6= 0

In this case, we can obtain

b1 =
η

2a0αs2
, b2 =

4a1αs
2 − γ

12a0αs2
(53)

with constraints

γ2 = 16α2s4(a2
1 − 3a0a2) , (54)

and

(4a1αs
2−γ)3 + 6γ(4a1αs

2−γ)2

+144a0a2α
2s4(4a1αs

2−γ)−216δη2 =0.(55)

From constraint (54), we know that

a2
1 − 3a0a2 ≥ 0 . (56)

Recalling the solutions from φ1 to φ12, we can obtain
another new rational periodic solutions.

(i) If a0 = 1, a1 = −(1 + m2), and a2 = m2, then
a2
1 − 3a0a2 = 1−m2 +m4 > 0, and the solution is

z1 = sn(ξ,m) , (57)

φ1a =
6ηz2(ξ)

12a0αs2 + (4a1αs2 − γ)z2(ξ)

=
6ηsn2(ξ,m)

12a0αs2 + (4a1αs2 − γ)sn2(ξ,m)
. (58)

(ii) If a0 = 1−m2, a1 = 2m2−1, and a2 = −m2, then
a2
1 − 3a0a2 = 1−m2 +m4 > 0, and the solution is

z2 = cn(ξ,m) , (59)

φ2a =
6ηz2(ξ)

12a0αs2 + (4a1αs2 − γ)z2(ξ)

=
6ηcn2(ξ,m)

12a0αs2 + (4a1αs2 − γ)cn2(ξ,m)
. (60)

(iii) If a0 = 1 −m2, a1 = 2 −m2, and a2 = −1, then
a2
1 − 3a0a2 = 7− 7m2 +m4 > 0, and the solution is

z3 = dn(ξ,m) , (61)

φ3a =
6ηz2(ξ)

12a0αs2 + (4a1αs2 − γ)z2(ξ)

=
6η dn2(ξ,m)

12a0αs2 + (4a1αs2 − γ)dn2(ξ,m)
. (62)

(iv) If a0 = m2, a1 = −(1 + m2), and a2 = 1, then
a2
1 − 3a0a2 = 1−m2 +m4 > 0, and the solution is

z4 = ns(ξ,m) ≡ 1
sn(ξ,m)

, (63)

φ4a =
6ηz2(ξ)

12a0αs2 + (4a1αs2 − γ)z2(ξ)

=
6η ns2(ξ,m)

12a0αs2 + (4a1αs2 − γ)ns2(ξ,m)
. (64)

(v) If a0 = −m2, a1 = 2m2− 1, and a2 = 1−m2, then
a2
1 − 3a0a2 = 1−m2 +m4 > 0, and the solution is

z5 = nc(ξ,m) ≡ 1
cn(ξ,m)

, (65)

φ5a =
6ηz2(ξ)

12a0αs2 + (4a1αs2 − γ)z2(ξ)

=
6η nc2(ξ,m)

12a0αs2 + (4a1αs2 − γ)nc2(ξ,m)
. (66)

(vi) If a0 = −1, a1 = 2 −m2, and a2 = m2 − 1, then
a2
1 − 3a0a2 = 1−m2 +m4 > 0, and the solution is

z6 = nd(ξ,m) ≡ 1
dn(ξ,m)

, (67)

φ6a =
6ηz2(ξ)

12a0αs2 + (4a1αs2 − γ)z2(ξ)

=
6η nd2(ξ,m)

12a0αs2 + (4a1αs2 − γ)nd2(ξ,m)
.

(68)

(vii) If a0 = 1, a1 = 2 −m2, and a2 = 1 −m2, then
the a2

1 − 3a0a2 = 1−m2 +m4 > 0, and solution is

z7 = sc(ξ,m) ≡ sn(ξ,m)
cn(ξ,m)

, (69)

φ7a =
6ηz2(ξ)

12a0αs2 + (4a1αs2 − γ)z2(ξ)

=
6η sc2(ξ,m)

12a0αs2 + (4a1αs2 − γ)sc2(ξ,m)
. (70)

(viii) If a0 = 1, a1 = 2m2 − 1, and a2 = (m2 − 1)m2,
then a2

1 − 3a0a2 = 1−m2 +m4 > 0, and the solution is

z8 = sd(ξ,m) ≡ sn(ξ,m)
dn(ξ,m)

, (71)

φ8a =
6ηz2(ξ)

12a0αs2 + (4a1αs2 − γ)z2(ξ)

=
6η sd2(ξ,m)

12a0αs2 + (4a1αs2 − γ)sd2(ξ,m)
. (72)

(ix) If a0 = 1 − m2, a1 = 2 − m2, and a2 = 1, then
a2
1 − 3a0a2 = 1−m2 +m4 > 0, and the solution is

z9 = cs(ξ,m) ≡ cn(ξ,m)
sn(ξ,m)

, (73)

φ9a =
6ηz2(ξ)

12a0αs2 + (4a1αs2 − γ)z2(ξ)

=
6η cs2(ξ,m)

12a0αs2 + (4a1αs2 − γ)cs2(ξ,m)
. (74)
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(x) If a0 = 1, a1 = −(1 + m2), and a2 = m2, then
a2
1 − 3a0a2 = 1−m2 +m4 > 0, and the solution is

z10 = cd(ξ,m) ≡ cn(ξ,m)
dn(ξ,m)

, (75)

φ10a =
6ηz2(ξ)

12a0αs2 + (4a1αs2 − γ)z2(ξ)

=
6η cd2(ξ,m)

12a0αs2 + (4a1αs2 − γ)cd2(ξ,m)
. (76)

(xi) If a0 = m2(m2 − 1), a1 = 2m2 − 1, and a2 = 1,
then a2

1 − 3a0a2 = 1−m2 +m4 > 0, and the solution is

z11 = ds(ξ,m) ≡ dn(ξ,m)
sn(ξ,m)

, (77)

φ11a =
6ηz2(ξ)

12a0αs2 + (4a1αs2 − γ)z2(ξ)

=
6η ds2(ξ,m)

12a0αs2 + (4a1αs2 − γ)ds2(ξ,m)
. (78)

(xii) If a0 = m2, a1 = −(1 + m2), and a2 = 1, then
a2
1 − 3a0a2 = 1−m2 +m4 > 0, and the solution is

z12 = dc(ξ,m) ≡ dn(ξ,m)
cn(ξ,m)

, (79)

φ12a =
6ηz2(ξ)

12a0αs2 + (4a1αs2 − γ)z2(ξ)

=
6η dc2(ξ,m)

12a0αs2 + (4a1αs2 − γ) dc2(ξ,m)
. (80)

Case 2 b0 6= 0, b1 = 0, and b2 6= 0
In this case, we can derive

b0 =
η

2a2αs2
b2 , b2 =

12a2αs
2

4a1αs2 − γ
(81)

with constraints (54) and (55). Similarly, we can obtain
solutions just similar to solutions from φ1a to φ12a. Here
we omit the details.

5 Conclusion
A simple shallow-water model with influence of dia-

batic heating on a β-plane is applied to investigate the
nonlinear equatorial Rossby waves in a shear flow. By the
asymptotic method of multiple scales, the cubic nonlin-
ear Schrödinger equation with an external heating source
is derived for large amplitude equatorial envelope Rossby
wave in a shear flow. And then various periodic struc-
tures for these equatorial envelope Rossby waves are ob-
tained with the help of Jacobi elliptic functions and ellip-
tic equation. It is shown that the results are different for
equatorial envelope Rossby waves without a source and
with a phase-locked diabatic heating source, they have
different structures due to the phase-locked diabatic heat-
ing source, and the phase-locked diabatic heating source
plays an important role in forming periodic structures of
rational form. Of course, these periodic structures contain
solitons, solitary waves, as also singular structures, and
they also have their different practical applications in ex-
plaining atmospheric events. This needs further research.
Moreover, in this paper, we only consider one special case
of external heating and find some exact results. For more
various heating sources, this effort provides a better start-
ing point for the treatment of general external heating
sources and their impacts on the equatorial Rossby waves
and climate changes.
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