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Abstract The new solutions to elliptic equation are shown, and then the elliptic equation is taken as a transformation
and is applied to solve nonlinear wave equations. It is shown that more kinds of solutions are derived, such as periodic
solutions of rational form, solitary wave solutions of rational form, and so on.
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1 Introduction
We have taken elliptic equation as an intermediate

transformation to solve nonlinear wave equations,[1−3] and
obtained many periodic solutions and solitary wave solu-
tions. However, there are still more researches needed to
find more solutions of different forms. In Ref. [4], we de-
rived periodic solutions of rational forms, which are due
to external forcing. It is an interesting issue to apply dif-
ferent methods to obtain this kind of solutions of rational
forms. In this paper, we will revisit the elliptic equation
methods,[1] and show that we can construct this kind of
solutions of rational forms just by the elliptic equation
methods.[1]

2 KdV Equation
KdV equation[5] reads

ut + uux + βuxxx = 0 . (1)

We seek its travelling wave solutions in the following frame

u = u(ξ), ξ = k(x− ct) , (2)

where c is wave velocity, and k is wave number.
Substituting Eq. (2) into Eq. (1) and integrating once

yields

−cu +
1
2
u2 + βk2u′′ = C , (3)

where C is an integration constant. And then we suppose
that equation (1) has the following solution

u = u(y) =
n∑

j=0

bjy
j , y = y(ξ) , (4)

where y satisfies the elliptic equation[5]

y′2 =
i=4∑
i=0

aiy
i, a4 6= 0 , (5)

where y′ = dy/dξ, then

y′′ =
a1

2
+ a2y +

3a3

2
y2 + 2a4y

3 . (6)

Obviously, two special cases of Eq. (5) are

dy

dξ
= b + y2 (7)

and
dy

dξ
= R(1 + µy2) , (8)

which were introduced by Fan[6] and Yan et al.,[7] respec-
tively.

Here n in Eq. (4) can be determined by the partial bal-
ance between the highest order derivative terms and the
highest degree nonlinear term in Eq. (1). Here we know
that the degree of u is

O(u) = O(yn) = n , (9)

and from Eqs. (5) and (6), one has

O(y′2) = O(y4) = 4, O(y′′) = O(y3) = 3 , (10)

and actually one can have

O(y(l)) = l + 1 . (11)

So one has

O(u) = n, O(u′) = n + 1 ,

O(u′′) = n + 2, O(u(l)) = n + l . (12)

For KdV equation (1), we have n = 2, so the ansatz
solution of Eq. (4) can be rewritten as

u = b0 + b1y + b2y
2, b2 6= 0 , (13)
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then

u2 = b2
0 + 2b0b1y + (2b0b2 + b2

1)y
2

+ 2b1b2y
3 + b2

2y
4 , (14)

u′′ =
(1

2
a1b1 + 2a0b2

)
+ (a2b1 + 3a1b2)y

+
(3

2
a3b1 + 4a2b2

)
y2

+ (2a4b1 + 5a3b2)y3 + 6a4b2y
4 . (15)

Substituting Eqs. (13) ∼ (15) into Eq. (3) and collecting
each order of y yields algebraic equations about coeffi-
cients bj (j = 0, 1, 2) and ai (i = 0, 1, 2, 3, 4), i.e.,

−cb0 +
1
2
b2
0 + βk2

(1
2
a1b1 + 2a0b2

)
− C = 0 , (16a)

−cb1 + b0b1 + βk2(a2b1 + 3a1b2) = 0 , (16b)

−cb2 +
1
2
(2b0b2 + b2

1) + βk2
(3

2
a3b1 + 4a2b2

)
= 0 , (16c)

b1b2 + βk2(2a4b1 + 5a3b2) = 0 , (16d)
1
2
b2
2 + 6βk2a4b2 = 0 , (16e)

from which we have

b2 = −12βk2a4, b1 = −6βk2a3 ,

b0 = c− 4βk2a2 +
3βk2a2

3

4a4
. (17)

At the same time there is

a1 =
a3

2a4

(
a2 −

a2
3

4a4

)
. (18)

So if a3 = 0, then

b1 = a1 = 0, b2 = −12βk2a4, b0 = c− 4βk2a2 , (19)

and transformation (5) takes the following form

y′2 = a0 + a2y
2 + a4y

4 , (20)

which has many more kinds of solutions, some of which
we have shown in Refs. [1] ∼ [3]. Actually, there are more
other kinds of solutions to Eq. (20). Next we will show
some solutions of rational forms expressed in terms of dif-
ferent elliptic functions.[5]

(i) If a0 = (1 − m2)/4, a2 = (1 + m2)/2 and a4 =
(1−m2)/4 (where 0 ≤ m ≤ 1, and m is called modulus of
Jacobi elliptic functions, see Refs. [5] and [8] ∼ [10], then
the solutions to Eq. (20) are

y1 =
cn(ξ, m)

1 + sn(ξ, m)
, (21)

where sn(ξ,m) and cn(ξ,m) are sine and cosine Jacobi
elliptic functions, respectively,[5,8−10] and

y2 =
cn(ξ, m)

1− sn(ξ, m)
. (22)

These are two new solutions to Eq. (20) which are not
shown in Refs. [1] ∼ [3]. So based on the above results,

we can derive new solutions to Eq. (1),

u1 = b0 + b2y
2 = c− 2βk2(1 + m2)

− 3βk2(1−m2)cn2(ξ, m)
[1 + sn(ξ, m)]2

, (23)

and

u2 = b0 + b2y
2 = c− 2βk2(1 + m2)

− 3βk2(1−m2)cn2(ξ, m)
[1− sn(ξ, m)]2

. (24)

(ii) If a0 = −(1 − m2)/4, a2 = (1 + m2)/2, and
a4 = −(1−m2)/4, then the solutions to Eq. (20) are

y3 =
dn(ξ,m)

1 + m sn(ξ,m)
, (25)

and

y4 =
dn(ξ,m)

1−m sn(ξ,m)
, (26)

where dn(ξ, m) is Jacobi elliptic function of the third
kind[5,8−10] and new solutions to Eq. (1) are

u3 = b0 + b2y
2 = c− 2βk2(1 + m2)

+
3βk2(1−m2)dn2(ξ, m)

[1 + m sn(ξ,m)]2
, (27)

and

u4 = b0 + b2y
2 = c− 2βk2(1 + m2)

+
3βk2(1−m2)dn2(ξ, m)

[1−m sn(ξ,m)]2
. (28)

(iii) If a0 = m2/4, a2 = −(2−m2)/2, and a4 = m2/4,
then the solutions to Eq. (20) are

y5 =
m sn(ξ, m)

1 + dn(ξ,m)
, (29)

and

y6 =
m sn(ξ, m)

1− dn(ξ,m)
. (30)

New solutions to Eq. (1) are

u5 = b0 + b2y
2 = c + 2βk2(2−m2)

− 3βk2m4sn2(ξ,m)
[1 + dn(ξ, m)]2

, (31)

and

u6 = b0 + b2y
2 = c + 2βk2(2−m2)

− 3βk2m4sn2(ξ,m)
[1− dn(ξ, m)]2

. (32)

It is known that when m → 1, sn(ξ,m) → tanh ξ,
cn(ξ,m) → sech ξ, dn(ξ,m) → sech ξ, so new solutions to
Eq. (1) are

u5′ = b0 + b2y
2 = c + 2βk2 − 3βk2tanh2(ξ)

[1 + sech(ξ)]2
, (33)

and

u6′ = b0 + b2y
2 = c + 2βk2 − 3βk2tanh2(ξ)

[1− sech(ξ)]2
. (34)
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(iv) If a0 = 1/4, a2 = (1 − 2m2)/2, and a4 = 1/4,
then the solutions to Eq. (20) are

y7 =
sn(ξ, m)

1 + cn(ξ, m)
, (35)

and

y8 =
sn(ξ, m)

1− cn(ξ, m)
. (36)

New solutions to Eq. (1) are

u7 = b0 + b2y
2 = c− 2βk2(1− 2m2)

− 3βk2sn2(ξ,m)
[1 + cn(ξ, m)]2

, (37)

and

u8 = b0 + b2y
2 = c− 2βk2(1− 2m2)

− 3βk2sn2(ξ,m)
[1− cn(ξ, m)]2

. (38)

Similarly, when m→ 1, the solutions u7 and u8 reduce
to solutions u5′ and u6′ .

(v) If a0 = 1/4, a2 = −(2 −m2)/2, and a4 = m4/4,
then the solutions to Eq. (20) are

y9 =
sn(ξ, m)

1 + dn(ξ,m)
, (39)

and

y10 =
sn(ξ,m)

1− dn(ξ, m)
. (40)

New solutions to Eq. (1) are

u9 = b0 + b2y
2 = c + 2βk2(2−m2)

− 3βk2m4sn2(ξ,m)
[1 + dn(ξ, m)]2

, (41)

and

u10 = b0 + b2y
2 = c + 2βk2(2−m2)

− 3βk2m4sn2(ξ, m)
[1− dn(ξ, m)]2

, (42)

which are the same as Eqs. (31) and (32), respectively.

3 Klein Gordon Equation
Nonlinear Klein–Gordon equation reads

utt − c2
0uxx + αu− βu3 = 0 . (43)

Substituting Eq. (2) into Eq. (43) leads to

u′′ + α1u− β1u
3 = 0 , (44)

where

α1 =
α

k2(c2 − c2
0)

, β1 =
β

k2(c2 − c2
0)

. (45)

Similarly, assuming that the solutions of Eq. (43) take
the form of Eq. (4), we can get n = 1 for Eq. (43), i.e.,

u = b0 + b1y, b1 6= 0 , (46)

where y satisfies elliptic equation (5). Then substituting
Eq. (46) into Eq. (44) leads to

b1 = ±
√

2a4

β1
, b0 = ± a3

2β1

√
β1

2a4
, (47)

and

a2 = −α1 +
3a2

3

8a4
, a1 =

(a2
3 − 8α1a4)a3

16a2
4

. (48)

If a3 = 0, then b0 = a1 = 0 and

b1 = ±
√

2a4

β1
, a2 = −α1 , (49)

then the transformation takes the following form

y′2 = a0 + a2y
2 + a4y

4 . (50)

This is an elliptic equation, which also has many kinds of
solutions. There exist many kinds of solutions expressed
in terms of different Jacobi elliptic functions.[5] We show
some solutions just like what we have done in the former
section next.

(i) If a0 = (1 − m2)/4, a2 = −α1 = (1 + m2)/2,
and a4 = (1 −m2)/4, then the solutions to Eq. (20) are
Eqs. (21) and (22), so the solutions to Eq. (43) are

u1 = b1y = ±

√
1−m2

2β1

cn(ξ, m)
1 + sn(ξ, m)

, (51)

and

u2 = b1y = ±

√
1−m2

2β1

cn(ξ, m)
1− sn(ξ, m)

(52)

with constraints α1 < 0 and β1 > 0.
(ii) If a0 = −(1 − m2)/4, a2 = −α1 = (1 + m2)/2,

and a4 = −(1−m2)/4, then the solutions to Eq. (20) are
Eqs. (25) and (26), so the solutions to Eq. (43) are

u3 = b1y = ±

√
−1−m2

2β1

dn(ξ, m)
1 + m sn(ξ, m)

, (53)

and

u4 = b1y = ±

√
−1−m2

2β1

dn(ξ, m)
1−m sn(ξ, m)

(54)

with constraints α1 < 0 and β1 < 0.
(iii) If a0 = m2/4, a2 = −α1 = −(2 − m2)/2, and

a4 = m2/4, then the solutions to Eq. (20) are Eqs. (29)
and (30), so the solutions to Eq. (43) are

u5 = b1y = ±

√
m2

2β1

m sn(ξ,m)
1 + dn(ξ, m)

, (55)

and

u6 = b1y = ±

√
m2

2β1

m sn(ξ, m)
1− dn(ξ, m)

(56)

with constraints α1 > 0 and β1 > 0.
(iv) If a0 = 1/4, a2 = −α1 = (1 − 2m2)/2, and

a4 = 1/4, then the solutions to Eq. (20) are Eqs. (35)
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and (36), so the solutions to Eq. (43) are

u7 = b1y = ±
√

1
2β1

sn(ξ,m)
1 + cn(ξ,m)

, (57)

and

u8 = b1y = ±
√

1
2β1

sn(ξ,m)
1− cn(ξ,m)

(58)

with constraint β1 > 0.
Of course, we can have more solutions if we do not

take a3 = 0. We do not discuss this here.

4 Conclusion
In this paper, we consider elliptic equation as a trans-

formation to solve nonlinear wave equations. More kinds

of solutions can be got from there for more new solu-
tions to elliptic equation, including periodic solutions of
rational forms and solitary wave solutions constructed
in terms of hyperbolic functions of rational forms. And
applying of transformation (5) to some nonlinear wave
equations, the obtained solutions have not been ob-
tained by the sine-cosine method,[11] the homogeneous
balance method,[12−14] the hyperbolic function expan-
sion method,[6,15,15] the Jacobi elliptic function expansion
method,[17,18] the nonlinear transformation method,[19,20]

the trial function method,[21,22] and others.[23−26] So more
applications of new solutions of elliptic equation to solve
other nonlinear wave equations are also applicable and de-
served.

References

[1] Z.T. Fu, S.D. Liu, and S.K. Liu, Commun. Theor. Phys.
(Beijing, China) 39 (2003) 531.

[2] Z.T. Fu, S.K. Liu, and S.D. Liu, Commun. Theor. Phys.
(Beijing, China) 40 (2003) 285.

[3] Z.T. Fu, Z. Chen, S.K. Liu, and S.D. Liu, Commun.
Theor. Phys. (Beijing, China) 41 (2004) 675.

[4] Z.T. Fu, Z. Chen, S.D. Liu, and S.K. Liu, Commun.
Theor. Phys. (Beijing, China) 42 (2004) 43.

[5] S.K. Liu and S.D. Liu, Nonlinear Equations in Physics,
Peking University Press, Beijing (2000).

[6] E.G. Fan, Phys. Lett. A277 (2000) 212.

[7] Z.Y. Yan and H.Q. Zhang. Phys. Lett. A285 (2001) 355.

[8] F. Bowman, Introduction to Elliptic Functions with Ap-
plications, Universities, London (1959).

[9] V. Prasolov and Y. Solovyev, Elliptic Functions and El-
liptic Integrals, American Mathematical Society, Provi-
dence, R.I. (1997).

[10] Z.X. Wang and D.R. Guo, Special Functions, World Sci-
etific, Singapore (1989).

[11] C.T. Yan, Phys. Lett. A224 (1996) 77.

[12] M.L. Wang, Phys. Lett. A199 (1995) 169.

[13] M.L. Wang, Y.B. Zhou, and Z.B. Li, Phys. Lett. A216
(1996) 67.

[14] L. Yang, Z. Zhu, and Y. Wang, Phys. Lett. A260 (1999)
55.

[15] E.J. Parkes and B.R. Duffy, Phys. Lett. A229 (1997) 217.

[16] L. Yang, J. Liu, and K. Yang, Phys. Lett. A278 (2001)
267.

[17] Z.T. Fu, S.K. Liu, S.D. Liu, and Q. Zhao, Phys. Lett.
A290 (2001) 72.

[18] S.K. Liu, Z.T. Fu, S.D. Liu, and Q. Zhao, Phys. Lett.
A289 (2001) 69.

[19] R. Hirota, J. Math. Phys. 14 (1973) 810.

[20] N.A. Kudryashov, Phys. Lett. A147 (1990) 287.

[21] S.K. Liu, Z.T. Fu, S.D. Liu, and Q. Zhao, Appl. Math.
Mech. 22 (2001) 326.

[22] M. Otwinowski, R. Paul, and W.G. Laidlaw, Phys. Lett.
A128 (1988) 483.

[23] Z.T. Fu, S.K. Liu, and S.D. Liu, Phys. Lett. A299 (2002)
507.

[24] A.V. Porubov, Phys. Lett. A221 (1996) 391.

[25] A.V. Porubov and M.G. Velarde, J. Math. Phys. 40
(1999) 884.

[26] A.V. Porubov and D.F. Parker, Wave Motion 29 (1999)
97.


