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Abstract
In this paper, dependent and independent variable transformations are
introduced to solve the positive mKdV equation systematically by using
knowledge of elliptic equation and Jacobian elliptic functions. It is shown that
different kinds of solutions can be obtained to the positive mKdV equation,
including many kinds of breather lattice solutions.

PACS number: 03.65.Ge

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Among the soliton bearing nonlinear equations, the modified Korteweg-de Vries (mKdV)
equation is of special interest [1, 2]; for it possesses rich solutions, such as solitary solutions
[1–4], periodic solutions [3–6], breather solutions [1, 2, 7, 8], and breather lattice solutions
[7, 8]. A particularly interesting type of solution is the so-called breather kind of solution,
usually this kind of solution is unavailable and such solutions have to be solved numerically
[7]. In some cases, however, the analytical expressions in closed form can be found, such
as the breather lattice solution for the sine-Gordon equation [9] and for the mKdV equation
[7, 8].

In [7–9], Kevrekidis’s research group has applied some ansatzs to obtain the breather
lattice solutions to the mKdV equation and the sine-Gordon equation. The aim of the present
paper is to present the breather lattice solutions of the positive mKdV equation in a systematical
way. Based on the introduced transformations, we will show systematical results about these
breather-type solutions for the positive mKdV equation by using the knowledge of elliptic
equation and Jacobian elliptic functions [3, 4, 10–12].
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2. Breather lattice solutions to the positive mKdV equation

The positive mKdV equation reads [7, 8]

ut + 6u2ux + uxxx = 0. (1)

In order to solve the sine-Gordon-type equation, certain dependent or independent variable
transformations must be introduced. For example, the dependent variable transformation

v = 2tan−1φ or φ = tan
v

2
(2)

has been introduced in [1, 2, 13] to solve the sine-Gordon equation and the double sine-Gordon
equation.

So, in order to derive the breather lattice solutions to the positive mKdV equation (1), first
of all we introduce another dependent variable transformation

u = vx (3)

to build the bridge between (1) and (2), and then φ satisfies the equation [7, 8]

(1 + φ2)(φt + φxxx) + 6φx

(
φ2

x − φφxx

) = 0, (4)

which can be taken as another form of the positive mKdV equation (1).
Next, we introduce independent variable transformation

ξ = ax + bt + ξ0, η = cx + dt + η0, (5)

where ξ0 and η0 are two constants.
Considering the transformation (5), equation (4) can be rewritten as

(1 + φ2)[(bφξ + dφη) + (a3φξξξ + 3a2cφξξη + 3ac2φξηη + c3φηηη)]

+ 6(aφξ + cφη)[(aφξ + cφη)
2 − φ(a2φξξ + 2acφξη + c2φηη)] = 0. (6)

Compared to the transformation given in [1, 2], transformation (5) has less constraints;
of course, this will let us have more different types of solutions to the positive mKdV
equation (1).

Inspired by the transformation given in [2] and the results in [7, 8], we choose dependent
variable transformation

φ = αU(ξ)V (η), (7)

where α is a constant amplitude to be determined, U and V satisfy the following elliptic
equations:

U 2
ξ = −n2U 4 + p1U

2 + q1, V 2
η = −βn2V 4 + p2V

2 + q2, (8)

where β, n2, p1, p2, q1 and q2 are determined constants for the determined analytical
expressions of U and V . Here, one point must be stressed is that the introduction of β

will let us have more choices to obtain different kinds of solutions to the positive mKdV
equation.

Remark 1. Through the successive dependent variable transformations (2), (3) and (7),
double independent variable transformation (5), the positive mKdV equation (1) is mapped
to the coupled elliptic equations (8). So, the solutions to the positive mKdV equation (1)
are the so-called breather lattice solutions, which can be periodic in two directions (details
can be found in the next parts). Different from what we have done in this paper, in [5], the
mKdV equation is solved directly or through a fractional dependent transformation, where
only periodic solutions, which are only periodic in a specific direction, expressed in terms
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of Jacobi elliptic functions were obtained; similarly, in [6], the mKdV equation is solved
by using the projective Riccati equations as intermediate transformation, where only some
solitary wave solutions were derived.

Remark 2. Through the dependent transformation (7), the independent variable
transformation (5) and the coupled elliptic equations (8), we can obtained 18 families of
breather lattice solutions by a single way without using the ansatz proposed in [7, 8], where
only 3 families of breather lattice solutions were derived. Details can be found in the next
parts.

Substituting (7) and (8) into (6) yields the following algebraic equations:

b + p1a
3 + 3p2ac2 = 0, (9a)

βn2c2 − q1α
2a2 = 0, (9b)

q2α
2c2 − n2a2 = 0, (9c)

d + 3p1a
2c + p2c

3 = 0, (9d)

from which we can determine

α4 = βn4

q1q2
,

a2

c2
= βn2

q1α2
= q2α

2

n2
,

b = −a(p1a
2 + 3p2c

2), d = −c(3p1a
2 + p2c

2).

(10)

From (10), it is obvious that the determined constants in (8) must satisfy the following
constraints:

β

q1q2
> 0,

q2

n2
> 0,

βn2

q1
> 0, (11)

this implies that not all combinations of Jacobi elliptic functions are solutions to the positive
mKdV equation (1) under the above-mentioned transformations, only the combination of a
couple of the Jacobi elliptic functions satisfies the constraint (11), it can be a solution to
the positive mKdV equation (1). Actually, there exist only 18 families of these kinds of
combinations, we will address them in details.

Case 1. When U = sn(ξ, k) and V = dn(η,m), where sn(ξ, k) and dn(η,m) are the Jacobi
sine elliptic function and the Jacobi elliptic function of the third kind, respectively, and k and
m are their modulus [10–12]. Then from (8), we have

n2 = −k2, p1 = −(1 + k2), q1 = 1,

βn2 = 1, p2 = 2 − m2, q2 = −(1 − m2).
(12)

Substituting (12) into (10), the parameters can be determined as

a2

c2
=

√
1 − m2

k2
,

b

a
= [a2(1 + k2) − 3c2(2 − m2)],

d

c
= [3a2(1 + k2) − c2(2 − m2)], α = ±

[
k2

1 − m2

] 1
4

,

(13)

then the solution to the positive mKdV equation (4) is

φ1 = ±
[

k2

1 − m2

] 1
4

[sn(ξ, k) dn(η,m)], (14)
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Figure 1. The graphical presentation shows the spacetime evolution of the breather lattice solution
of equations (13) and (14), where the parameters are chosen as a = 1, c = 1, m = 0.8, ξ0 =
η0 = 0, from which other parameters can be determined as b = −2.72, d = 2.72, k = 0.6 and
α = 1.

which is a kind of breather lattice solution given in [7, 8], and when m → 0, dn(η,m) → 1,
it turns to be a periodic wave solution

φ1′ = ±
√

ksn(ξ, k). (15)

Figure 1 shows the evolution of the breather lattice solution with the periodic
characteristics in both spatial and temporal directions, while for the normal breather solution
that has the periodic characteristics just in a specific direction.

Case 2. When U = cn(ξ, k) and V = cn(η,m), where cn(ξ, k) and cn(η,m) are the Jacobi
cosine elliptic function [10–12]. And then from (8), we have

n2 = k2, p1 = 2k2 − 1, q1 = 1 − k2,

βn2 = m2, p2 = 2m2 − 1, q2 = 1 − m2.
(16)

Substituting (16) into (10), one has

a2

c2
= m

k

√
1 − m2

1 − k2
,

b

a
= [a2(1 − 2k2) + 3c2(1 − 2m2)],

d

c
= [3a2(1 − 2k2) + c2(1 − 2m2)], α = ±

[
k2m2

(1 − k2)(1 − m2)

] 1
4

,

(17)

then the solution to the positive mKdV equation (4) is

φ2 = ±
[

k2m2

(1 − k2)(1 − m2)

] 1
4

[cn(ξ, k)cn(η,m)], (18)

which is another kind of breather lattice solution given in [8].

Case 3. When U = sc(ξ, k) = sn(ξ,k)

cn(ξ,k)
and V = dn(η,m). And then from (8), we have

n2 = −(1 − k2), p1 = 2 − k2, q1 = 1,

βn2 = 1, p2 = 2 − m2, q2 = −(1 − m2).
(19)
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Figure 2. The graphical presentation shows the spacetime evolution of the breather lattice solution
of equations (20) and (21), where the parameters are chosen as a = 1, c = 1,m = 0.5, ξ0 = η0 =
0, from which other parameters can be determined as b = 7, d = 7, k = 0.5 and α = 1.

Substituting (19) into (10), the parameters can be determined as

a2

c2
=

√
1 − m2

1 − k2
,

b

a
= −[a2(2 − k2) + 3c2(2 − m2)],

d

c
= −[3a2(2 − k2) + c2(2 − m2)], α = ±

[
1 − k2

1 − m2

] 1
4

,

(20)

then the solution to the positive mKdV equation (4) is

φ3 = ±
[

1 − k2

1 − m2

] 1
4

[sc(ξ, k) dn(η,m)], (21)

which is the third kind of breather lattice solution given in [8].
It is obvious that figure 2 describes a different kind of breather lattice solution from that

given in figure 1. Compared to figure 1, the period in figure 1 is much smaller in both spatial
and temporal directions.

Besides the above three kinds of breather lattice solutions, there still exist 15 kinds of
breather lattice solutions that have not been reported in the literature, next we will show their
details.

Case 4. When U = cn(ξ, k) and V = sd(η,m) = sn(η,m)

dn(η,m)
. And then from (8), we have

n2 = k2, p1 = 2k2 − 1, q1 = 1 − k2,

βn2 = m2(1 − m2), p2 = 2m2 − 1, q2 = 1.
(22)

Substituting (22) into (10), the parameters can be determined as

a2

c2
= m

k

√
1 − m2

1 − k2
,

b

a
= [a2(1 − 2k2) + 3c2(1 − 2m2)],

d

c
= [3a2(1 − 2k2) + c2(1 − 2m2)], α = ±

[
k2m2(1 − m2)

1 − k2

] 1
4

,

(23)
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Figure 3. The graphical presentation shows the spacetime evolution of the breather lattice solution
of equations (23) and (24), where the parameters are chosen as a = 1, c = 1,m = 0.5, ξ0 = η0 =
0, from which other parameters can be determined as b = 2, d = 2, k = 0.5 and α = 1

2 .

then the solution to the positive mKdV equation (4) is

φ4 = ±
[
k2m2(1 − m2)

1 − k2

] 1
4

[cn(ξ, k)sd(η,m)]. (24)

The periodic characteristics in figure 3 are different from what we see in figures 1 and 2,
here the periodic characteristics are obvious only in a specific direction, but much weaker in
other directions.

Case 5. When U = nc(ξ, k) = 1
cn(ξ,k)

and V = ds(η,m) = dn(η,m)

sn(η,m)
. And then from (8), we

have

n2 = −(1 − k2), p1 = 2k2 − 1, q1 = −k2,

βn2 = −1, p2 = 2m2 − 1, q2 = −m2(1 − m2).
(25)

Substituting (25) into (10), the parameters can be determined as

a2

c2
= m

k

√
1 − m2

1 − k2
,

b

a
= [a2(1 − 2k2) + 3c2(1 − 2m2)],

d

c
= [3a2(1 − 2k2) + c2(1 − 2m2)], α = ±

[
1 − k2

k2m2(1 − m2)

] 1
4

,

(26)

then the solution to the positive mKdV equation (4) is

φ5 = ±
[

1 − k2

k2m2(1 − m2)

] 1
4

[nc(ξ, k) ds(η,m)]. (27)

Case 6. When U = dn(ξ, k) and V = cs(η,m) = cn(η,m)

sn(η,m)
. And then from (8), we have

n2 = 1, p1 = 2 − k2, q1 = −(1 − k2),

βn2 = −1, p2 = 2 − m2, q2 = 1 − m2.
(28)
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Substituting (28) into (10), the parameters can be determined as

a2

c2
=

√
1 − m2

1 − k2
,

b

a
= −[a2(2 − k2) + 3c2(2 − m2)],

d

c
= −[3a2(2 − k2) + c2(2 − m2)], α = ±

[
1

(1 − k2)(1 − m2)

] 1
4

,

(29)

then the solution to the positive mKdV equation (4) is

φ6 = ±
[

1

(1 − k2)(1 − m2)

] 1
4

[dn(ξ, k)cs(η,m)]. (30)

Case 7. When U = nd(ξ, k) = 1
dn(ξ,k)

and V = cs(η,m) = cn(η,m)

sn(η,m)
. And then from (8), we

have

n2 = 1 − k2, p1 = 2 − k2, q1 = −1,

βn2 = −1, p2 = 2 − m2, q2 = 1 − m2.
(31)

Substituting (31) into (10), the parameters can be determined as

a2

c2
=

√
1 − m2

1 − k2
,

b

a
= −[a2(2 − k2) + 3c2(2 − m2)],

d

c
= −[3a2(2 − k2) + c2(2 − m2)], α = ±

[
1 − k2

1 − m2

] 1
4

,

(32)

then the solution to the positive mKdV equation (4) is

φ7 = ±
[

1 − k2

1 − m2

] 1
4

[nd(ξ, k)cs(η,m)]. (33)

Case 8. When U = nd(ξ, k) and V = sc(η,m). And then from (8), we have

n2 = 1 − k2, p1 = 2 − k2, q1 = −1,

βn2 = −(1 − m2), p2 = 2 − m2, q2 = 1.
(34)

Substituting (34) into (10), the parameters can be determined as

a2

c2
=

√
1 − m2

1 − k2
,

b

a
= −[a2(2 − k2) + 3c2(2 − m2)],

d

c
= −[3a2(2 − k2) + c2(2 − m2)], α = ±[(1 − k2)(1 − m2)]

1
4 ,

(35)

then the solution to the positive mKdV equation (4) is

φ8 = ±[(1 − k2)(1 − m2)]
1
4 [nd(ξ, k)sc(η,m)]. (36)

Case 9. When U = nd(ξ, k) and V = sn(η,m). And then from (8), we have

n2 = 1 − k2, p1 = 2 − k2, q1 = −1,

βn2 = −m2, p2 = −(1 + m2), q2 = 1.
(37)
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(a) (b)

Figure 4. The left panel shows the spacetime evolution of the breather lattice solution of
equations (38) and (39), where the parameters are chosen as a = 1, c = 1, m = 0.8, ξ0 = η0 = 0,
from which other parameters can be determined as b = 3.28, d = −3.28, k = 0.6 and α = 0.8.
While for the right panel, the parameters are chosen as a = 1, c = 1,m = 0.6, ξ0 = η0 = 0, from
which other parameters can be determined as b = 2.72, d = −2.72, k = 0.8 and α = 0.6.

Substituting (37) into (10), the parameters can be determined as

a2

c2
=

√
m2

1 − k2
,

b

a
= −[a2(2 − k2) − 3c2(1 + m2)],

d

c
= −[3a2(2 − k2) − c2(1 + m2)], α = ±[(1 − k2)m2]

1
4 ,

(38)

then the solution to the positive mKdV equation (4) is

φ9 = ±[(1 − k2)m2]
1
4 [nd(ξ, k)sn(η,m)]. (39)

From figure 4, it is obvious that for different values of m and k the same breather lattice
solution will also show different characteristics, small or large. Especially, when m and k take
their limiting values, the behaviour will be quite different from that given in figure 4.

Case 10. When U = nd(ξ, k) and V = cd(η,m) = cn(η,m)

dn(η,m)
. And then from (8), we have

n2 = 1 − k2, p1 = 2 − k2, q1 = −1,

βn2 = −m2, p2 = −(1 + m2), q2 = 1.
(40)

Substituting (40) into (10), the parameters can be determined as

a2

c2
=

√
m2

1 − k2
,

b

a
= −[a2(2 − k2) − 3c2(1 + m2)],

d

c
= −[3a2(2 − k2) − c2(1 + m2)], α = ±[(1 − k2)m2]

1
4 ,

(41)

then the solution to the positive mKdV equation (4) is

φ10 = ±[(1 − k2)m2]
1
4 [nd(ξ, k)cd(η,m)]. (42)

Case 11. When U = nd(ξ, k) and V = ns(η,m) = 1
sn(η,m)

. And then from (8), we have

n2 = 1 − k2, p1 = 2 − k2, q1 = −1,

βn2 = −1, p2 = −(1 + m2), q2 = m2.
(43)
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Substituting (43) into (10), the parameters can be determined as

a2

c2
=

√
m2

1 − k2
,

b

a
= −[a2(2 − k2) − 3c2(1 + m2)],

d

c
= −[3a2(2 − k2) − c2(1 + m2)], α = ±

[
1 − k2

m2

] 1
4

,

(44)

then the solution to the positive mKdV equation (4) is

φ11 = ±
[

1 − k2

m2

] 1
4

[nd(ξ, k)ns(η,m)]. (45)

Case 12. When U = nd(ξ, k) and V = dc(η,m) = dn(η,m)

cn(η,m)
. And then from (8), we have

n2 = 1 − k2, p1 = 2 − k2, q1 = −1,

βn2 = −1, p2 = −(1 + m2), q2 = m2.
(46)

Substituting (46) into (10), the parameters can be determined as

a2

c2
=

√
m2

1 − k2
,

b

a
= −[a2(2 − k2) − 3c2(1 + m2)],

d

c
= −[3a2(2 − k2) − c2(1 + m2)], α = ±

[
1 − k2

m2

] 1
4

,

(47)

then the solution to the positive mKdV equation (4) is

φ12 = ±
[

1 − k2

m2

] 1
4

[nd(ξ, k) dc(η,m)]. (48)

Case 13. When U = cd(ξ, k) and V = dn(η,m). And then from (8), we have

n2 = −k2, p1 = −(1 + k2), q1 = 1,

βn2 = 1, p2 = 2 − m2, q2 = −(1 − m2).
(49)

Substituting (49) into (10), the parameters can be determined as

a2

c2
=

√
1 − m2

k2
,

b

a
= [a2(1 + k2) − 3c2(2 − m2)],

d

c
= [3a2(1 + k2) − c2(2 − m2)], α = ±

[
k2

1 − m2

] 1
4

,

(50)

then the solution to the positive mKdV equation (4) is

φ13 = ±
[

k2

1 − m2

] 1
4

[cd(ξ, k) dn(η,m)]. (51)

Comparing figure 5 with figure 1, we can see that even for solutions with different
analytical expressions, they can show quite similar characteristics.

Case 14. When U = ns(ξ, k) and V = dn(η,m). And then from (8), we have

n2 = −1, p1 = −(1 + k2), q1 = k2,

βn2 = 1, p2 = 2 − m2, q2 = −(1 − m2).
(52)
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Figure 5. The graphical presentation shows the spacetime evolution of the breather lattice solution
of equations (50) and (51), where the parameters are chosen as a = 1, c = 1,m = 0.8, ξ0 = η0 =
0, from which other parameters can be determined as b = −2.72, d = 2.72, k = 0.6 and α = 1.

Substituting (52) into (10), the parameters can be determined as

a2

c2
=

√
1 − m2

k2
,

b

a
= [a2(1 + k2) − 3c2(2 − m2)],

d

c
= [3a2(1 + k2) − c2(2 − m2)], α = ±

[
1

k2(1 − m2)

] 1
4

,

(53)

then the solution to the positive mKdV equation (4) is

φ14 = ±
[

1

k2(1 − m2)

] 1
4

[ns(ξ, k) dn(η,m)]. (54)

Case 15. When U = dc(ξ, k) and V = dn(η,m). And then from (8), we have

n2 = −1, p1 = −(1 + k2), q1 = k2,

βn2 = 1, p2 = 2 − m2, q2 = −(1 − m2).
(55)

Substituting (55) into (10), the parameters can be determined as

a2

c2
=

√
1 − m2

k2
,

b

a
= [a2(1 + k2) − 3c2(2 − m2)],

d

c
= [3a2(1 + k2) − c2(2 − m2)], α = ±

[
1

k2(1 − m2)

] 1
4

,

(56)

then the solution to the positive mKdV equation (4) is

φ15 = ±
[

1

k2(1 − m2)

] 1
4

[dc(ξ, k) dn(η,m)]. (57)

Case 16. When U = nc(ξ, k) and V = nc(η,m). And then from (8), we have

n2 = −(1 − k2), p1 = 2k2 − 1, q1 = −k2,

βn2 = −(1 − m2), p2 = 2m2 − 1, q2 = −m2.
(58)
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Substituting (58) into (10), the parameters can be determined as

a2

c2
= m

k

√
1 − m2

1 − k2
,

b

a
= −[a2(2k2 − 1) + 3c2(2m2 − 1)],

d

c
= −[3a2(2k2 − 1) + c2(2m2 − 1)], α = ±

[
(1 − k2)(1 − m2)

k2m2

] 1
4

,

(59)

then the solution to the positive mKdV equation (4) is

φ16 = ±
[

(1 − k2)(1 − m2)

k2m2

] 1
4

[nc(ξ, k)nc(η,m)]. (60)

Case 17. When U = sd(ξ, k) and V = sd(η,m). And then from (8), we have

n2 = k2(1 − k2), p1 = 2k2 − 1, q1 = 1,

βn2 = m2(1 − m2), p2 = 2m2 − 1, q2 = 1.
(61)

Substituting (61) into (10), the parameters can be determined as

a2

c2
= m

k

√
1 − m2

1 − k2
,

b

a
= −[a2(2k2 − 1) + 3c2(2m2 − 1)],

d

c
= −[3a2(2k2 − 1) + c2(2m2 − 1)], α = ±[k2m2(1 − k2)(1 − m2)]

1
4 ,

(62)

then the solution to the positive mKdV equation (4) is

φ17 = ±[k2m2(1 − k2)(1 − m2)]
1
4 [sd(ξ, k)sd(η,m)]. (63)

Case 18. When U = ds(ξ, k) and V = ds(η,m). And then from (8), we have

n2 = −1, p1 = 2k2 − 1, q1 = −k2(1 − k2),

βn2 = −1, p2 = 2m2 − 1, q2 = −m2(1 − m2).
(64)

Substituting (64) into (10), the parameters can be determined as

a2

c2
= m

k

√
1 − m2

1 − k2
,

b

a
= −[a2(2k2 − 1) + 3c2(2m2 − 1)],

d

c
= −[3a2(2k2 − 1) + c2(2m2 − 1)], α = ±

[
1

k2m2(1 − k2)(1 − m2)

] 1
4

,

(65)

then the solution to the positive mKdV equation (4) is

φ18 = ±
[

1

k2m2(1 − k2)(1 − m2)

] 1
4

[ds(ξ, k) ds(η,m)]. (66)

3. Conclusion and discussions

In this paper, dependent and independent variable transformations are introduced to solve
the positive mKdV equation by using the knowledge of elliptic equation and Jacobian elliptic
functions. It is shown that besides the solutions expressed in terms of the different combinations
of Jacobi elliptic functions, there are the solutions expressed in terms of elementary functions,
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which can be obtained in the above solutions in the limit cases where k and/or m take the
values 0 and/or 1. However, not all the combinations of Jacobi elliptic functions are the
solutions to the positive mKdV equation (4), only those that satisfy constraints (11) can be
the solutions to the positive mKdV equation (1). Furthermore, when different independent
variable transformations are adopted, there will be different results. For example, when we
choose the independent variable transformation

ξ = ax +
1

a
t + ξ0, η = ax − 1

a
t + η0, (67)

which is given in [2], some breather lattice solutions expressed in terms of Jacobi elliptic
functions will be omitted. Under variable transformations mentioned above, all solutions can
be expressed in terms of 12 basic Jacobi elliptic functions listed in this paper, there are only
18 combinations of Jacobi elliptic functions that can satisfy constraints (11).

Because the emphasis of this paper is laid on giving a systematical way to obtain many
kinds of breather lattice solutions (including two-soliton lattice solutions), we do not touch on
the stability of these solutions. Although we do not give the stability analysis to our solutions,
from the results given by Kevrekidis PG et al [7, 8], we can say that not all the solutions given
in our paper are unstable. Even though the solutions are unstable, they can be stabilized by ac
driving and damping, this has been reported in Kevrekidis PG et al [7, 8].

We know that the mKdV equation is derived from many physical situations, therefore its
solutions will benefit to explain numerous physical phenomena, such as jamming in traffic
flow, fluid dynamics and plasmas and so on, which have been pointed out in Kevrekidis’s
works [7, 8]. Due to the wide applications of the positive mKdV equation, the analytical
solutions given in this paper will be helpful in related research.

Acknowledgments

Many thanks are due to valuable suggestions from anonymous referees and supports from
National Natural Science Foundation of China (Nos 40305006 and 90511009).

References

[1] Drazin P G and Johnson R S 1989 Solitons: An Introduction (New York: Cambridge University Press)
[2] Lamb G L Jr 1980 Elements of Soliton Theory (New York: Wiley)
[3] Fu Z T, Liu S K, Liu S D and Zhao Q 2001 Phys. Lett. A 290 72
[4] Liu S K, Fu Z T, Liu S D and Zhao Q 2001 Phys. Lett. A 289 69
[5] Fu Z T, Zhang L, Liu S K and Liu S D 2004 Phys. Lett. A 325 364
[6] Fu Z T, Liu S D and Liu S K 2004 Phys. Lett. A 326 364
[7] Kevrekidis P G, Khare A and Saxena A 2003 Phys. Rev. E 68 047701
[8] Kevrekidis P G, Khare A, Saxena A and Herring G 2004 J. Phys. A: Math. Gen. 37 10959
[9] Kevrekidis P G, Saxena A and Bishop A R 2001 Phys. Rev. E 64 026613

[10] Liu S K and Liu S D 2000 Nonlinear Equations in Physics (Beijing: Peking University Press)
[11] Wang Z X and Guo D R 1989 Special Functions (Singapore: World Scietific)
[12] Byrd P F and Friedman M D 1954 Handbook of Elliptic Integrals for Engineers and Physics (Berlin: Springer)
[13] Panigrahi M and Dash P C 2004 Phys. Lett. A 321 330

http://dx.doi.org/10.1016/S0375-9601(01)00644-2
http://dx.doi.org/10.1016/S0375-9601(01)00580-1
http://dx.doi.org/10.1016/j.physleta.2004.04.059
http://dx.doi.org/10.1016/j.physleta.2004.04.059
http://dx.doi.org/10.1103/PhysRevE.68.047701
http://dx.doi.org/10.1088/0305-4470/37/45/014
http://dx.doi.org/10.1103/PhysRevE.64.026613
http://dx.doi.org/10.1016/j.physleta.2003.11.060

	1. Introduction
	2. Breather lattice solutions to the positive mKdV equation
	3. Conclusion and discussions
	Acknowledgments
	References

