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New Rational Form Solutions to mKdV Equation∗
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Abstract In this paper, new basic functions, which are composed of three basic Jacobi elliptic functions, are chosen
as components of finite expansion. This finite expansion can be taken as an ansatz and applied to solve nonlinear wave
equations. As an example, mKdV equation is solved, and more new rational form solutions are derived, such as periodic
solutions of rational form, solitary wave solutions of rational form, and so on.
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1 Introduction
We have taken elliptic equation as an intermediate

transformation to solve nonlinear wave equations,[1−3] and
obtained many periodic solutions and solitary wave solu-
tions. However, there are still more research needed to do
to find more solutions of different forms. In Ref. [4], we
derived periodic solutions of rational forms, which are due
to external forcing. It is an interesting issue to apply dif-
ferent methods to obtain this kind of solutions of rational
forms.

In this paper, we will revisit the elliptic equa-
tion methods[1,2] and the elliptic function expansion
method,[5,6] and show that we can construct this kind of
solutions of rational forms just by the finite expansion
methods, where new basic functions are chosen. So first
of all, let us show results about this new finite expansion
method.

2 Novel Application of Jacobi Elliptic Func-
tions
In Refs. [1] and [2], nonlinear wave equations are sup-

posed to take the following solution,

u = u(y) =
j=n∑
j=0

bjy
j , y = y(ξ) , (1)

where y satisfies the elliptic equation,[7]

y′2 =
4∑

i=0

aiy
i, a4 6= 0 , (2)

where y′ = dy/dξ, then

y′′ =
a1

2
+ a2y +

3a3

2
y2 + 2a4y

3 . (3)

When parameters ai (i = 0, 1, 2, 3, 4) take different
values, then elliptic equation (2) or (3) has different so-
lutions, among which the interesting three are basic Ja-
cobi elliptic functions,[7] i.e. Jacobi elliptic sine function

sn(ξ,m), Jacobi elliptic cosine function cn(ξ,m), and Ja-
cobi elliptic function of the third kind dn(ξ, m), where
0 ≤ m ≤ 1 is called modulus of Jacobi elliptic functions,
see Refs. [7] ∼ [10].

In Refs. [1] and [2], the components of the finite ex-
pansion are solutions to elliptic equation (2) or (3). Actu-
ally, there are more different basic functions can be taken
as the components of the finite expansion, such as ba-
sic Jacobi elliptic functions in the elliptic function expan-
sion method,[5,6] sine or cosine function in the sine-cosine
method,[11] hyperbolic functions in the hyperbolic func-
tion expansion method,[12,13] and so on.

Here, we will introduce new basic functions, which are
composed of the three basic Jacobi elliptic functions, tak-
ing the following forms

f(ξ) =
sn ξ

1 + p sn ξ
, g(ξ) =

cn ξ

1 + p sn ξ
,

h(ξ) =
dn ξ

1 + p sn ξ
, (4)

where p is a constant to be determined.
Obviously, there are the following relations between

the three basic functions f(ξ), g(ξ), and h(ξ),

g2 = 1− 2pf + (p2 − 1)f2 ,

h2 = 1− 2pf + (p2 −m2)f2 , (5)

and

f ′ = gh, g′ = −ph + (p2 − 1)fh ,

h′ = −pg + (p2 −m2)fg . (6)

Then the finite expansion for these three basic func-
tions can be written as

u = u(f, g, h) = r0 +
j=n∑
j=1

(rjf
j + sjgf j−1 + tjhf j−1) ,
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r2
n + s2

n + t2n 6= 0 . (7)

If p2 6= 1 and p2 6= m2, we suppose the rank of u is

O(u) = n , (8)

then from Eqs. (4) and (5) one has

O(f) = O(g) = O(h) , (9)

and from Eqs. (5) and (6) one has

O(u′) = n + 1, O(u′′) = n + 2, · · · ,

O(u(j)) = n + j . (10)

Applying Eqs. (8), (9), and (10) to the finite expansion
and specific nonlinear wave equation, partial balance be-
tween the highest degree nonlinear term and the highest
order derivative term will let us determine the expansion
rank n.

Of course, there are two special cases need considera-
tion. The first one is p2 = 1, then from Eqs. (4) ∼ (6) one
has

f(ξ) =
sn ξ

1± sn ξ
, g(ξ) =

cn ξ

1± sn ξ
,

h(ξ) =
dn ξ

1± sn ξ
(11)

with

g2 = 1∓ 2f, h2 = 1∓ 2f + (1−m2)f2 , (12)

and

f ′ = gh, g′ = ∓h, h′ = ∓g + (1−m2)fg , (13)

from which one can easily derive that g satisfies the ellip-
tic equation (2) with a1 = a3 = 0, a0 = a4 = (1−m2)/4,
a2 = (1 + m2)/2.

And the second case is p2 = m2, then from Eqs. (4),
(5), and (6) one has

f(ξ) =
sn ξ

1±m sn ξ
, g(ξ) =

cn ξ

1±m sn ξ
,

h(ξ) =
dn ξ

1±m sn ξ
(14)

with

g2 = 1∓ 2mf + (m2 − 1)f2, h2 = 1∓ 2mf , (15)

and

f ′ = gh, g′ = ∓mh + (m2 − 1)fh, h′ = ∓mg , (16)

from which one can easily derive that h satisfies the elliptic
equation (2) with a1 = a3 = 0, a0 = a4 = −(1−m2)/4,
a2 = (1 + m2)/2.

Obviously, for the two special cases, there is no rela-
tion (9) between f , g, and h. However, we still can apply
these two special cases to solve nonlinear wave equations,
where the finite expansion is replaced by Eq. (1). In the
next section, we will show the details.

3 Rational Form Solutions to mKdV Equa-
tion
mKdV equation reads[7]

ut + αu2ux + βuxxx = 0 . (17)

We seek its travelling wave solution in the following frame:

u = u(ξ), ξ = x− ct , (18)

then equation (17) can be rewritten as

−cu′ + αu2u′ + βu′′′ = 0 . (19)

First of all, we consider the general case p2 6= 1 and
p2 6= m2. Substituting Eqs. (7), (8), (9), and (10) into
Eq. (19), we can derive n = 1, i.e., the finite expansion
can be written as

u = r0 + r1f + s1g + t1h, r2
1 + s2

1 + t21 6= 0 . (20)

For the ansatz solution (20), there are some cases to
be considered. We firstly show some simple cases to il-
lustrate the applications of new basic functions and finite
expansion.

Case 1 s2
1 + t21 = 0, then r2

1 6= 0, the ansatz solution
(20) reduces to

u = r0 + r1f, r2
1 6= 0 . (21)

Combining Eq. (21) with Eq. (19) leads to

[−cr1 + αr2
0r1 + βr1(6p2 −m2 − 1)]gh

+[2αr0r
2
1 − 6βr1p(2p2 −m2 − 1)]fgh

+[αr3
1 + 6βr1(p2 − 1)(p2 −m2)]f2gh = 0 , (22)

i.e.

−cr1 + αr2
0r1 + βr1(6p2 −m2 − 1) = 0 , (23a)

2αr0r
2
1 − 6βr1p(2p2 −m2 − 1) = 0 , (23b)

αr3
1 + 6βr1(p2 − 1)(p2 −m2) = 0 , (23c)

from which the parameters can be determined,

r1 = ±
√
−6β

α
(p2 − 1)(p2 −m2) ,

c = −3βp2(2p2 −m2 − 1)2

2(p2 − 1)(p2 −m2)
+ β(6p2 −m2 − 1) ,

r0 = ±3βp(2p2 −m2 − 1)
α

×
√
− α

6β(p2 − 1)(p2 −m2)
. (24)

So the solution to Eq. (17)

u1 = r0 + r1f = ±3βp(2p2 −m2 − 1)
α

×
√
− α

6β(p2 − 1)(p2 −m2)

±
√
−6β

α
(p2 − 1)(p2 −m2)

sn ξ

1 + p sn ξ
, (25)

with

c = −3βp2(2p2 −m2 − 1)2

2(p2 − 1)(p2 −m2)
+ β(6p2 −m2 − 1) . (26)

Moreover, it is known that when m → 1, sn(ξ, m) →
tanh ξ, cn(ξ,m) → sech ξ, dn(ξ, m) → sech ξ and when
m → 0, sn(ξ, m) → sin ξ, cn(ξ, m) → cos ξ. So we can
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get more kinds of solutions of rational form expressed in
terms of hyperbolic functions or trigonometric functions,

u2 = r0 + r1f = ±3βp(2p2 − 2)
α

√
− α

6β(p2 − 1)2

±
√
−6β

α
(p2 − 1)2

tanh ξ

1 + p tanh ξ
(27)

with
c = −2β , (28)

u3 = r0 + r1f = ±3βp(2p2 − 1)
α

√
− α

6β(p2 − 1)p2

±
√
−6β

α
(p2 − 1)p2

sin ξ

1 + p sin ξ
(29)

with

c = −3β(2p2 − 1)2

2(p2 − 1)
+ β(6p2 − 1) . (30)

Obviously, u1, u2, and u3 are three novel rational form
solutions to mKdV equation (17).

When p = 0, equstions (25) and (26) reduce to

r0 = 0, r1 = ±m

√
−6β

α
, c = −β(1 + m2) , (31)

then

u4 = r0 +r1f = ±m

√
−6β

α
sn ξ, c = −β(1+m2) , (32)

which is just what we obtained by Jacobi elliptic function
expansion method.[5,6]

Case 2 t1 = 0, and r2
1 +s2

1 6= 0, then the ansatz solution
(20) reduces to

u = r0 + r1f + s1g, r2
1 + s2

1 6= 0 . (33)

Combining Eq. (33) with Eq. (19) results in

cps1 + α[2r0r1s1 − (r2
0 − s2

1)s1p]− β(6p2 −m2 − 4)s1p = 0 , (34a)

− cs1(p2 − 1) + α[2r2
1s1 − 2(3r0r1 − ps2

1)s1p + (r2
0 − s2

1)(p
2 − 1)s1]

+ βs1(p2 − 1)(6p2 − 4m2 − 1) + 3βs1p
2(4p2 −m2 − 3) = 0 , (34b)

− cr1 + α[(r2
0 − s2

1)r1 − 2r0s
2
1p] + βr1(6p2 −m2 − 1) = 0 , (34c)

α[2(r0r1 − ps2
1)r1 − 2r1s

2
1p + 2r0s

2
1(p

2 − 1)]− 6βr1p(2p2 −m2 − 1) = 0 , (34d)

α{−[r2
1 + (p2 − 1)s2

1]s1p + 2(r0r1 − ps2
1)(p

2 − 1)s1 − 4r2
1s1p + 2r0r1s1(p2 − 1)}

− 2βs1p(p2 − 1)(4p2 −m2 − 3)− 10βs1p(p2 − 1)(p2 −m2) = 0 , (34e)

α[r2
1 + (p2 − 1)s2

1]r1 + 2αr1s
2
1(p

2 − 1) + 6βr1(p2 − 1)(p2 −m2) = 0 , (34f)

α[r2
1 + (p2 − 1)s2

1]r1(p2 − 1) + 2αr2
1s1(p2 − 1) + 6βs1(p2 − 1)2(p2 −m2) = 0 , (34g)

from which the following results can be derived,

s1 = ±
√
−3β

2α
(p2 −m2) , (35)

r1 = ±
√
−3β

2α
(p2 − 1)(p2 −m2) , (36)

r0 = ∓ p

p2 −m2

√
−3β

2α
(p2 − 1)(p2 −m2) , (37)

and
c = β(6p2 −m2 − 1) +

3β

2(p2 −m2)
(m4 + p2 − 2p4) (38)

with the constraint p2 > 1 for real solutions.
So the solutions to Eq. (17) are

u5 = r0 + r1f + s1g = ∓
√
−3β

2α
(p2 −m2)

[√
p2 − 1

(
− p

p2 −m2
+

sn ξ

1 + p sn ξ

)
+

cn ξ

1 + p sn ξ

]
(39)

and

u6 = r0 + r1f + s1g = ∓
√
−3β

2α
(p2 −m2)

[√
p2 − 1

(
− p

p2 −m2
+

sn ξ

1 + p sn ξ

)
− cn ξ

1 + p sn ξ

]
. (40)

Their corresponding limited solutions are

u7 = ∓
√
−3β

2α
(p2 − 1)

[√
p2 − 1

(
− p

p2 − 1
+

tanh ξ

1 + p tanh ξ

)
+

sech ξ

1 + p tanh ξ

]
(41)

and

u8 = ∓
√
−3β

2α
(p2 − 1)

[√
p2 − 1

(
− p

p2 − 1
+

tanh ξ

1 + p tanh ξ

)
− sech ξ

1 + p tanh ξ

]
(42)
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for m = 1 and

u9 = ∓
√
−3β

2α
p2

[√
p2 − 1

(
−1

p
+

sin ξ

1 + p sin ξ

)
+

cos ξ

1 + p sin ξ

]
(43)

and

u10 = ∓
√
−3β

2α
p2

[√
p2 − 1

(
−1

p
+

sin ξ

1 + p sin ξ
)− cos ξ

1 + p sin ξ

]
(44)

for m = 0.
Similarly, u5, u6, u7, u8, u9, and u10 are six pairs of

novel rational form solutions to mKdV equation (17).
Secondly, we consider the two special cases p2 = 1 or

p2 = m2, where g and h satisfy the elliptic equation (2)
with a1 = a3 = 0, and the finite expansion is Eq. (1).
Then applying the elliptic equations (2) and (3) to mKdV
equation (17) yields n = 1, i.e. the ansatz takes the form
of

u = b0 + b1y, b1 6= 0 . (45)
Similarly, combining ansatz solution (45) with Eq. (19)

leads to

b0 = 0, b1 = ±
√
−6β

α
a4, c =

βa2

b1
. (46)

If a0 = a4 = (1−m2)/4, a2 = (1 + m2)/2, then y = g
with p2 = 1, so the solutions to mKdV equation are

u11 = b0 + b1y = ±
√
−3β(1−m2)

2α

cn ξ

1± sn ξ
. (47)

If a0 = a4 = −(1−m2)/4, a2 = (1 + m2)/2, then
y = h with p2 = m2, so the solutions to mKdV equation
are

u12 = b0 + b1y = ±
√

3β(1−m2)
2α

dn ξ

1±m sn ξ
. (48)

u11 and u12 are another two pairs of rational form solu-
tions to mKdV equation (17).

4 Conclusion
In this paper, we introduce three basic functions, com-

posed of three basic Jacobi elliptic functions, in the fi-
nite expasion method and apply it to solve nonlinear
wave equations. More kinds of solutions are obtained,
including periodic solutions of rational forms, solitary
wave solutions constructed in terms of hyperbolic func-
tions of rational forms. As application to mKdV equation,
some of the obtained solutions have not been obtained
by the Jacobi elliptic function expansion method,[5,6] the
sine-cosine method,[11] the hyperbolic function expansion
method,[12,13] the homogeneous balance method,[14,15] the
nonlinear transformation method,[16−18] the trial function
method[19,20] and others. So more applications of novel
basic functions to solve other nonlinear systems are also
applicable and deserved, due to the available symbolic
computation softwares, such as Maple, Matlab, Mathe-
matica, and so on, and the complete expansion (7) can
be easily applied to more nonlinear systems.
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