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Periodic Structures of Rossby Wave under Influence of Dissipation∗
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Abstract A simple barotropic potential vorticity equation with the influence of dissipation is applied to investigate
the nonlinear Rossby wave in a shear flow in the tropical atmophere. By the reductive perturbation method, we derive
the rotational KdV (rKdV for short) equation. And then, with the help of Jacobi elliptic functions, we obtain various
periodic structures for these Rossby waves. It is shown that dissipation is very important for these periodic structures
of rational form.
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1 Introduction

Planet-scale Rossby waves in the atmosphere and the
ocean are the main disturb related to weather changes.
Its nonlinear effect is an important factor to the high-
low index shift in the circulation of the atmosphere and
the ocean. So, the kinematic and dynamic characters of
Rossby wave have attracted much attention of climatic
scientists. As one of the factors affecting Rossby wave,
dissipation is very important to the generation and devel-
opment of Rossby wave. Lindzen[1] found that the break
of gravity wave can lead to wave damping in the mid-
dle atmosphere. Geller[2] gave further reference that the
break of gravity wave will give most of the friction dissi-
pation in troposphere, and he described this process using
Rayleigh friction parameter. Holton[3] also used Reyleigh
friction to investigate Rossby waves in large scale model.
Tan[4] suggested in his study that dissipation is always
made the amplitude of envelope solitary wave attenuate.
Yi[5] showed the dynamics behaviors of gravity wave in
high atmosphere are decided by both nonlinear and dis-
sipation. Thus, in the study of the movement of Rossby
wave, we need to discuss some dissipative nonlinear influ-
ence to Rossby waves.

In this paper, a simple barotropic potential vorticity
equation with the influence of dissipation is applied to in-
vestigate the nonlinear Rossby wave in a shear flow, where
the reductive perturbation method is used to derive rota-
tional KdV equation, i.e. rKdV equation. And then the
basic structures of this rKdV equation are obtained by

using the knowledge of Jacobi elliptic functions and el-
liptic equation. We have taken elliptic equation as an
intermediate transformation tool to solve nonlinear wave
equations,[6−8] and have obtained some periodic solutions
and solitary wave solutions. However, still more researches
are needed to do in order to find more solutions of different
forms. In Ref. [9], we derived periodic solutions of rational
forms, which are due to external forcing. All these studies
may help to learn about coherent structures such as at-
mospheric blocking events, long lived eddies in the ocean
or coherent structures in the Jovian atmosphere such as
the Great Red Spot.

2 Derivation of rKdV Equation with Dissipa-
tion

We take the potential vorticity equation with the effect
of dissipation as our governing equation,[10]

∂

∂x
∇2ψ + J(ψ,∇2ψ) + β

∂ψ

∂x
= −λ∗∇2ψ , (1)

where β > 0 is the planartary-vorticity gradient and λ∗ is
dissipation coefficient, ψ is the stream function.

The total stream function is written as

ψ∗ = −
∫ y

[ū(r)− c]dr + ψ′ , (2)

then equation (1) can be rewritten as[ ∂
∂t

+ (ū− c)
∂

∂x

]
∇2ψ′ + J(ψ′,∇2ψ′)

+ (β − ū′′)
∂ψ′

∂x
= −λ∗(∇2ψ − ū′) . (3)
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Next we take Gardner–Morikawa transformation,[11]

i.e.
X = ε1/2x, T = ε3/2t, y = y , (4)

where ε = U/f0L is the non-dimensional small parameter.
And the perturbation stream function is expanded as

ψ′ = εψ1 + ε2ψ2 + ε3ψ3 + · · · , (5)

and we consider that the effect of dissipation is weak, i.e.
O(λ∗) ∼ O(ρε3/2).

Then from Eq. (3), we have

O(ε) : ℘(ψ1) = ρū′ , (6)

O(ε2) : ℘(ψ2) = −∂ψ1

∂X

∂3ψ1

∂y3
+
∂ψ1

∂y

∂3ψ1

∂X∂y2

− ∂

∂T

(∂2ψ1

∂y2

)
− ū

∂3ψ1

∂X3
− ρ

d2G

dy2
(7)

with the operator ℘ defined as

℘( ) = (ū− c)
∂3

∂X∂y2
+ (β − ū′′)

∂

∂X
. (8)

ψ1 satisfies Eq. (6), whose solution can be taken as

ψ1 = A(X,T )G(y) + dX , (9)

where d is a constant and G(y) satisfies

d2G

dy2
+QG = 0 (10)

with

Q ≡ β − ū′′

ū− c
(11)

and boundary condition

G|y=+∞ = 0, G|y=−∞ = 0 . (12)

Substituting the first-order solution (9) into the
second-order expansion equation (7), we have

℘(ψ2) = − d2G

dy2

∂A

∂T
− (ū− c)G

∂3A

∂X3

+A
∂A

∂X

( dG
dy

d2G

dy2
−G

d3G

dy3

)
− ρ

d2G

dy2
A , (13)

which can be multiplied by G and integrated with respect
to y to reach the following rKdV equation:

∂A

∂T
+ αA

∂A

∂X
+ µ

∂3A

∂X3
+ γA = 0 (14)

with

α =
I1
I0
, µ =

I2
I0
, γ =

I3
I0
,

I0 = −
∫ +∞

−∞

G

ū− c

d2G

dy2
dy ,

I1 =
∫ +∞

−∞

[ G

ū− c

( dG
dy

d2G

dy2
−G

d3G

dy3

)]
dy , (15)

I2 = −
∫ +∞

−∞
G2dy, I3 = −

∫ +∞

−∞

( ρG

ū− c

d2G

dy2

)
dy .

3 Solutions to the rKdV Equation

Following the method mentioned in Ref. [12], we can
decompose A(X,T ) as

A(X,T ) = W (σ)V (ξ), σ = T ,

ξ = δ(T )[X − θ(T )] , (16)

where W (σ), V (ξ), δ(T ), and θ(T ) are certain func-
tions for their argument to be determined. Here the de-
composition (16) is equivalent to introducing Lagrangian
variables[13] {ξ, σ}, which are related to the Eulerian ones
{X,T} through formula Eq. (16). Substituting Eq. (16)
into rKdV equation (14) results in

(Wσ

W
+ γ

)
V +

δσ
δ
ξVξ + δ

(
−θσVξ + αW 2V Vξ + µδ2Vξξξ

)
= 0 . (17)

Here we put some restrictions on Eq. (17), i.e.,

− θσVξ + αW 2V Vξ + µδ2Vξξξ = 0 , (18)(Wσ

W
+ γ

)
V +

δσ
δ
ξVξ = 0 . (19)

Equation (18) can be integrated once with respect to ξ to arrive at

−θσV + αW 2V
2

2
+ µδ2Vξξ = B(σ) . (20)

Case 1 B = const.
In Eq. (20), the highest nonlinear term is balanced with the highest dispersion term, so we get

V ′′ = b0 + b1z + b2z
2 , (21)

where z(ξ) satisfies elliptic equation

z′2 = a0 + a1z + a2z
2 + a3z

3 + a4z
4 . (22)
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So we consider two special cases.

(i) a1 = 0 and a3 = 0
In this case, we have

a0 =
(θ′(T )/αW 2(σ))b0 − (αW 2(σ)/2µδ2(σ))b20 +B/µδ2(σ)

2b2
,

a2 =
θ′(T )

4αW 2(σ)
− αW 2(σ)

4µδ2(σ)
b0 , (23)

b2 = −12µδ2(σ)
αW 2(σ)

a4, b0 = 0, b1 = 0 , (24)

W (σ) = ±
√
−24a0a4µ2

Bα
δ2(σ) . (25)

From Refs. [6] ∼ [9], [12], and [14] we know that there are many kinds of solutions to elliptic equation (22). For
example, when a0 = 1, a1 = −(1 +m2), and a2 = m2, then a2

1 − 3a0a2 = 1−m2 +m4 > 0 and the solution is

z1 = sn(ξ,m) , (26)

where 0 ≤ m ≤ 1 is called modulus of Jacobi elliptic functions and sn(ξ,m) is Jacobi elliptic sine function, see Refs. [12]
and [15] ∼ [18]. Thus V (ξ) can be determined as

V1 = −12µδ2(σ)m2

αW 2(σ)
sn2(ξ,m) . (27)

This result for V (ξ) can be used to solve Eq. (19), which is firstly integrated with respect to ξ from −l to l with l
positive constant of a bounded value,(Wσ

W
+ γ − δσ

2δ

) ∫ l

−l

V 2dξ +
δσ
2δ

∫ l

−l

d(V 2ξ) = 0 . (28)

Owing to the fact ∫ l

−l

V 2
1 dξ =

B2

4µδ2
[ (p2 + 1)E(ξ)
2p2(p2 − 1)(m2 − p2)

+
ξ

2p4(p2 − 1)
+ 2p2(p2 − 1)π(ξ, p2)

]∣∣∣l
−l
, (29)

where E(ξ) and π(ξ, p2) are Legendre’s incomplete elliptic
integrals of the second kind and the third kind, respec-
tively, with

p =
4(1 +m2)µδ2 + θσ

12µδ2
(30)

being bounded (actually, if V takes other elliptic func-
tions, similar results can be reached, too), we take as-
sumption that ∫ l

−l

d(V 2ξ) = s1

∫ l

−l

V 2
1 dξ , (31)

where s1 is a constant, its value depending on the specific
form of V . Then we have

Wσ

W
+ γ + (s1 − 1)

δσ
2δ

= 0 . (32)

From Eq. (25), one has

Wσ

W
=

2δσ
δ
. (33)

Combining Eq. (32) with Eq. (33) leads to

W = k0 e[4γ/(3+s1)]T ,

θ = −δ0(3 + s1)αa2k
2
0

2γ
e[8γ/(3+s1)]T , (34)

δ = ±
(Bαk2

0 e[−8γ/(3+s1)]T

24a0a4µ2
)1/4 . (35)

So A(X,T ) in Eq. (16) can be written as

A1 = −12µδ2(T )m2k0

αW 2(T )
e−[4γ/(3+s1)]T sn2(ξ,m) , (36)

with δ and θ given by Eqs. (34) and (35), and ξ =
δ(T )[X − θ(T )].

Similarly, when a0, a1 and a2 take other sets of values,
there are different forms of solutions for V , which will re-
sults in different s1. This indicates different W , δ, θ and
ξ = δ(T )[X − θ(T )]. For example, there are the following
solutions.

(a) If a0 = 1 −m2, a2 = 2m2 − 1, and a4 = −m2, then
the solution is

z2 = cn(ξ,m) ,

V2 =
12µδ2(T )m2

αW 2(T )
cn2(ξ,m) , (37)

where cn(ξ,m) is Jacobi elliptic cosine function,[12,15−18]

and

A2 =
12µδ2(T )m2k0

αW 2(T )
e−[4γ/(3+s1)]T cn2(ξ,m) . (38)
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(b) If a0 = m2 − 1, a2 = 2−m2, and a4 = −1, then the
solution is

z3 = dn(ξ,m) ,

V3 = −12µδ2(T )
αW 2(T )

dn2(ξ,m) , (39)

where dn(ξ,m) is Jacobi elliptic function of the third
kind,[12,15−18] and

A3 =
12µδ2(T )k0

αW 2(T )
e−[4γ/(3+s1)]T dn2(ξ,m) . (40)

(c) If a0 = m2, a2 = −(1 + m2), and a4 = 1, then the
solution is

z4 = ns(ξ,m) ≡ 1
sn(ξ,m)

,

V4 = −12µδ2(T )
αW 2(T )

ns2(ξ,m) , (41)

and

A4 = −12µδ2(T )m2k0

αW 2(T )
e−[4γ/(3+s1)]T ns2(ξ,m) . (42)

(d) If a0 = −m2, a2 = 2m2 − 1, and a4 = 1 −m2, then
the solution is

z5 = nc(ξ,m) ≡ 1
cn(ξ,m)

,

V5 = −12µδ2(T )
αW 2(T )

nc2(ξ,m) , (43)

and

A5 = −12µδ2(T )m2k0

αW 2(T )
e−[4γ/(3+s1)]T nc2(ξ,m) . (44)

(e) If a0 = −1, a2 = 2−m2, and a4 = m2 − 1, then the
solution is

z6 = nd(ξ,m) ≡ 1
dn(ξ,m)

,

V6 = −12µδ2(T )
αW 2(T )

nd2(ξ,m) , (45)

and

A6 = −12µδ2(T )m2k0

αW 2(T )
e−[4γ/(3+s1)]T nd2(ξ,m) . (46)

(ii) a0 = 0 and a1 = 0
In this case, we have

b0 = 1, b1 = − 6µδ2(T )
αW 2(T )

a3 ,

b2 = −12µδ2(T )
αW 2(T )

a4 ,

a2 =
θ′(T )
µδ2(T )

− αW 2(T )
µδ2(T )

. (47)

Equation (22) can be rewritten as

z′′ = a2z
2 + a3z

3 + a4z
4 , (48)

and its solution and the solutions of A(X,T ) are

z = −
a2a3sech2(

√
a2/2)ξ

a2
3 − a2a4(1− tanh(

√
a2/2)ξ)2

, (49)

A(X,T ) = k0 e−[4γ/(3+e)]T
(
1 +

6µδ2(T )a2a
2
3sech

2(
√
a2/2)ξ

[a2
3 − a2a4(1− tanh

√
a2ξ)2]αW 2(T )

)
−

[ a2a3sech2(a2/2)ξ
a2
3 − a2a4(1− tanh(

√
a2/2)ξ)2

]2 12µδ2(T )
αW 2(T )

a4 , (50)

and

z =
2a3sech

√
a2ξ√

a2
3 − a2a4 − a3sech

√
a2 ξ

, (51)

A(X,T ) = k0 e−[4γ/(3+s1)]T
[
1 +

12a2a3µδ
2(T )sech

√
a2ξ

αW 2(T )(
√
a2
3a2a4 − a3sech

√
a2 ξ)

]
−

[ 2a2sech
√
a2 ξ√

a2
3 − a2a4 − a3sech

√
a2 ξ

]2 12µδ2(T )
αW 2(T )

a4 . (52)

Case 2 B = B(T )
In this case,we have

b0 = 0, b1 = 0, b2 = −12µδ2(T )
αW 2(T )

a4 , (53)

and
W ′(T )
W (T )

= 2
δ′(T )
δ(T )

− B′(T )
2B(T )

, (54)
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so according to Eq. (17), equation (54) can be rewritten as

(3 + s1)W ′(T )
4W (T )

+ γ +
B′(T )
8B(T )

= 0 . (55)

And using Eqs. (54) and (55), we have some solutions:

W (T ) = k1 e−[4γ/(s1+3)]T + k1B
1/2(s1+3)(T ) , (56)

δ(T ) = ± B(T )αk1

−24a0a4µ2

[
e−[8γ/(s1+3)]T +B1/(s1+3)(T )

]1/4
, (57)

θ′(T ) = 4a2αk
2
1

[
e−[4γ/(s1+3)]T +B1/2(s1+3)(T )

]
. (58)

z still satisfies Eq. (22). So, similarly we can obtain solutions just similar to solutions from A1 to A6:

(i) If a0 = 1−m2, a2 = 2m2 − 1, and a4 = −m2, then the solution is

A′1 = −12µδ2(T )m2k1

αW 2(T )
e−[4γ/(3+s1)/T

[
e−[8γ/(s1+3)/T +B1/(s1+3)(T )]sn2(ξ,m) . (59)

(ii) If a0 = 1−m2, a2 = 2m2 − 1, and a4 = −m2, then the solution is

A′2 =
12µδ2(T )m2k1

αW 2(T )
e−[4γ(3+s1)]T

[
e−[8γ/(s1+3)T ] +B1/(s1+3)(T )

]
cn2(ξ,m) . (60)

(iii) If a0 = m2 − 1, a2 = 2−m2, and a4 = −1, then the solution is

A′3 =
12µδ2(T )k1

αW 2(T )
e−[4γ/(3+s1)]T

[
e−[8γ/(s1+3)]T +B1/(s1+3)(T )

]
dn2(ξ,m) . (61)

(iv) If a0 = m2, a2 = −(1 +m2), and a4 = 1, then the solution is

A′4 = −12µδ2(T )k1

αW 2(T )
e−[4γ/(3+s1)]T

[
e−[8γ/(s1+3)]T +B1/(s1+3)(T )

]
ns2(ξ,m) . (62)

(v) If a0 = −m2, a2 = 2m2 − 1, and a4 = 1−m2, then the solution is

A′5 = −12µδ2(T )k1

αW 2(T )
e−[4γ/(3+s1)]T

[
e−[8γ/(s1+3)]T +B1/(s1+3)(T )]cs2(ξ,m) . (63)

(vi) If a0 = −1, a2 = 2−m2, and a4 = m2 − 1, then the solution is

A′6 = −12µδ2(T )k1

αW 2(T )
e−[4γ/(3+s1)]T

[
e−[8γ/(s1+3)]T +B1/(s1+3)(T )

]
ds2(ξ,m) . (64)

Fig. 1 The graphical representations of KdV equation (a) and rKdV equation (b).

We know that the solution of KdV equation is

A = c+ 4(1− 2m2)µk2 + 12m2µ cn2[ξ,m] , (65)

where c is wave velocity and k is wave number. In order to find the difference between the solutions of rKdV equation
and KdV equation, we plot Fig. 1 to show one solution of rKdV equation, Eq. (38), and the solution of KdV equation
to compare them. We choose µ = 1/12, m = 0.5, c = 1, k = 4, k0 = 4, and δ2 = W 2.
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From Fig. 1, we can see that the amplitude of rKdV equation decreases with T increasing, but that of KdV equation
keeps constant.

4 Conclusion

A simple barotropic potential vorticity equation with the influence of dissipation is applied to investigate the
nonlinear Rossby wave in a shear flow. By the reductive perturbation method, we derived the rKdV equation. And
then we obtain various periodic structures for these equational Rossby waves with the help of Jacobi elliptic functions.
So we know that dissipation is of great importance for these periodic structures of rational form. Of course, these
periodic structures also contain solitons and solitary waves, which can be used in explaining different practical oceanic
wave phenomena. This needs more further research.
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