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Abstract

A simple oceanic barotropic potential vorticity equation on b-plane with the influence of wind stress is applied to

investigate the nonlinear Rossby wave in a shear flow. By the reductive perturbation method, we derived the rotational

modified KdV (rmKdV for short) equation. And then with the help of Jacobi elliptic functions, we obtain various peri-

odic structures for these equatorial Rossby waves. It is shown that the wind stress is very important for these periodic

structures of rational form.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Atmosphere and ocean construct an interactional coupled system. Ocean influences atmosphere by supplying heat

and energy, and the atmosphere offers the ocean momentum by the wind stress on the interface between the ocean and

the atmosphere, consequently driving the oceanic movement which called wind-driven current. So it is necessary to con-

sider the wind stress in the studies for ocean surface motions, especially for the oceanic waves. The theory of Rossby

wave and Kelvin wave is considered probably to be related with ENSO [1]. At present, there are different opinions

about the development of ENSO, but the common acceptance is: in the tropical Pacific there prevails westward trade

wind, when the westward trade wind weakens, even eastward wind appears, ENSO comes [1].

In this paper, a simple oceanic barotropic potential vorticity equation on b-plane with the influence of wind stress is

applied to investigate the nonlinear Rossby wave in a shear flow, where the reductive perturbation method is used to

derive rotational modified KdV equation, i.e. rmKdV equation. And then the basic structures of this rmKdV equation

are obtained by using the knowledge of Jacobi elliptic functions and elliptic equation. We have taken elliptic equation as

an intermediate transformation to solve nonlinear wave equations [2–4], and obtained many periodic solutions and sol-

itary wave solutions. However, there are still more research needed to do in order to find more solutions of different

forms. In Ref. [5], we derived periodic solutions of rational forms, which are due to external forcing. All these studies
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may help to learn about coherent structures such as atmospheric blocking events, long lived eddies in the ocean or

coherent structures in the Jovian atmosphere such as the Great Red Spot.
2. Derivation of rmKdV equation with wind stress

The governing equation is an incompressible homogeneous fluid on an infinite b-plane with a free surface h(x,y, t).

First we consider the nonlinear horizontal momentum equations of motion as following:
ut þ uux þ vuy � byv ¼ �ghx þ ksx ð1aÞ
vt þ uvx þ vvy þ byu ¼ �ghy þ ksy ð1bÞ
where b > 0 is the planetary-vorticity gradient and sx and sy are the terms due to the wind stress in the x and y direc-

tions. The similar systems to Eq. (1) without nonlinear advection terms have been used to study the ENSO in Refs. [1,6].

From Eq. (1), the vorticity equation under the b-plane approximation can be easily obtained
dðfþ byÞ
dt

þ ðfþ byÞD ¼ k
osy

ox
� osx

oy

� �
ð2Þ
where f is the vertical vorticity and D is the horizontal divergence.

For the wind stress, the simplest assumption is that the wind stress is taken to be in proportion to the magnitude of

the wind velocity above certain height, which is called Laminar flow [7]. As we know, the velocity of wind and ocean

flow near their interface is continuous, so if we simply define the wind stress in proportion to the ocean flow for the

surface oceanic motion, then Eq. (2) can be rewritten as
dðr2w� þ byÞ
dt

þ ðr2w� þ byÞD ¼ k�r2w� ð3Þ
where w* is the stream function and $2 is the horizontal Laplacian operator, k* is the re-scaled wind stress parameter.

If the whole layer is not divergent and the total stream function is written as
w� ¼ �
Z y

½�uðrÞ � c�dr þ w0 ð4Þ
then Eq. (3) can be rewritten as
o

ot
þ ð�u� cÞ o

ox

� �
r2w0 þ J w0;r2w0� �

þ b� �u00ð Þ ow
0

ox
¼ k� r2w0 � �u0

� �
ð5Þ
Next we take Gardner–Morikawa transformation [8], i.e.
X ¼ ex; T ¼ e3t; y ¼ y; ð6Þ
and consider that the external forcing is weak, i.e. O(k*) � O(e3), the perturbation stream function is expanded as
w0 ¼ ew1 þ e2w2 þ e3w3 þ � � � ð7Þ
then from Eq. (5), we have
OðeÞ : }ðw1Þ ¼ 0 ð8Þ

Oðe2Þ : }ðw2Þ ¼ � ow1

oX
o3w1

oy3
þ ow1

oy
o3w1

oXoy2
� j�u0 ð9Þ

Oðe3Þ : }ðw3Þ ¼ � ow1

oX
o3w2

oy3
� ow2

oX
o3w1

oy3
þ ow1

oy
o3w2

oXoy2
þ ow2

oy
o3w1

oXoy2
� o3w1

oToy2
� ð�u0 � cÞ o

3w1

oX 3
þ j

o2w1

oy2
ð10Þ
with the operator } is defined as
}ð Þ ¼ ð�u0 � cÞ o3

oXoy2
þ b� �u00ð Þ o

oX
ð11Þ
w1 satisfies Eq. (8), whose solution can be taken as
w1 ¼ AðX ; T ÞGðyÞ ð12Þ
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where G(y) satisfies
d2G
dy2

þ QG ¼ 0 ð13Þ
with
Q � b� �u00

�u� c
ð14Þ
and boundary condition
Gjy¼y1
¼ 0; Gjy¼y2

¼ 0 ð15Þ

Substituting the first-order solution (12) into the second order expansion Eq. (9), we have
}ðw2Þ ¼ A
oA
oX

dG
dy

d2G
dy2

� G
d3G
dy3

� �
� j�u0 ð16Þ
whose solution can be chosen as
w2 ¼ A2HðyÞ þ dX ð17Þ
where d is a constant.

Combining the results for w1 and w2 with the third order expansion Eq. (10) yields
}ðw3Þ ¼ � d2G
dy2

oA
oT

� ð�u� cÞG o3A

oX 3
� G

d3H
dy3

þ 2H
d3G
dy3

� 2
dG
dy

d2H
dy2

� dH
dy

d2G
dy2

� �
A2 oA

oX
þ j

d2G
dy2

� d
d3G
dy3

� �
A

ð18Þ
which can be multiplied by G and integrated with respect to y to reach the following rmKdV equation
oA
oT

þ aA2 oA
oX

þ l
o
3A

oX 3
þ cA ¼ 0 ð19Þ
with
a ¼ I1
I0
; l ¼ I2

I0
; c ¼ I3

I0
; I0 ¼ �

Z y2

y1

G
�u� c

d2G
dy2

dy

I1 ¼
Z y2

y1

G
d3H
dy3

þ 2H
d3G
dy3

� 2
dG
dy

d2H
dy2

� dH
dy

d2G
dy2

� �
G

�u� c
dy

I2 ¼ �
Z y2

y1

G2dy; I3 ¼
Z y2

y1

j
d2G
dy2

� d
d3G
dy3

� �
G

�u� c
dy

ð20Þ
3. Solutions to the rmKdV equation

Following the method mentioned in Ref. [9], we can decompose A(X,T) as
AðX ; T Þ ¼ W ðrÞV ðnÞ; r ¼ T ; n ¼ dðT Þ½X � hðT Þ� ð21Þ
whereW(r), V(n), d(T) and h(T) are certain functions for their argument to be determined. Here the decomposition (21)

is equivalent to introducing Lagrangean variables [10] {n,r}, which are related to the Eulerian ones {X,T} through for-

mula (21).

Substituting (21) into rmKdV Eq. (19) results in
W r

W
þ c

� �
V þ dr

d
nV n þ d �hrV n þ aW 2V 2V n þ ld2V nnn

� �
¼ 0 ð22Þ
Here we put some restrictions on Eq. (22), i.e.
�hrV n þ aW 2V 2V n þ ld2V nnn ¼ 0 ð23Þ
and
W r

W
þ c

� �
V þ dr

d
nV n ¼ 0 ð24Þ
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Eq. (23) can be integrated once with respect to n to arrive at
�hrV þ aW 2

3
V 3 þ ld2V nn ¼ BðrÞ ð25Þ
Eq. (25) can be solved by introducing the following fractional transformation [11]
V ðnÞ ¼ b0ðrÞ þ b1ðrÞz2ðnÞ
1þ b2ðrÞz2ðnÞ

ð26Þ
where z(n) satisfies elliptic equation
z2n ¼ a0 þ a1z2 þ a2z4 ð27Þ
In order to obtain nontrivial solution, there is a constraint
b0b2 � b1 6¼ 0 ð28Þ
so we consider two special cases, the first is

Case 1. b0 = 0, b1 5 0 and b2 5 0

In this case, we have
b1 ¼ � B

2a0ld
2
; b2 ¼

4a1ld
2 � hr

12a0ld
2

ð29Þ
with constraint
h2r ¼ 16l2d4 a21 � 3a0a2
� �

ð30Þ
and
4a1ld
2 � hr

� �3 þ 6hr 4a1ld
2 � hr

� �2 þ 144a0a2l2d4 4a1ld
2 � hr

� �
� 72aW 2B ¼ 0 ð31Þ
From Eq. (30), we have another constraint
a21 � 3a0a2 P 0 ð32Þ
From Refs. [2–5,8,11], we know that there are many kinds of solutions satisfying the constraint (32) to elliptic Eq.

(27). For example, when a0 = 1, a1 = � (1 + m2) and a2 = m2, then a21 � 3a0a2 ¼ 1� m2 þ m4 > 0 and the solution is
z1 ¼ snðn;mÞ ð33Þ
where 0 6 m 6 1, is called modulus of Jacobi elliptic functions and sn(n,m) is Jacobi elliptic sine function, see [8,12–15].

Thus V(n) can be determined as
V 1 ¼ � 6Bsn2ðn;mÞ
12ld2 þ �4ð1þ m2Þld2 � hr

� �
sn2ðn;mÞ

ð34Þ
This result for V(n) can be used to solve Eq. (24), which is firstly integrated with respect to n from �l to l with l

positive constant of a bounded value
W r

W
þ c� dr

2d

� � Z l

�l
V 2 dnþ dr

2d

Z l

�l
dðV 2nÞ ¼ 0 ð35Þ
Owing to the fact
Z l

�l
V 2

1 dn ¼ B2

4ld2
ðp2 þ 1ÞEðnÞ

2p2ðp2 � 1Þðm2 � p2Þ þ
n

2p4ðp2 � 1Þ þ 2p2ðp2 � 1Þpðn; p2Þ
� �				

l

�l

; ð36Þ
where E(n) and p(n,p2) are Legendre�s incomplete elliptic integrals of the second kind and the third kind, respectively,

with
p ¼ 4ð1þ m2Þld2 þ hr
12ld2

ð37Þ
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is bounded (actually, if V takes other elliptic functions, similar results can be reached, too), so we take assumption

that
Z l

�l
dðV 2nÞ ¼ s1

Z l

�l
V 2

1 dn ð38Þ
where s1 is a constant, its value depending on the specific form of V. Then we have
W r

W
þ cþ ðs1 � 1Þ dr

2d
¼ 0 ð39Þ
From Eqs. (30) and (31), one has
W r

3W
¼ dr

d
ð40Þ
Combining Eq. (39) with Eq. (40) leads to
W ¼ W 0e
� 6c
5þs1

T
; d ¼ d0e

� 2c
5þs1

T ð41Þ
and
h ¼ � ld20ðs1 þ 5Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2 þ m4

p

c
1� e

� 4c
5þs1

T
� �

ð42Þ
So A(X,T) in Eq. (21) can be written as
A1 ¼ � 6W 0Bsn2ðn;mÞe�
6c

5þs1
T

12ld2 þ ½�4ð1þ m2Þld2 � hr�sn2ðn;mÞ
ð43Þ
with d and h given by Eqs. (41) and (42), and n = d(T)[X � h(T)].
Similarly, when a0, a1 and a2 take other sets of values, there are different form solutions for V, which will results in

different s1, this indicates different W, d, h and n = d(T)[X � h(T)]. For example,

(1) If a0 = 1 � m2, a2 = 2m2 � 1 and a4 = �m2, then the solution is
z2 ¼ cnðn;mÞ; V 2 ¼ � 6Bcn2ðn;mÞ
12ð1� m2Þld2 þ 4ð2m2 � 1Þld2 � hr

� �
cn2ðn;mÞ

ð44Þ
where cn(n,m) is Jacobi elliptic cosine function, see [8,12–15], and
A2 ¼ � 6W 0Bcn2ðn;mÞe�
6c

5þs2
T

12ð1� m2Þld2 þ 4ð2m2 � 1Þld2 � hr
� �

cn2ðn;mÞ
ð45Þ
(2) If a0 = m2 � 1, a2 = 2 � m2 and a4 = �1, then the solution is
z3 ¼ dnðn;mÞ; V 3 ¼ � 6Bdn2ðn;mÞ
12ðm2 � 1Þld2 þ 4ð2� m2Þld2 � hr

� �
dn2ðn;mÞ

ð46Þ
where dn(n,m) is Jacobi elliptic function of the third kind, see [8,12–15], and
A3 ¼ � 6W 0Bdn
2ðn;mÞe�

6c
5þs3

T

12ðm2 � 1Þld2 þ 4ð2� m2Þld2 � hr
� �

dn2ðn;mÞ
ð47Þ
(3) If a0 = m2, a2 = � (1 + m2) and a4 = 1, then the solution is
z4 ¼ nsðn;mÞ � 1

snðn;mÞ ; V 4 ¼ � 6Bns2ðn;mÞ
12m2ld2 þ �4ð1þ m2Þld2 � hr

� �
ns2ðn;mÞ

ð48Þ
and
A4 ¼ � 6W 0Bns2ðn;mÞe�
6c

5þs4
T

12m2ld2 þ �4ð1þ m2Þld2 � hr
� �

ns2ðn;mÞ
ð49Þ
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(4) If a0 = �m2, a2 = 2m2 � 1 and a4 = 1 � m2, then the solution is
z5 ¼ ncðn;mÞ � 1

cnðn;mÞ ; V 5 ¼ � 6Bnc2ðn;mÞ
�12m2ld2 þ 4ð2m2 � 1Þld2 � hr

� �
nc2ðn;mÞ

ð50Þ
and
A5 ¼ � 6W 0Bnc2ðn;mÞe�
6c

5þs5
T

�12m2ld2 þ 4ð2m2 � 1Þld2 � hr
� �

nc2ðn;mÞ
ð51Þ
(5) If a0 = �1, a2 = 2 � m2 and a4 = m2 � 1, then the solution is
z6 ¼ ndðn;mÞ � 1

dnðn;mÞ ; V 6 ¼ � 6Bnd2ðn;mÞ
�12ld2 þ 4ð2� m2Þld2 � hr

� �
nd2ðn;mÞ

ð52Þ
and
A6 ¼ � 6W 0Bnd
2ðn;mÞe�

6c
5þs6

T

�12ld2 þ 4ð2� m2Þld2 � hr
� �

nd2ðn;mÞ
ð53Þ
(6) If a0 = 1, a2 = 2 � m2 and a4 = 1 � m2, then the solution is
z7 ¼ scðn;mÞ � snðn;mÞ
cnðn;mÞ ; V 7 ¼ � 6Bsc2ðn;mÞ

12ld2 þ 4ð2� m2Þld2 � hr
� �

sc2ðn;mÞ
ð54Þ
and
A7 ¼ � 6W 0Bsc2ðn;mÞe�
6c

5þs7
T

12ld2 þ 4ð2� m2Þld2 � hr
� �

sc2ðn;mÞ
ð55Þ
(7) If a0 = 1, a2 = 2m2 � 1 and a4 = (m2 � 1)m2, then the solution is
z8 ¼ sdðn;mÞ � snðn;mÞ
dnðn;mÞ ; V 8 ¼ � 6Bsd2ðn;mÞ

12ld2 þ 4ð2m2 � 1Þld2 � hr
� �

sd2ðn;mÞ
ð56Þ
and
A8 ¼ � 6W 0Bsd
2ðn;mÞe�

6c
5þs8

T

12ld2 þ 4ð2m2 � 1Þld2 � hr
� �

sd2ðn;mÞ
ð57Þ
(8) If a0 = 1 � m2, a2 = 2 � m2 and a4 = 1, then the solution is
z9 ¼ csðn;mÞ � cnðn;mÞ
snðn;mÞ ; V 9 ¼ � 6Bcs2ðn;mÞ

12ð1� m2Þld2 þ 4ð2� m2Þld2 � hr
� �

cs2ðn;mÞ
ð58Þ
and
A9 ¼ � 6W 0Bcs2ðn;mÞe�
6c

5þs9
T

12ð1� m2Þld2 þ 4ð2� m2Þld2 � hr
� �

cs2ðn;mÞ
ð59Þ
(9) If a0 = 1, a2 = �(1 + m2) and a4 = m2, then the solution is
z10 ¼ cdðn;mÞ � cnðn;mÞ
dnðn;mÞ ; V 10 ¼ � 6Bcd2ðn;mÞ

12ld2 þ �4ð1þ m2Þld2 � hr
� �

cd2ðn;mÞ
ð60Þ
and
A10 ¼ � 6W 0Bcd
2ðn;mÞe�

6c
5þs10

T

12ld2 þ �4ð1þ m2Þld2 � hr
� �

cd2ðn;mÞ
ð61Þ
(10) If a0 = m2(m2 � 1), a2 = 2m2 � 1 and a4 = 1, then the solution is
z11 ¼ dsðn;mÞ � dnðn;mÞ
snðn;mÞ ; V 11 ¼ � 6Bds2ðn;mÞ

12m2ðm2 � 1Þld2 þ 4ð2m2 � 1Þld2 � hr
� �

ds2ðn;mÞ
ð62Þ
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and
A11 ¼ � 6W 0Bds
2ðn;mÞe�

6c
5þs11

T

12m2ðm2 � 1Þld2 þ 4ð2m2 � 1Þld2 � hr
� �

ds2ðn;mÞ
ð63Þ
(11) If a0 = m2, a2 = �(1 + m2) and a4 = 1, then the solution is
z12 ¼ dcðn;mÞ � dnðn;mÞ
cnðn;mÞ ; V 12 ¼ � 6Bdc2ðn;mÞ

12m2ld2 þ �4ð1þ m2Þld2 � hr
� �

dc2ðn;mÞ
ð64Þ
and
A12 ¼ � 6W 0Bdc
2ðn;mÞe�

6c
5þs12

T

12m2ld2 þ �4ð1þ m2Þld2 � hr
� �

dc2ðn;mÞ
ð65Þ
Case 2. b0 5 0, b1 = 0 and b2 5 0

In this case, we have
b0 ¼ � B

2a2ld
2
b2; b2 ¼

12a2ld
2

4a1ld
2 � hr

ð66Þ
with the same constraint as (30) and (31). Similarly we can obtain solutions just similar to solutions from A1 to A12, here

we omit the details.
4. Conclusion

A simple oceanic barotropic potential vorticity equation on b-plane with the influence of wind stress is applied to

investigate the nonlinear Rossby wave in a shear flow. By the reductive perturbation method, we derived the rmKdV

equation. And then we obtain various periodic structures for these equational Rossby waves with the help of Jacobi

elliptic functions. So we know that the wind stress is of great importance for these periodic structures of rational form.

Of course, these periodic structures also contain solitons and solitary waves, which can be used in explaining different

practical oceanic wave phenomena. This needs more further research.
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