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Exact Jacobian Elliptic Function Solutions to sinh-Gordon Equation∗
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Abstract In this paper, two transformations are introduced to solve sinh-Gordon equation by using the knowledge
of elliptic equation and Jacobian elliptic functions. It is shown that different transformations are required in order to
obtain more kinds of solutions to the sinh-Gordon equation.
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1 Introduction

The sinh-Gordon (ShG for short) equation[1−8]

uxt = α sinhu (1)

is widely applied in physics and engineering, for exam-
ple, integrable quantum field theories,[1] noncommuta-
tive field theories,[2] fluid dynamics,[3] and so on. Due
to the wide applications of sinh-Gordon equation, many
achievements have been obtained in different aspects.[3−9]

For instance, ShG equation is known to be completely
integrable[4] because it possesses similarity reductions to
the third Painlevé equation.[5]

Due to the special form of the sinh-Gordon equation,
it is very difficult to solve them directly, so one needs some
transformations. In this paper, based on the introduced
transformations, we will show systematical results about
solutions for ShG equation (1) by using the knowledge of
elliptic equation and Jacobian elliptic functions.[10−12]

2 The First Kind of Transformation and So-
lutions to ShG Equation

The first transformation is introduced in the form

u = 2 sinh−1v or v = sinh
u

2
, (2)

and then

sinhu = 2 sinh
u

2
cosh

u

2
= 2v

√
1 + v2 , (3)

and

utx =
2√

1 + v2
vtx −

2v

(1 + v2)
√

1 + v2
vtvx . (4)

Combining Eqs. (3) and (4) with Eq. (1), the ShG
equation can be rewritten as

(1 + v2)vtx − vvtvx − αv(1 + v2)2 = 0 . (5)

Equation (5) can be solved in the frame

v = v(ξ), ξ = k(x− ct) , (6)

where k and c are wave number and wave speed, respec-
tively.

Substituting Eqs. (6) into Eqs. (5), we have

(1 + v2)
d2v

dξ2
− v

( dv

dξ

)2

+ α1v(1 + v2)2 = 0 ,

α1 ≡
α

k2c
. (7)

And then we suppose equation (7) has the following
solution:

v = v(y) =
j=n∑
j=0

bjy
j , bn 6= 0, y = y(ξ) , (8)

where y satisfies elliptic equation[10,13]

y′2 = a0 + a2y
2 + a4y

4, a4 6= 0, y′ ≡ dy

dξ
. (9)

There n in Eq. (8) can be determined by the partial
balance between the highest order derivative terms and
the highest degree nonlinear term in Eq. (7). Here we
know that the degree of v is

O(v) = O(yn) = n , (10)

and from Eq. (9), one has

O(y′2) = O(y4) = 4 ,

O(y′′) = O(y3) = 3 ,

O(y(l)) = l + 1 . (11)

So one has

O(v) = n, O(v′) = n + 1 ,
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O(v′′) = n + 2, O(v(l)) = n + l . (12)

For ShG equation (1), we have n = 1, so the ansatz
solution of Eq. (7) can be rewritten as

v = b0 + b1y, b1 6= 0 . (13)

Substituting Eq. (13) into Eq. (7) results in an alge-
braic equation for y, which can be used to determine ex-
pansion coefficients in Eq. (13) and some constraints can
also be obtained. Here we have

b0 = 0, b1 = ±
√
− a4

α1
,

α1 =
α

k2c
=
−a2 ±

√
a2
2 − 4a0a4

2
. (14)

In order to derive real solutions, there are two constraints,

− a4

α1
> 0, a2

2 − 4a0a4 ≥ 0 . (15)

There are some cases to be considered. For example,
Case 1 If a0 = 1 −m2, a2 = 2m2 − 1, a4 = −m2,

where 0 ≤ m ≤ 1 is called modulus of Jacobian elliptic
functions,[13−15] then

y = cn ξ, b0 = 0, b1 = ± m√
1−m2

,

c =
α

k2(1−m2)
, 0 < m < 1 , (16)

where k is an arbitrary constant, and cn ξ is Jacobian ellip-
tic cosine function.[13−15] So the solution to ShG equation
(1) is

u1 = 2 sinh−1
(
± m√

1−m2
cn ξ

)
. (17)

Case 2 If a0 = −m2, a2 = 2m2 − 1, a4 = 1 −m2,
then

y = nc ξ ≡ 1
cn ξ

, b0 = 0 ,

b1 = ±
√

1−m2

m
,

c = − α

m2k2
, 0 < m < 1 , (18)

where k is an arbitrary constant, and then the solution to
ShG equation (1) is

u2 = 2 sinh−1
(
±
√

1−m2

m
nc ξ

)
. (19)

Case 3 If a0 = 1, a2 = 2−m2, a4 = 1−m2, then

y = sc ξ ≡ sn ξ

cn ξ
, b0 = 0, b1 = ±1 ,

c = − α

(1−m2)k2
, 0 < m < 1 , (20)

where k is an arbitrary constant, and sn ξ is Jacobian el-
liptic sine function.[13−15] So the solution to ShG equation
(1) is

u3 = 2 sinh−1(± sc ξ) . (21)

Case 4 If a0 = 1, a2 = 2−m2, a4 = 1−m2, then

y = sc ξ, b0 = 0, b1 = ±
√

1−m2 ,

c = − α

k2
, 0 < m < 1 , (22)

where k is an arbitrary constant, and the solution to ShG
equation (1) is

u4 = 2 sinh−1(±
√

1−m2sc ξ) . (23)

Case 5 If a0 = 1, a2 = 2m2 − 1, a4 = (m2 − 1)m2,
then

y = sd ξ ≡ sn ξ

dn ξ
, b0 = 0, b1 = ±m ,

c =
α

(1−m2)k2
, 0 < m < 1 , (24)

where k is an arbitrary constant, and dn ξ is Jacobian el-
liptic function of the third kind.[13−15] So the solution to
ShG equation (1) is

u5 = 2 sinh−1(±m sd ξ) . (25)

Case 6 If a0 = 1−m2, a2 = 2−m2, a4 = 1, then

y = cs ξ ≡ cn ξ

sn ξ
, b0 = 0, b1 = ±1 ,

c = − α

k2
, 0 < m ≤ 1 , (26)

where k is an arbitrary constant, and the solution to ShG
equation (1) is

u6 = 2 sinh−1(±cs ξ) . (27)

When m→ 1, u6 recovers

u7 = 2 sinh−1(±csch ξ) . (28)

Case 7 If a0 = 1−m2, a2 = 2−m2, a4 = 1, then

y = cs ξ, b0 = 0, b1 = ± 1√
1−m2

,

c = − α

(1−m2)k2
, 0 < m < 1 , (29)

where k is an arbitrary constant, and the solution to ShG
equation (1) is

u8 = 2 sinh−1
(
± 1√

1−m2
cs ξ

)
. (30)

Case 8 If a0 = m2(m2 − 1), a2 = 2m2 − 1, a4 = 1,
then

y = ds ξ ≡ dn ξ

sn ξ
, b0 = 0, b1 = ± 1

m
,

c = − α

m2k2
, 0 < m ≤ 1 , (31)

where k is an arbitrary constant, and the solution to ShG
equation (1) is

u9 = 2 sinh−1
(
± 1

m
ds ξ

)
. (32)
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When m→ 1, u9 recovers u7.
Apart from these Jacobian elliptic solutions, y also has

some rational solutions in terms of Jacobian elliptic func-
tions, such as the following.

Case 9 If a0 = (1−m2)/4, a2 = (1 + m2)/2, a4 =
(1−m2)/4, then

y =
cn ξ

1± sn ξ
, b0 = 0, b1 = ±

√
1−m2

1 + m
,

c = − 4α

(1 + m)2k2
, 0 < m < 1 , (33)

where k is an arbitrary constant. So the solution to ShG
equation (1) is

u10 = 2 sinh−1
(
±
√

1−m2

1 + m

cn ξ

1± sn ξ

)
. (34)

Case 10 If a0 = (1−m2)/4, a2 = (1 + m2)/2,
a4 = (1−m2)/4, then

y =
cn ξ

1± sn ξ
, b0 = 0, b1 = ±

√
1−m2

1−m
,

c = − 4α

(1−m)2k2
, 0 < m < 1 , (35)

where k is an arbitrary constant, and the solution to ShG
equation (1) is

u11 = 2 sinh−1
(
±
√

1−m2

1−m

cn ξ

1± sn ξ

)
. (36)

Remark Transformation (2) and the solutions from u1

to u11 in terms of Jacobian elliptic functions have not been
reported in the literature.

3 The Second Kind of Transformation and
Solutions to ShG Equation

The second transformation is introduced in the form

u = 2 cosh−1v or v = cosh
u

2
, (37)

and then

sinhu = 2 sinh
u

2
cosh

u

2
= 2v

√
v2 − 1 , (38)

and

utx =
2√

v2 − 1
vtx −

2v

(v2 − 1)
√

v2 − 1
vtvx . (39)

Combining Eqs. (38) and (39) with Eq. (1), the ShG
equation can be rewritten as

(v2 − 1)vtx − vvtvx − αv(v2 − 1)2 = 0 . (40)

We can see that equation (40) is similar to Eq. (5),
so it can be easily solved just like what we have done to
Eq. (5). Here we have

b0 = 0, b1 = ±
√
−a4k2c

α
,

α

k2c
=

a2 ±
√

a2
2 − 4a0a4

2
, (41)

with constraints

−a4k
2c

α
> 0, a2

2 − 4a0a4 ≥ 0 . (42)

Similarly, there are some cases to be considered. For
example,

Case 1 If a0 = 1, a2 = −(1 + m2), a4 = m2, then

y = sn ξ, b0 = 0, b1 = ±m ,

c = − α

k2
, 0 < m ≤ 1 , (43)

where k is an arbitrary constant, and the solution to ShG
equation (1) is

u12 = 2 cosh−1(±msn ξ) . (44)

Case 2 If a0 = 1, a2 = −(1 + m2), a4 = m2, then

y = sn ξ, b0 = 0, b1 = ±1 ,

c = − α

k2m2
, 0 < m ≤ 1 , (45)

where k is an arbitrary constant, and the solution to ShG
equation (1) is

u13 = 2 cosh−1(±sn ξ) . (46)

Actually, when m→ 1, u12 and u13 both recover to

u14 = 2 cosh−1(±tanh ξ), c = − α

k2
. (47)

Case 3 If a0 = 1 −m2, a2 = 2m2 − 1, a4 = −m2,
then

y = cn ξ, b0 = 0, b1 = ±1 ,

c =
α

k2m2
, 0 < m ≤ 1 , (48)

where k is an arbitrary constant, and the solution to ShG
equation (1) is

u15 = 2 cosh−1(±cn ξ) . (49)

Actually, when m→ 1, u15 recovers to

u16 = 2 cosh−1(±sech ξ), c =
α

k2
. (50)

Case 4 If a0 = m2 − 1, a2 = 2−m2, a4 = −1, then

y = dn ξ, b0 = 0, b1 = ±1 ,

c =
α

k2
, 0 < m ≤ 1 , (51)

where k is an arbitrary constant, and the solution to ShG
equation (1) is

u17 = 2 cosh−1(±dn ξ) . (52)

Actually, when m→ 1, u17 recovers u16.
Case 5 If a0 = m2 − 1, a2 = 2−m2, a4 = −1, then

y = dn ξ, b0 = 0, b1 = ± 1√
1−m2

,
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c =
α

(1−m2)k2
, 0 < m < 1 , (53)

where k is an arbitrary constant, and the solution to ShG
equation (1) is

u18 = 2 cosh−1
(
± 1√

1−m2
dn ξ

)
. (54)

Case 6 If a0 = m2, a2 = −(1 + m2), a4 = 1, then

y = ns ξ, b0 = 0, b1 = ± 1
m

,

c = − α

k2m2
, 0 < m ≤ 1 , (55)

where k is an arbitrary constant, and the solution to ShG
equation (1) is

u19 = 2 cosh−1
(
± 1

m
ns ξ

)
. (56)

Case 7 If a0 = m2, a2 = −(1 + m2), a4 = 1, then

y = ns ξ, b0 = 0, b1 = ±1 ,

c = − α

k2
, 0 < m ≤ 1 , (57)

where k is an arbitrary constant, and the solution to ShG
equation (1) is

u20 = 2 cosh−1(±ns ξ) . (58)

Actually, when m→ 1, u19 and u20 both recover to

u21 = 2 cosh−1(±coth ξ), c = − α

k2
. (59)

Case 8 If a0 = −m2, a2 = 2m2 − 1, a4 = 1 −m2,
then

y = nc ξ, b0 = 0, b1 = ±1 ,

c = − α

(1−m2)k2
, 0 < m < 1 , (60)

where k is an arbitrary constant, and the solution to ShG
equation (1) is

u22 = 2 cosh−1(±nc ξ) . (61)

Case 9 If a0 = −1, a2 = 2−m2, a4 = m2 − 1, then

y = nd ξ, b0 = 0, b1 = ±1 ,

c = − α

(m2 − 1)k2
, 0 < m < 1 , (62)

where k is an arbitrary constant, and the solution to ShG
equation (1) is

u23 = 2 cosh−1(±nd ξ) . (63)

Case 10 If a0 = −1, a2 = 2−m2, a4 = m2−1, then

y = nd ξ, b0 = 0, b1 = ±
√

1−m2 ,

c =
α

k2
, 0 < m < 1 , (64)

where k is an arbitrary constant, and the solution to ShG
equation (1) is

u24 = 2 cosh−1(±
√

1−m2nd ξ) . (65)

Case 11 If a0 = 1, a2 = 2m2 − 1, a4 = (m2 − 1)m2,
then

y = sd ξ, b0 = 0, b1 = ±
√

1−m2 ,

c =
α

m2k2
, 0 < m < 1 , (66)

where k is an arbitrary constant, and the solution to ShG
equation (1) is

u25 = 2 cosh−1(±
√

1−m2sd ξ) . (67)

Case 12 If a0 = 1, a2 = −(1 + m2), a4 = m2, then

y = cd ξ, b0 = 0, b1 = ±m ,

c = − α

k2
, 0 < m ≤ 1 , (68)

where k is an arbitrary constant, and the solution to ShG
equation (1) is

u26 = 2 cosh−1(±m cd ξ) . (69)

Case 13 If a0 = 1, a2 = −(1 + m2), a4 = m2, then

y = cd ξ, b0 = 0, b1 = ±1 ,

c = − α

m2k2
, 0 < m ≤ 1 , (70)

where k is an arbitrary constant, and the solution to ShG
equation (1) is

u27 = 2 cosh−1(±cd ξ) . (71)

Case 14 If a0 = m2(m2 − 1), a2 = 2m2 − 1, a4 = 1,
then

y = ds ξ, b0 = 0, b1 = ± 1√
1−m2

,

c = − α

(1−m2)k2
, 0 < m < 1 , (72)

where k is an arbitrary constant, and the solution to ShG
equation (1) is

u28 = 2 cosh−1(± 1√
1−m2

ds ξ) . (73)

Case 15 If a0 = m2, a2 = −(1 + m2), a4 = 1, then

y = dc ξ, b0 = 0, b1 = ± 1
m

,

c = − α

m2k2
, 0 < m ≤ 1 , (74)

where k is an arbitrary constant, and the solution to ShG
equation (1) is

u29 = 2 cosh−1
(
± 1

m
dc ξ

)
. (75)

Case 16 If a0 = m2, a2 = −(1 + m2), a4 = 1, then

y = dc ξ, b0 = 0, b1 = ±1 ,

c = − α

k2
, 0 < m ≤ 1 , (76)
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where k is an arbitrary constant, and then the solution to
ShG equation (1) is

u30 = 2 cosh−1(±dc ξ) . (77)

Case 17 If a0 = −(1−m2)/4, a2 = (1 + m2)/2,
a4 = −(1−m2)/4, then

y =
dn ξ

1±m sn ξ
, b0 = 0, b1 = ±

√
1−m2

1 + m
,

c =
4α

(1 + m)2k2
, 0 < m < 1 , (78)

where k is an arbitrary constant, and then the solution to
ShG equation (1) is

u31 = 2 cosh−1
(
±
√

1−m2

1 + m

dn ξ

1±m sn ξ

)
. (79)

Case 18 If a0 = −(1−m2)/4, a2 = (1 + m2)/2,
a4 = −(1−m2)/4, then

y =
dn ξ

1±m sn ξ
, b0 = 0, b1 = ±

√
1−m2

1−m
,

c =
4α

(1−m)2k2
, 0 < m < 1 , (80)

where k is an arbitrary constant, then the solution to ShG
equation (1) is

u32 = 2 cosh−1
(
±
√

1−m2

1−m

dn ξ

1±m sn ξ

)
. (81)

Case 19 If a0 = m2/4, a2 = −(2−m2)/2, a4 =
m2/4, then

y =
m sn ξ

1± dn ξ
, b0 = 0 ,

b1 = ± m√
2−m2 + 2

√
1−m2

,

c = − 4α

(
√

2−m2 + 2
√

1−m2)k2
, 0 < m ≤ 1 , (82)

where k is an arbitrary constant, and then the solution to
ShG equation (1) is

u33 = 2 cosh−1
(
± m√

2−m2 + 2
√

1−m2

m sn ξ

1± dn ξ

)
. (83)

Case 20 If a0 = m2/4, a2 = −(2−m2)/2, a4 =
m2/4, then

y =
m sn ξ

1± dn ξ
, b0 = 0 ,

b1 = ± m√
2−m2 − 2

√
1−m2

,

c = − 4α

(
√

2−m2 − 2
√

1−m2)k2
, 0 < m ≤ 1 , (84)

where k is an arbitrary constant, and then the solution to

ShG equation (1) is

u34 = 2 cosh−1
(
± m√

2−m2 − 2
√

1−m2

m sn ξ

1± dn ξ

)
. (85)

When m→ 1, u33 and u34 both recover to

u35 = 2 cosh−1
(
± tanh ξ

1± sech ξ

)
, c = −4α

k2
. (86)

Case 21 If a0 = 1/4, a2 = −(2−m2)/2, a4 = m4/4,
then

y =
sn ξ

1± dn ξ
, b0 = 0 ,

b1 = ± m2√
2−m2 + 2

√
1−m2

,

c = − 4α

(
√

2−m2 + 2
√

1−m2)k2
, 0 < m ≤ 1 , (87)

where k is an arbitrary constant.
So the solution to ShG equation (1) is

u36 = 2 cosh−1
(
± m2√

2−m2 + 2
√

1−m2

sn ξ

1± dn ξ

)
. (88)

Case 22 If a0 = 1/4, a2 = −(2−m2)/2, a4 = m4/4,
then

y =
sn ξ

1± dn ξ
, b0 = 0 ,

b1 = ± m2√
2−m2 − 2

√
1−m2

,

c = − 4α

(
√

2−m2 − 2
√

1−m2)k2
, 0 < m ≤ 1 , (89)

where k is an arbitrary constant, and then the solution to
ShG equation (1) is

u37 = 2 cosh−1
(
± m2√

2−m2 − 2
√

1−m2

sn ξ

1± dn ξ

)
. (90)

When m→ 1, u36 and u37 both recover to u35.

Remark Transformation (37) and the solutions from
u12 to u37 in terms of Jacobian elliptic functions have not
been given in the literature.

4 Conclusion

In this paper, two transformations are introduced to
solve sinh-Gordon equation by using the knowledge of el-
liptic equation and Jacobian elliptic functions. It is shown
that different transformations are required in order to ob-
tain more kinds of solutions to the sinh-Gordon equa-
tion. Here some new solutions have not been reported
in the literature. It is shown that different transforma-
tions play different roles in obtaining exact solutions, some
transformations may not work for a specific parameter of
ShG equation. Of course, still more efforts are needed to
explore what kinds of transformations are more suitable
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to solving sinh-Gordon equation, because different trans-
formations result in different partial balances for sinh-
Gordon equation, which will lead to different expansion

truncations in the elliptic equation expansion method. Fi-
nally, these will result in different solutions of the sine-
Gordon equation.
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