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Abstract

In this Letter, dependent and independent variable transformations are introduced to solve the nonlinear Schrödinger (NLS) equation systemat-
ically by using the knowledge of elliptic equation and Jacobian elliptic functions. It is shown that different kinds of solutions can be obtained to
the NLS equation, including many kinds of envelope breather solutions and envelope breather lattice solutions.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Among the soliton bearing nonlinear equations, the modi-
fied Korteweg–de Vries (mKdV) equation is of special interest
[1,2]. For it possesses rich solutions, such as solitary solu-
tions [1–4], periodic solutions [3–6], breather solution [1,2,7,8],
breather lattice solutions [7,8]. A particularly interesting type
of solution is the so-called breather kind of solution, usually
this kind of solutions is unavailable and such solutions have
to be solved numerically [7]. In some cases, however, the an-
alytical expressions in closed form can be found, such as the
breather lattice solution for the sine-Gordon equation [9] and
for the mKdV equation [7,8].

In Refs. [7–9], Kevrekidis’s research group has applied some
ansatzes to obtain the breather lattice solutions to the mKdV
equation and the sine-Gordon equation. The aim of present Let-
ter is to present the envelope breather solutions and envelope
breather lattice solutions of the NLS equation in a systematical
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way. Based on the introduced transformations, we will show
systematical results about these breather-type solutions for the
NLS equation by using the knowledge of elliptic equation and
Jacobian elliptic functions [3,4,10–12].

The cubic nonlinear Schrödinger (NLS) equation reads [1,2]

(1)iut ′ + α′ux′x′ + β ′|u|2u = 0,

where i = √−1.
Eq. (1) can be transformed as

(2)

α′ ∂2E

∂x′2
+ (

kc − k2α′)E + β ′E3 + i

(
∂E

∂t ′
+ 2kα′ ∂E

∂x′

)
= 0,

with the transformation

(3)u(x′, t ′) = E(x′, t ′)eik(x′−ct ′),

where the amplitude E(x′, t ′) is a real function of its arguments.
Next, we will try to find the analytical expression of E(x′, t ′).

First of all, the real part and imaginary part of Eq. (2) can be
separated into a set of equations, i.e.

(4a)
∂E

∂t ′
+ 2kα′ ∂E

∂x′ = 0,
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(4b)α′ ∂2E

∂x′2
+ (

kc − k2α′)E + β ′E3 = 0.

Substituting Eq. (4a) into Eq. (4b) yields the modified KdV
(mKdV) equation

(5)
∂E

∂t ′
+ αE2 ∂E

∂x′ + β
∂3E

∂x′3
= 0,

with

(6)α ≡ 6α′β ′

c − kα′ , β ≡ 2α′2

c − kα′ .

Set t = t ′, x = β−1/3x′ and v = ±
√

α
6 β−1/6E, Eq. (5) can

be rewritten as

(7)vt + 6v2vx + vxxx = 0,

which is called the positive mKdV (pmKdV) equation [7,8].

If we set t = t ′, x = β−1/3x′ and v = ±
√

−α
6 β−1/6E,

Eq. (5) can be rewritten as

(8)vt − 6v2vx + vxxx = 0,

which is called the negative mKdV (nmKdV) equation [7,8].
From the above relation between (7), (8) and (5), it is ob-

vious that if one derives the solutions to (7) or (8), then the
solutions to (5) can be obtained directly by the rescaled inde-
pendent variables and dependent variable. Next, we will show
the details to derive many kinds of solutions to (5), especially
the breather solutions, the solutions describing the interaction
of two-soliton and the shelf-shaped solutions, which have not
been reported in the literature in a systematical way.

2. Envelope breather lattice solutions and envelope
breather solutions: Case for the pmKdV equation

In order to obtain the breather solution and breather lattice
solution to Eq. (5) satisfied by the amplitude E, the following
transformation

(9)v = 2
∂

∂x
tan−1 φ

must be introduced, and then φ satisfies

(10)
(
1 + φ2)(φt + φxxx) + 6φx

(
φ2

x − φφxx

) = 0.

Eq. (10) can be solved by introducing the following indepen-
dent variable and dependent variable transformations

(11)ξ = ax + bt + ξ0, η = cx + dt + η0,

and

(12)φ = AU(ξ)V (η),

where ξ0 and η0 are two constants, A is a constant to be deter-
mined, U and V satisfy the following elliptic equation

U2
ξ = s1U

4 + p1U
2 + q1,

(13)V 2
η = s2V

4 + p2V
2 + q2,

where s1, s2, p1, p2, q1 and q2 are determined constants.
Substituting (11) and (12) into (10) yields the following al-
gebraic equations

(14a)b + p1a
3 + 3p2ac2 = 0,

(14b)q1A
2a2 + s2c

2 = 0,

(14c)q2A
2c2 + s1a

2 = 0,

(14d)d + 3p1a
2c + p2c

3 = 0.

For the algebraic equations (14), some cases can be ad-
dressed, first of all, we will address some special cases.

Case 1. If s1 = s2 = q1 = q2 = 0 and p1 > 0, p2 > 0, then from
Eq. (14), we have

(15)U = γ1e
±√

p1ξ , V = γ2e
±√

p2η,

where γ1 and γ2 are two constants. The solution (12) can be
written as

(16)φ2−1 = Ae±(
√

p1ξ±√
p2η),

where A is a constant, and the solution (16) is a kind of
shelf-shaped solution, whose graphical presentation is shown
in Fig. 1, an obvious shelf shape.

Case 2. If only s2 = q1 = 0, then from Eq. (13), we have

(17)U2
ξ = s1U

4 + p1U
2, V 2

η = p2V
2 + q2.

Actually, if we set U = 1
W

, then we have

(18)W 2
ξ = p1W

2 + s1.

It is obvious that V and W satisfy the same equation, this
equation has three subcases to be considered.

Case 2a. If p1 > 0, s1 > 0 or p2 > 0, q2 > 0, the solution to U

or V is

1

U
= ±

√
s1

p1
sinh(

√
p1ξ + c1),

Fig. 1. The graphical presentation shows the space–time evolution of the
shelf-shaped solution of Eqs. (15) and (16), where the parameters are chosen as
p1 = p2 = A = 1, a = b = ξ0 = 2, c = d = η0 = 1.
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(19)V = ±
√

q2

p2
sinh(

√
p2η + c2),

where c1 and c2 are two constants.

Case 2b. If p1 > 0, s1 < 0 or p2 > 0, q2 < 0, the solution to U

or V is

1

U
= ±

√
− s1

p1
cosh(

√
p1ξ + c1),

(20)V = ±
√

− q2

p2
cosh(

√
p2η + c2),

where c1 and c2 are two constants.

Case 2c. If p1 < 0, s1 > 0 or p2 < 0, q2 > 0, the solution to U

or V is

1

U
= ±

√
− s1

p1
sin(

√−p1ξ + c1),

(21)V = ±
√

− q2

p2
sin(

√−p2η + c2),

where c1 and c2 are two constants.

Similarly, the case for only s1 = q2 = 0 can be discussed.
The solution (12) can be obtained by the combinations of above
six pairs of U and V . For example, for p1 > 0, p2 > 0, s1 > 0
and q2 < 0, the solution is

(22)φ2−2 = ±
√

−p1q2

p2s1

cosh(
√

p2η + c2)

sinh(
√

p1ξ + c1)
,

this is a solution describing the interaction of two solitons,
whose graphical presentation is shown in Fig. 2, an obvious
figure of the interaction of two solitons.

For p1 > 0, p2 < 0, s1 < 0 and q2 > 0, the solution is

(23)φ2−3 = ±
√

p1q2

p2s1

sin(
√−p2η + c2)

cosh(
√

p1ξ + c1)
,

obviously, this is a kind of breather solution, whose graphical
presentation is shown in Fig. 3.

Fig. 2. The graphical presentation shows the space–time evolution of the inter-
action of two-soliton solution of Eq. (22), where the parameters are chosen as
p1 = p2 = s1 = 1, q2 = −1, a = b = c1 = 1, c = d = c2 = 2.
Case 3. If q1, q2, s1 and s2 are all nonzero values, from (14),
we can determine

A4 = s1s2

q1q2
, −a2

c2
= s2

q1A2
= q2A

2

s1
,

(24)b = −a
(
p1a

2 + 3p2c
2), d = −c

(
3p1a

2 + p2c
2).

From (24), it is obvious that the determined constants in (14)
must satisfy the following constraints

(25)
s1s2

q1q2
> 0,

s2

q1
< 0,

q2

s1
< 0,

this implies that not all combinations of Jacobi elliptic func-
tions are solutions to the positive mKdV equation (10) under
the above mentioned transformations, only the combination
of a couple of the Jacobi elliptic functions satisfies the con-
straint (25), it can be a solution to the positive mKdV equa-
tion (10). Actually, there exist only 18 of this kind of combina-
tions [13], we will address some of them in details.

Case 3-1. When U = sn(ξ, k) and V = dn(η,m), where
sn(ξ, k) and dn(η,m) are the Jacobi sine elliptic function and
the Jacobi elliptic function of the third kind, respectively, and k

and m are their modulus [10–12]. Then from (13), we have

s1 = k2, p1 = −(
1 + k2), q1 = 1,

(26)s2 = −1, p2 = 2 − m2, q2 = −(
1 − m2).

Substituting (26) into (24), the parameters can be determined
as

a2

c2
=

√
1 − m2

k2
,

b

a
= [

a2(1 + k2) − 3c2(2 − m2)],
d

c
= [

3a2(1 + k2) − c2(2 − m2)],
(27)A = ±

[
k2

1 − m2

] 1
4

,

then the solution (12) is

(28)φ2−4 = ±
[

k2

1 − m2

] 1
4 [

sn(ξ, k)dn(η,m)
]
,

Fig. 3. The graphical presentation shows the space–time evolution of the
breather solution of Eq. (23), where the parameters are chosen as p1 = q2 = 1,
p2 = s1 = −1, a = b = c1 = 1, c = d = c2 = 2.
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Fig. 4. The graphical presentation shows the space–time evolution of the
breather lattice solution of Eqs. (27), (28), where the parameters are chosen
as a = 1, c = 1, m = 0.8, ξ0 = η0 = 0, from which the other parameters can be
determined as b = −2.72, d = 2.72, k = 0.6 and A = 1.

which is a kind of breather lattice solution given in Refs. [7,8,
13], and when m → 0, dn(η,m) → 1, it turns to be a periodic
wave solution

(29)φ2−4′ = ±√
k sn(ξ, k).

Fig. 4 shows the evolution of the breather lattice solution
with the periodic characteristics in both spatial and temporal
directions, while for the normal breather solution which has the
periodic characteristics just in a specific direction.

Case 3-2. When U = cn(ξ, k) and V = sd(η,m) = sn(η,m)
dn(η,m)

,
where cn(ξ, k) is the Jacobi cosine elliptic function [10–12].
Then from (13), we have

s1 = −k2, p1 = 2k2 − 1, q1 = 1 − k2,

(30)s2 = −m2(1 − m2), p2 = 2m2 − 1, q2 = 1,

then the solution (12) is

(31)φ2−5 = ±
[
k2m2(1 − m2)

1 − k2

] 1
4 [

cn(ξ, k) sd(η,m)
]
,

with

a2

c2
= m

k

√
1 − m2

1 − k2
,

b

a
= [

a2(1 − 2k2) + 3c2(1 − 2m2)],
d

c
= [

3a2(1 − 2k2) + c2(1 − 2m2)],
(32)A = ±

[
k2m2(1 − m2)

1 − k2

] 1
4

.

The periodic characteristics in Fig. 5 is different from what
we see in Fig. 4, here the periodic characteristics only in a spe-
cific direction is obvious, in other directions it is much weaker.
Fig. 5. The graphical presentation shows the space–time evolution of the
breather lattice solution of Eqs. (31), (32), where the parameters are chosen
as a = 1, c = 1, m = 0.5, ξ0 = η0 = 0, from which the other parameters can be
determined as b = 2, d = 2, k = 0.5 and A = 1

2 .

3. Envelope breather lattice solutions and envelope
breather solutions: Case for the nmKdV equation

For (8), the transformation is

(33)v = 2
∂

∂x
tanh−1 φ,

then φ satisfies

(34)
(
1 − φ2)(φt + φxxx) − 6φx

(
φ2

x − φφxx

) = 0.

Substituting (11) and (12) into (34) yields the following al-
gebraic equations

(35a)b + p1a
3 + 3p2ac2 = 0,

(35b)q1A
2a2 − s2c

2 = 0,

(35c)q2A
2c2 − s1a

2 = 0,

(35d)d + 3p1a
2c + p2c

3 = 0.

Similar to (14), there are also some cases that can be ad-
dressed, first of all, we will address some special cases.

Case 1. If s1 = s2 = q1 = q2 = 0 and p1 > 0, p2 > 0, then from
Eq. (35), the solution (12) can be written as

(36)φ3−1 = Ae±(
√

p1ξ±√
p2η),

where A is a constant, and the solution (36) is a kind of
shelf-shaped solution, whose graphical presentation is shown in
Fig. 6, an obvious shelf shape, but different from Fig. 1. Here
the shelf-wave will blowup within finite region along two lines.

Case 2. If only s1 = q2 = 0, then from Eq. (13), we have

(37)U2
ξ = p1U

2 + q1, V 2
η = s2V

4 + p2V
2.

Actually, if we set V = 1
W

, then

(38)W 2
η = p2W

2 + s2.

It is obvious that U and W satisfy the same equation, this
equation has three subcases to be considered.
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Fig. 6. The graphical presentation shows the space–time evolution of the
shelf-shaped solution of Eq. (36), where the parameters are chosen as p1 =
p2 = A = 1, a = b = ξ0 = 2, c = d = η0 = 1.

Case 2a. If p2 > 0, s2 > 0 or p1 > 0, q1 > 0, the solution to U

or V is

1

V
= ±

√
s2

p2
sinh(

√
p2η + c2),

(39)U = ±
√

q1

p1
sinh(

√
p1ξ + c1),

where c1 and c2 are two constants.

Case 2b. If p2 > 0, s2 < 0 or p1 > 0, q1 < 0, the solution to U

or V is

1

V
= ±

√
− s2

p2
cosh(

√
p2η + c2),

(40)U = ±
√

− q1

p1
cosh(

√
p1ξ + c1),

where c1 and c2 are two constants.

Case 2c. If p2 < 0, s2 > 0 or p1 < 0, q1 > 0, the solution to U

or V is

1

V
= ±

√
− s2

p2
sin(

√−p2η + c2),

(41)U = ±
√

− q1

p1
sin(

√−p1ξ + c1),

where c1 and c2 are two constants.

Similarly, the case for only s2 = q1 = 0 can be discussed.
The solution (12) can be obtained by the combinations of above
six pairs of U and V . For example, for p2 > 0, p1 > 0, s2 > 0
and q1 < 0, the solution is

(42)φ3−2 = ±
√

−p2q1

p1s2

cosh(
√

p1ξ + c1)

sinh(
√

p2η + c2)
,

this is another solution describing the interaction of two soli-
tons, whose graphical presentation is shown in Fig. 7, an ob-
vious different figure of the interaction of two solitons from
Fig. 2.
Fig. 7. The graphical presentation shows the space–time evolution of the inter-
action of two-soliton solution of Eq. (42), where the parameters are chosen as
p1 = p2 = s2 = 1, q1 = −1, a = b = c1 = 1, c = d = c2 = 2.

Fig. 8. The graphical presentation shows the space–time evolution of the
breather solution of Eq. (43), where the parameters are chosen as p1 =
s2 = −1, p2 = q1 = 1, a = b = c1 = 1, c = d = c2 = 2.

For p2 > 0, p1 < 0, s2 < 0 and q1 > 0, the solution is

(43)φ3−3 = ±
√

p2q1

p1s2

sin(
√−p1ξ + c1)

cosh(
√

p2η + c2)
,

obviously, this is another kind of breather solution, whose
graphical presentation is shown in Fig. 8, which is with dif-
ferent figure from Fig. 3.

Case 3. If q1, q2, s1 and s2 are all nonzero values, from (35),
we can determine

A4 = s1s2

q1q2
,

a2

c2
= s2

q1A2
= q2A

2

s1
,

(44)b = −a
(
p1a

2 + 3p2c
2), d = −c

(
3p1a

2 + p2c
2).

From (44), it is obvious that the determined constants in (35)
must satisfy the following constraints

(45)
s1s2

q1q2
> 0,

s2

q1
> 0,

q2

s1
> 0,

this implies that not all combinations of Jacobi elliptic func-
tions are solutions to the negative mKdV equation (34) un-
der the above mentioned transformations, only the combination
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Fig. 9. The graphical presentation shows the space–time evolution of the
breather lattice solution of Eqs. (46), (47), where the parameters are chosen

as a = 1, c = 1, m =
√

3
2 , ξ0 = η0 = 0, from which the other parameters can be

determined as b = −5, d = −5, k =
√

3
2 and A = 1

2 .

of a couple of the Jacobi elliptic functions satisfies the con-
straint (45), it can be a solution to the negative mKdV equa-
tion (34). Actually, there exist only 28 of this kind of combina-
tions [14], we will address some of them in details.

Case 3-1. When U = nd(ξ, k) and V = nd(η,m), then from
(13) and (44), the parameters can be determined as

a2

c2
=

√
1 − m2

1 − k2
,

b

a
= −[

a2(2 − k2) + 3c2(2 − m2)],
d

c
= −[

3a2(2 − k2) + c2(2 − m2)],
(46)A = ±[(

1 − m2)(1 − k2)] 1
4 ,

then the breather lattice solution is

(47)φ3−4 = ±[(
1 − m2)(1 − k2)] 1

4
[
nd(ξ, k)nd(η,m)

]
.

It is obvious that Fig. 9 describes a different kind of breather
lattice solution from that given in Fig. 4. Compared to Fig. 4,
the profiles in Fig. 9 for both spatial and temporal directions
are intermittent. At the same time, the periodic characteristics
of Fig. 9 in the spatial direction is quite different from that in
the temporal direction.

Case 3-2. When U = sn(ξ, k) and V = cs(η,m), then from
(13) and (44), the parameters can be determined as

a2

c2
=

√
1 − m2

k2
,

b

a
= [

a2(1 + k2) − 3c2(2 − m2)],
d

c
= [

3a2(1 + k2) − c2(2 − m2)],
(48)A = ±

[
k2

1 − m2

] 1
4

,

Fig. 10. The upper panel shows the space–time evolution of the breather lattice
solution of Eqs. (48), (49), where the parameters are chosen as a = 1, c = 1,
m = 0.8, ξ0 = η0 = 0, from which the other parameters can be determined
as b = −2.72, d = 2.72, k = 0.6 and α = 1. While for the bottom panel, the
parameters are chosen as a = 1, c = 1, m = 0, ξ0 = η0 = 0, from which the
other parameters can be determined as b = −4, d = 4, k = 1 and A = 1.

then the breather lattice solution is

(49)φ3−5 = ±
[

k2

1 − m2

] 1
4 [

sn(ξ, k) cs(η,m)
]
.

When k → 1 and m → 0, the breather lattice solution (49)
turns to be a solution

(50)φ3−6 = ±[
tanh(ξ) cot(η)

]
,

with

(51)a2 = c2, b = − γ

4a
, d = ± γ

4a
.

From Fig. 10, it is obvious that for different values of m

and k, the same breather lattice solution will also show differ-
ent characteristics, small or large. Especially, when m and k

take their limiting values, the behavior will be quite different
from what given in Fig. 10. Actually, the characteristics of the
breather lattice solution shown in the upper panel of Fig. 10
is sporadic, the magnitude of v has an antisymmetric charac-
teristics along a specific direction. But for the bottom panel of
Fig. 10, the profiles in any directions are smooth.
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4. Conclusion

In this Letter, dependent and independent variable trans-
formations are introduced to solve the nonlinear Schrödinger
(NLS) equation systematically by using the knowledge of el-
liptic equation and Jacobian elliptic functions. Here first of all,
the variable satisfying the nonlinear Schrödinger (NLS) equa-
tion is separated into real part and imaginary part, where the
amplitude, i.e. the envelope, is related to the mKdV equation.
The rescaled independent variable and dependent variable sat-
isfy the positive mKdV equation or the negative mKdV equa-
tion. It is shown that different kinds of solutions can be ob-
tained to the NLS equation, including many kinds of envelope
breather solution and envelope breather lattice solutions. Fur-
thermore, when different independent variable transformations
are adopted, there will be different results. For example, when
we choose the independent variable transformation

(52)ξ = ax + 1

a
t + ξ0, η = ax − 1

a
t + η0,

which is given in Ref. [2], some breather lattice solutions ex-
pressed in terms of Jacobi elliptic functions will be omitted.

From the view point of constructing the connection between
the solutions of different family of nonlinear equations, there is
still much work needed to do, since a wide variety of different
physical systems can be described by a relatively small set of
universal equations [15]. In this Letter, we have chosen a simple
envelope representation of the wave function (a real amplitude
and a phase linearly dependent on both space and time coordi-
nates) for NLS equation, so the governed equation for the am-
plitude is turned to be the positive mKdV equation or the neg-
ative mKdV equation by suitable combinations. Actually, this
approach can extended in a more general framework, as it has
been done in Refs. [16,17], where a correspondence between
envelope solutions of generalized NLS equations and solutions
of generalized KdV equations is constructed. In their frame-
work, the envelope representation allows to split a generalized
NLS equation into a pair of the Madelung’s fluid equations,
when the connection between phase and amplitude is assumed,
an equation for the only amplitude can be established to be the
generalized KdV equation, Eq. (5) is just a special case. The
generalized KdV equation can be solved to obtain its breather-
typed solutions by means of suitable transformations (including
Miura transformation, since the Miura transformation is an ex-
act transformation between the solution of the mKdV equation
and that of the KdV equation), just as we have done in Sec-
tions 2 and 3.

Due to wide applications of the NLS equation, the analytical
solutions given in this Letter will be helpful in related research.
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