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Equatorial Rossby Solitary Wave Under the External Forcing∗
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Abstract A simple shallow-water model with influence of external forcing on a β-plane is applied to investigate the
nonlinear equatorial Rossby waves in a shear flow. By the perturbation method, the extended variable-coefficient KdV
equation under an external forcing is derived for large amplitude equatorial Rossby wave in a shear flow. And then
various periodic-like structures for these equatorial Rossby waves are obtained with the help of Jacobi elliptic functions.
It is shown that the external forcing plays an important role in various periodic-like structures.
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1 Introduction
In the last decades, the theory of equatorial waves

has attracted much more attention on equatorial atmo-
spheric dynamics and nonlinear dynamics. It provides
a dynamical frame to analyze the slowly evolving large-
scale phenomena in low latitudes and underlining dynam-
ics. These theories of equatorial waves have been used for
various purposes, especially in explaining some fundamen-
tal features of tropical climate and global changes, such
as Walker circulation,[1] the low-frequency Madden–Julian
oscillation,[2] and ENSO.[3]

Among the nonlinear theories for equatorial waves,
many are related to nonlinear Rossby wave activity, for
it can manifest some of the prime events of geophysical
fluid flows, and this activity often leads to a large-scale
localized coherent structures that have remarkable perma-
nence and stability. When the zonal flow shear is taken to
be nonuniform, one can derive Rossby solitary waves and
envelope Rossby solitary waves. Benney,[4] Yamagata,[5]

and Zhao[6] investigated envelope Rossby solitary waves in
barotropic shear and uniform or nonuniform flows, inde-
pendently. However, none of them considered the effect of
external sources, especially the influence of diabatic heat-
ing from oceans. In this paper, we will address this is-
sue by the method of perturbation expansion to derive
the extended variable-coefficient KdV equation under an
external forcing satisfied by the large-amplitude equato-
rial Rossby waves. And then the basic structures of this
extended variable-coefficient KdV equation without and
with external source are obtained by using knowledge of
Jacobi elliptic functions.

2 Derivation of Extended KdV Equation with
an External Forcing
The governing equation is quasi-geostrophic potential

vorticity equation of shallow-water model on an equatorial
β-plane with an external forcing, i.e.( ∂

∂t∗
− ∂ψ∗
∂y∗

∂

∂x∗
+
∂ψ∗
∂x∗

∂

∂y∗

)(
βy∗ +∇2

∗ψ∗ −
β2y2

∗
c20

ψ∗

)
= Q∗(x∗, y∗, t∗) , (1)

where ψ∗ is the stream function, β > 0 is the planetary-
vorticity gradient, c0 is velocity of pure gravity waves,
and Q∗(x∗, y∗, t∗) is the diabatic heating due to the trop-
ical ocean. And ∇2

∗ is the horizontal Laplacian operator,
which is defined as

∇2
∗ =

∂2

∂x2
∗

+
∂2

∂y2
∗
. (2)

Since the equatorial waves are trapped near the equa-
tor, the appropriate boundary condition can be given as

∂ψ∗
∂x∗

→ 0 , as y∗ → ±∞ . (3)

Equation (3) can be nondimensionalized as
∂

∂t
∇̄2ψ + εJ(ψ, ∇̄2ψ) +

∂ψ

∂x
= µQ(x, y, t) (4)

with

J(a, b) =
∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
, ∇̄2 = ∇2 − y2 ,

∇2 =
∂2

∂x2
+

∂2

∂y2
, (5)

and ε is the equatorial Rossby number, µ is an amplitude
parameter, and they are all small number, near the equa-
tor ε ∼ O(10−2). Here it is obvious that ε denotes the
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magnitude of nonlinearity and µ represents the strength
of external forcing.

First of all, the stream function ψ can be decomposed
as

ψ = ψ̄ + ψ′ = −
∫ y

[ū(s)− c]ds+ ψ′ , (6)

then equation (4) is rewritten as[ ∂
∂t

+ (ū− c)
∂

∂x

]
∇̄2ψ′ + εJ(ψ′, ∇̄2ψ′)

+ (1− ū′′)
∂ψ′

∂x
= µQ . (7)

Due to the existence of these small parameters, the
perturbation expansion method[7] can be applied to solve
the problem (4), where the stretching coordinates of the
following form

X = ε1/2x , T = ε3/2t (8)

is introduced, which is known as Gardner–Morikawa trans-
formation.

Applying Eq. (8) to Eq. (7) leads to

℘0(ψ′) + ε
{
℘1(ψ′) + J

[
ψ′,

(∂2ψ′

∂y2
− y2ψ′

)]}
= µε−1/2Q (9)

with

℘0() ≡ (ū−c) ∂

∂X

( ∂2

∂y2
−y2

)
+(1−ū′′) ∂

∂X
, ℘1() ≡

∂

∂T

( ∂2

∂y2
−y2

)
+(ū−c) ∂3

∂X3
, J [a, b] ≡ ∂a

∂X

∂b

∂y
− ∂b

∂X

∂a

∂y
. (10)

In order to solve Eq. (9), ψ′ can be expanded as the following form:

ψ′ = εψ1 + ε2ψ2 + ε3ψ3 + · · · (11)

If the external forcing is weak, i.e. O(µ) ∼ O(ε5/2), then combining Eq. (11) with Eq. (9) leads to

O(ε) : ℘0(ψ1) = (ū− c)
∂

∂X

(∂2ψ1

∂y2
− y2ψ1

)
+ (1− ū′′)

∂ψ1

∂X
= 0 , (12)

O(ε2) : ℘0(ψ2) = −
{
℘1ψ1 + J

[
ψ1,

(∂2ψ1

∂y2
− y2ψ′

)]}
+Q ≡ F (13)

with F being defined as

F = −
{ ∂

∂T

(∂2ψ1

∂y2
− y2ψ1

)
+ (ū− c)

∂3ψ1

∂X3
+
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∂X
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− y2ψ1
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− ∂ψ1

∂y

∂

∂X

(∂2ψ1

∂y2
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)}
+Q . (14)

Obviously, equation (12) has the following variable-separation solution:

ψ1 = A(X,T )Φ1(T, y) (15)

with ( ∂2

∂y2
+

1− ū′′

ū− c
− y2

)
Φ1 = 0 , Φ1|y→±∞ → 0 . (16)

Substitution ψ1 into Eq. (13) yields

F =
1− ū′′

ū− c
Φ1
∂A

∂T
+

1− ū′′

ū− c

∂Φ1

∂T
A+

[
Φ2

1

d
dy

1− ū′′

ū− c

]
A
∂A

∂X
− (ū− c)Φ1

∂3A

∂X3
+Q . (17)

In order to show the evolution of A, we have to seek
the solution to Eq. (13). Similarly, the solution to ψ2 can
be written as

ψ2 = B(X,T )Φ2(T, y) , (18)

then

∂B

∂X

( ∂2

∂y2
+

1− ū′′

ū− c
− y2

)
Φ2 =

F

ū− c
,

Φ2|y→±∞ → 0 . (19)

Multiplying Eq. (19) with Φ1 and then integrating it
with respect to y, the orthogonality condition can avoid

secular growth, i.e.∫ +∞

−∞

FΦ1

ū− c
dy = 0 , (20)

from which one has

∂A

∂T
+ αA

∂A

∂X
+ β

∂3A

∂X3
+ γA = ηQ1(X,T ) (21)

with

α(T ) =
I1
I
, β(T ) =

I2
I
, γ(T ) =

I3
I
, η(T ) =

I4
I
, (22)

where

I =
∫ +∞

−∞

1− ū′′

(ū− c)2
dy ,



No. 1 Equatorial Rossby Solitary Wave Under the External Forcing 47

I1 =
∫ +∞

−∞

d
dy

(1− ū′′

ū− c

) Φ3
1

ū− c
dy ,

I2 =
∫ +∞

−∞
Φ2

1dy ,

I3 =
∫ +∞

−∞

1− ū′′

(ū− c)2
Φ1
∂Φ1

∂T
dy ,

I4 =
∫ +∞

−∞

QΦ1

ū− c
dy . (23)

Obviously, equation (21) is a variable-coefficient non-
linear evolution model with an external forcing, we call
it extended KdV equation with an external forcing. If
∂Φ1/∂T = 0, then γ = 0, α, β, and η are constants,
so equation (21) is a general constant-coefficient KdV
equation with an external forcing. For variable-coefficient
KdV equation without an external forcing, many vari-
ants have been reported.[8−9] And much attention[11−17]

has been paid to study the integrability and symmetry
of variable-coefficient nonlinear equations, since numer-
ous application in physical sciences and engineering deal
with variable-coefficient nonlinear equations.

3 Solutions to the Extended KdV Equation
Actually, variable-coefficient nonlinear equations are

seldom considered for their complexity. In this section,
we will show some solutions to some special cases of
Eq. (21). We will extend the Jacobi elliptic function ex-
pansion method[18,19] and apply it to get the periodic so-
lutions and corresponding shock or solitary wave solutions
to variable-coefficient or forced KdV equations.

First of all, we consider the case where ∂Φ1/∂T = 0,
i.e., γ = 0, α, β, η are constants, and the external forcing
varies only with time T , i.e. ηQ1 = S(T ), so equation (21)
can be rewritten as

∂A

∂T
+ αA

∂A

∂X
+ β

∂3A

∂X3
= S(T ) . (24)

In order to solve Eq. (24), the following transformation
is introduced,

A = v + Γ(T ) , Γ(T ) =
∫ T

S(τ)dτ , (25)

then we have

vT + α[Γ(T ) + v]vX + βvXXX = 0 . (26)

We seek its general travelling wave solution

v = v(ξ) , ξ = f(T )X + g(T ) , (27)

where f(T ) and g(T ) are undetermined functions of T .
Assuming that v(ξ) has the following ansatz solution

v(ξ) =
n∑

j=0

aj(T )snjξ , (28)

where sn(ξ,m) is Jacobi elliptic sine function and 0 ≤
m ≤ 1 is called modulus of Jacobi elliptic functions, see
Refs. [20] ∼ [24]. We can select n to balance the derivative
term of the highest order and nonlinear term in Eq. (26),
then we have the final determined expansion form.

When m → 1, sn ξ → tanh ξ, so equation (28) degen-
erates to

v(ξ) =
n∑

j=0

aj(T )tanhjξ . (29)

Notice that

cn 2ξ = 1− sn 2ξ , (30)

where cn (ξ,m) is Jacobi elliptic cosine function.[20−24]

When m→ 1, cn ξ → sech ξ, so we get cnoidal wave solu-
tion and its corresponding solitary wave solution.

For Eq. (26), the ansatz solution can be written as

v = a0(T ) + a1(T )sn ξ + a2(T )sn 2ξ . (31)

Substituting Eq. (31) into Eq. (26) yields

a′0 + a′1sn ξ + a′2sn
2ξ + a2[f ′X + g′ + αfa0 + αfΓa1 − (1 +m2)βf3]cn ξdn ξ

+ [2a2(f ′X + g′) + αf(a2
1 + 2a0a2) + 2αΓfa2 − 8(1 +m2)βf3a2]sn ξcn ξdn ξ

+ 3a1f [αa2 + 2m2βf2]sn 2ξcn ξdn ξ + 2a2f(αa2 + 12m2βf2)sn 3ξcn ξdn ξ = 0 , (32)

from which the undetermined parameters and functions
can be determined

f = k, g = −kcT − kα

∫ T

Γ(τ)dτ , (33)

and

a0 =
c

α
+ 4(1 +m2)k2 β

α
,

a1 = 0 , a2 = −12m2k2 β

α
, (34)

where k and c are constants.
So the solution to the forced KdV equation can be

written as

A=
c

α
−4(2m2−1)k2 β

α
+

∫ T

S(τ)dτ+12m2k2 β

α
cn 2ξ , (35)

which is a periodic-like solution and its corresponding
soliton-like solution is

A =
c

α
− 4k2 β

α
+

∫ T

S(τ)dτ + 12k2 β

α
sech 2ξ , (36)
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where ξ = k[X − cT − α
∫ T ∫ τ

S(ψ)dψdτ ].
Secondly, we consider the case without external forc-

ing, i.e.

∂A

∂T
+ α(T )A

∂A

∂X
+ β(T )

∂3A

∂X3
+ γ(T )A = 0 , (37)

which is a variable-coefficient extended KdV equation,
whose ansatz solution is

A = a0(T ) + a1(T )sn ξ + a2(T )sn 2ξ . (38)

Substituting Eq. (38) into Eq. (37) results in

γa0 + a′0(T ) = γa1 + a′1(T ) = γa2 + a′2(T ) = 0 , (39a)

a1[f ′X + g′ + αfa0 − (1 +m2)βf3a2] = 0 , (39b)

2a2(f ′X+g′)+αf(a2
1+2a0a2)−8(1+m2)βf3a2 = 0 , (39c)

a1f [αa2 + 2m2βf2] = 0 , (39d)

a2f [αa2 + 12m2βf2] = 0 , (39e)

from which we have

f = k , g = −kc0
∫ T

α e−γ(τ)dτ+4(1+m2)k3

∫ T

βdτ ,

a0 = c0 e−γ(T ) , a1 = 0 , a2 = −12m2k2 β

α
(40)

with the constraint
β

α
eγ(T ) = c1 , (41)

where k, c0, and c1 are all none-zero constants.

So the solution to Eq. (37) is

A = c0 e−γ(T ) − 12m2k2 β

α
sn 2ξ , (42)

which is another periodic-like solution.

4 Conclusion
A simple shallow-water model with influence of exter-

nal forcing on a β-plane is applied to investigate the non-
linear equatorial Rossby waves in a shear flow. By the
perturbation method, the extended KdV equation with
an external forcing is derived for large amplitude equa-
torial Rossby wave in a shear flow. And then various
periodic-like structures for these equatorial Rossby waves
are obtained with the help of Jacobi elliptic functions.
It is shown that the results are different for equatorial
Rossby waves without a source and with an external forc-
ing, and the external source plays an important role in
forming periodic-like structures. Of course, these periodic-
like structures contain solitons, solitary waves, and they
also have their different practical applications in explain-
ing atmospheric events. This needs more further research.
Moreover, in this paper, we only consider two special cases
of external forcing and find some exact results. For more
various external sources, this effort provides a better start-
ing point for the treatment of general external sources and
their impacts on the equatorial Rossby waves and climate
changes.
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