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Abstract
As one of the most important indicators of nonlinear time series, temporal asymmetric (TA) or temporal irreversible behaviors 
of daily fluctuations from four temperature variables, including mean temperature (Tmean), maximum temperature (Tmax), 
minimum temperature (Tmin) and diurnal temperature range (DTR, DTR = Tmax − Tmin), have been quantified through both 
observations and reanalysis over China by two TA measures. One is L2 from directed horizontal visibility graph and the other 
is L1 from consecutive increasing and decreasing steps. The results show that there are differential TA features among daily 
temperature fluctuations. Firstly, there are marked differences in TA strengths among different temperature variables. It is 
found that dominated uniformly significant TA (larger than the threshold from corresponding surrogates) emerges in almost 
all observed Tmean fluctuations. However, this kind of uniformly significant TA can’t be found in Tmax, Tmin and DTR for both 
observed and reanalysis data sets. Since both TA measures L1 and L2 quantify the temporal structures in the given series, this 
distinguishable TA strengths found in different temperature variables indicates that there are distinct temporal structures in 
the different temperature variables’ variations. Secondly, the TA in each temperature variable is region dependent. The TA 
strength for each temperature variable is spatially non-uniform with some strong and weak TA regional patterns and these 
strong and weak TA regional patterns may depend on local weather or climate conditions. Moreover, comparison studies of 
the same temperature variable reveal that time irreversible features are distinguishable between observations and reanalysis, 
and this differential feature can be taken as an index to evaluate the quality of reanalysis.
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1  Introduction

Asymmetry (spatial or temporal) related studies involve 
wide fields. Among these asymmetry studies, inter-hemi-
spheric asymmetry in transient global warming (Hutchinson 
et al. 2013) and asymmetry of ENSO (An and Jin 2004; An 
2004; Ye and Hsieh 2006; Douglass 2010; Su et al. 2010; 
Choi et al. 2012) are two hot topics, especially the warm-
cold magnitude asymmetry (An and Jin 2004; Ye and Hsieh 
2006; Douglass 2010; Su et al. 2010). At the same time, 

temporal asymmetry (TA) or time series irreversibility (TI) 
is ubiquitous in both natural sciences and social sciences 
(Heinrich 2004; King 1996; Hoyt and Schatten 1998a, b; 
Livina et al. 2003; Ashkenazy and Tziperman 2004; Lisiecki 
and Raymo 2005; Bartos and Jánosi 2005; Gyure et al. 
2007; Ashkenazy et al. 2008, 2016; Bisgaard and Kulahci 
2011; Xie et al. 2016). There are different ordinal patterns 
dependent on the arrow of time, gradual decreasing-rapid 
increasing, or quick decreasing-slow increasing (King 
1996; Ashkenazy et al. 2008). Therefore, this predominant 
TA feature can be directly observed in the corresponding 
time series, since the geometry in the time series is direc-
tion-dependent (King 1996). For example, both quarterly 
numbers of airline passengers and quarterly dollar sales of 
Marshall Field and Company are decreasing quickly and 
increasing slowly (Bisgaard and Kulahci 2011). Similar phe-
nomena are more commonly found in various natural science 
fields. Monthly sunspot records (Hoyt and Schatten 1998a, 
b; Bisgaard and Kulahci 2011) and seasonal river discharge 
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(Livina et al. 2003) witness the opposite TA patterns, i.e., 
increasing rapidly and decreasing gradually. Actually, the 
signs of TA patterns are closely related to the time scale of 
corresponding processes. Taking air temperature variations 
as an example, it is cooling gradually and warming rapidly 
during the glacial-interglacial cycles (King 1996; Lisiecki 
and Raymo 2005; Ashkenazy et al. 2008), Heinrich (Hein-
rich 2004; Ashkenazy et al. 2008) and Dansgaard–Oeschger 
events (Ashkenazy et al. 2008), and related paleo-climatic 
changes (King 1996) on long time scales, however, the daily 
mean temperature variations are rapid cooling and gradual 
warming at the mid-latitudes (Bartos and Jánosi 2005; Gyure 
et al. 2007; Ashkenazy et al. 2008).

From these descriptive direction-dependent features, a 
given process x(t) can be defined as TA or TI if the for-
ward statistical measure from series {x1,…, xn} is signifi-
cantly different from the backward statistical measure from 
the same series (Weiss 1975). The presence of TA features 
can be taken as a nonlinear indicator for the analyzed time 
series (Roldan and Parrondo 2010; Lacasa et al. 2012). And 
this statistical method is also an important indirect way 
to quantitatively measure the nonlinearity in the analyzed 
time series (Diks et al. 1995; Stone et al. 1996). Since the 
TA from the linear processes is distinct from the one from 
the nonlinear processes, TA has been considered to be an 
important method for identifying nonlinearity and deter-
ministic chaos in time-series data (Diks et al. 1995; Stone 
et al. 1996; Li et al. 2015). The method based on TA can 
distinguish randomness from determinacy in time series, 
or discriminate chaos from noise (Diks et al. 1995; Stone 
et al. 1996; Li et al. 2015). This kind of classification is of 
great importance for understanding the underlying dynam-
ics of analyzed time series, especially for further studies 
related to nonlinear dynamics, such as climate prediction 
(Ludescher et al. 2016; Hou et al. 2017; Yuan et al. 2018) 
(for linear or nonlinear series, different models or methods 
should be chosen to make prediction) or predictability (Ding 
et al. 2015, 2016; Li et al. 2018) [previous studies show that 
increasing nonlinearity may enhance predictability (Ye and 
Hsieh 2008)]. TA related studies in observational time series 
have covered various fields such as heart dynamics (Yang 
et al. 2003; Costa et al. 2005, 2008; Cammarota and Rogora 
2006), physiology (Donges et al. 2013), atmospheric sci-
ences (Ashkenazy et al. 2008; Xie et al. 2016; Fu et al. 2016) 
and ocean dynamics (Ashkenazy et al. 2016).

In order to correctly estimate TA in time series, many 
statistical methods have been developed (Xie et al. 2016; 
Lacasa et al. 2012; Cammarota and Rogora 2006; Costa 
et al. 2008; Donges et al. 2013; Daw et al. 2000). There are 
both symbolization based (Daw et al. 2000) and symboliza-
tion free (Xie et al. 2016; Lacasa et al. 2012) methods. Since 
the coarse-grained symbolization procedure may bias the 
TA’s quantification (Lacasa et al. 2012), TA measure based 

on horizontal visibility graph (HVG) (Luque et al. 2009) or 
visibility graphs (Lacasa et al. 2008) has been developed to 
exploit the directed link information to quantify TA in any 
given time series (Lacasa et al. 2012; Donges et al. 2013). 
Biased TA measure problem can also be solved by consider-
ing directly the natural ordinal structures in any given series 
with its distribution differences of consecutive steps between 
increasing and decreasing (CSID) (Xie et al. 2016). In this 
paper, two kinds of symbolization free methods (Xie et al. 
2016; Lacasa et al. 2012) will be adopted to calculate the TA 
measures in four temperature variables’ time series.

Since nonlinearity is an intrinsic feature in nearly all the 
processes in nature, TA or TI should be unveiled from out-
puts of these processes (Burykin et al. 2011). As mentioned 
above, air temperature variations (Koscielny-Bunde et al. 
1998, 2005; Kiraly and Jánosi 2002; Zhai and Pan 2003; 
Li et al. 2009; Yuan et al. 2010, 2013; Yuan and Fu 2014) 
can be taken as the best targeted series to detect TA fea-
tures. Previous studies found that marked TA feature is hid-
den in daily mean terrestrial temperature variations (Bartos 
and Jánosi 2005; Gyure et al. 2007; Ashkenazy et al. 2008; 
Xie et al. 2016). And this local TA has been confirmed to 
be directly related to global temporal irreversibility (Xie 
et al. 2016). Apart from Tmean, there are other temperature 
variables, such as maximum temperature (Tmax), minimum 
temperature (Tmin) and diurnal temperature range (DTR, 
DTR = Tmax − Tmin) (Karl et al. 1991, 1993; Weber et al. 
1994; Balling et al. 1999; Pattanyus et al. 2004; Lauritsen 
and Rogers 2012). It has been found there are asymmetric 
trends in daily Tmax and Tmin due to different causal mecha-
nisms in daily Tmax and Tmin (Karl et al. 1991, 1993; Weber 
et al. 1994; Balling et al. 1999; Lauritsen and Rogers 2012). 
And previous studies have also shown that there are differ-
ent persistent features in Tmean, Tmax, Tmin and DTR (Yuan 
et al. 2010; Pattanyus et al. 2004). Both linear trend and 
two-point correlation are all linear characteristics of tem-
perature variations. Since there are different linear behaviors 
among these temperature variations, there may be possibility 
that they have different conclusions for their nonlinearity. 
So the first question we want to answer is whether there 
exists any nonlinear feature difference among Tmean, Tmax, 
Tmin and DTR. Specifically, is there a distinguishable time 
irreversible behavior in the Tmean, Tmax, Tmin and DTR? Here 
we need to stress that the general conclusion that the tem-
perature time series is “non-linear” was reported by previ-
ous studies mostly for Tmean (Bartos and Jánosi 2005; Gyure 
et al. 2007; Ashkenazy et al. 2008; Xie et al. 2016), little 
for Tmin, Tmax and DTR. At the same time, the “non-linear” 
temperature conclusion is from different nonlinear measures. 
We find that conclusion from different nonlinear measures 
is not consistent. No nonlinear measure can be taken as a 
sufficient and necessary condition. Studies have shown that 
two measures from directed HVG (DHVG) and CSID can 
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lead to consistent results for Tmean (Xie et al. 2016). Will 
there be also consistent results to Tmax, Tmin and DTR from 
two TA measures? Moreover, both the observations (Bartos 
and Jánosi 2005; Gyure et al. 2007; Xie et al. 2016) and 
reanalysis (Ashkenazy et al. 2008) data have been used in 
quantifying TA in Tmean, however, no comparison has been 
carried on the consistence among these results from different 
data sources. The third problem we want to solve is to assess 
the quality of different temperature variables’ reanalysis data 
in revealing the TA features. So studies on different tempera-
ture variables’ series by different nonlinear measures are still 
an open question. We hope to reach a conclusive answer to 
these problems in this article.

We arrange the rest of our paper as follows. In Sect. 2, 
the data source from both observations and reanalysis will 
be briefly described. Two TA measures from DHVG and 
CDIS are outlined in Sect. 3. Detailed results will be shown 
in the Sect. 4, where we will show that there are differential 
TA behaviors among four temperature variables’ fluctua-
tions, two TA measures from both DHVG and CDIS will 
lead to consistent results, TA behaviors in each temperature 
variable is region-dependent and there are distinguishable 
TA behaviors between observed and reanalysis temperature 
fluctuations. At last, we conclude this paper in Sect. 5 with 
some discussions.

2 � Data

In this paper, both direct observations and National Centers 
for Environmental Prediction (NCEP) reanalysis (Kanamitsu 
et al. 2002) for four daily temperature variables (Tmean, Tmax, 
Tmin and DTR) were chosen to calculate TA measures.

All observed records for these four temperature variables 
were downloaded from the China meteorological data shar-
ing service system (http://cdc.cma.gov.cn). There are totally 
194 meteorological stations taking part in international 
exchange. Since there are missing points in some stations, 
and the data length is too short to reach reliable TA measures 
for some other stations, records over these stations were not 
taken into account later. At last, records from 179 stations 
are selected for further studies, and all records from these 
179 stations have been homogenized (Li et al. 2009). The 
data length over these 179 stations is 57 years, ranging from 
1960 to 2016.

The NCEP R-2 (Kanamitsu et al. 2002) not NCEP R-1 
(Kalnay et al. 1996) data are used in this paper due to that 
several human processing errors discovered in NCEP R-1 
were fixed and upgraded forecast model and diagnostic 
package were developed in NCEP R-2 (Kanamitsu et al. 
2002). The NCEP reanalysis cover the period from 1979 
to 2016, and their horizontal resolutions are 2.5° × 2.5°. At 
the same time, observed temperatures from 1979 to 2016 

were also analyzed to compare with the results from NCEP 
reanalysis. In order to make a direct comparison between the 
results from direct observations over a specific station and 
the results from the gridded NCEP reanalysis around this 
specific station, two-dimensional latitude/longitude gridded 
meteorological data f(i,j) (where i is latitude and j is longi-
tude) are interpolated to this specific observation station to 
form the interpolated NCEP station data Xk (k is the station 
number) by Gaussian weight function (Maddox et al. 1981). 
The interpolated NCEP station data is given by

where the weight function w(i,j) is

The weight function constant C is chosen to fit data and 
the distance d is from the grid (i,j) point to the location of 
the specific station. In this paper, all results from interpo-
lated NCEP station data are from C = 1.5. Actually, different 
choices of the value C make just a little difference for two 
TA measures (Figures not shown here).

Since in the following TA calculations from both DHVG 
and CSID only involves temperature variations within 
20 days (Xie et al. 2016), and slowly varying periodic vari-
ations maybe bias statistical measures of fast fluctuations 
(Deng et al. 2018), especially for the TA estimation for some 
TA measures (Ashkenazy et al. 2008), these long time-scale 
variations (such as seasonal trend) were filtered out by sub-
tracting the annual cycle, T �

i
= Ti − ⟨Ti⟩ (Koscielny-Bunde 

et al. 1998), where Ti is any given daily temperature and ⟨Ti⟩ 
is its long-time climatological average for each calendar day. 
It should be pointed out that such procedure can not elimi-
nate slow linear or nonlinear background trends (Bartos and 
Janosi 2005; Deng et al. 2018).

In order to reach reliable statistical results, uncertain-
ties of the estimated TA measures must be provided. In this 
paper, data-driven statistical tests were applied to quantify 
the uncertainties of estimated TA measures at any given 
significance level. Therefore, surrogates were generated 
from the original fast temperature fluctuations T ′

i
 by means 

of surrogate procedures. Model free surrogate procedures 
(Schreiber and Schmitz 1996; Eichner et al. 2007; Makse 
et al. 1996; Govindan et al. 2007) such as Fourier-filtering 
techniques and shuffling (Makse et al. 1996; Govindan et al. 
2007) can be adopted to produce surrogated data of tem-
perature fluctuations T ′

i
 . In this paper, only phase randomize 

surrogate procedure (PRS) introduced by Schreiber and 
Schmitz (1996) and Eichner et al. (2007) was carried out in 
order to preserve the linear features of the original tempera-
ture fluctuations T ′

i
 unchanged. The PRS method to generate 

the surrogates is based the Fourier transform of the analyzed 
data and then replacing its phase with random numbers, at 

(1)Xk =
∑

i

∑

j

w(i, j)f (i, j)∕
∑

i

∑

j

w(i, j),

(2)w(i, j) = exp(−d2(i, j, k)∕4C2).

http://cdc.cma.gov.cn
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last the adjusted Fourier transform of the analyzed data is 
inversely Fourier transformed to reach a surrogate with the 
same power spectral density as those of the analyzed data. 
Since different random numbers can be chosen in the second 
step of this phase randomize surrogate procedure, we can 
generate an ensemble of surrogates by this method, too. In 
this paper, there are 1000 samples for each ensemble. These 
1000 samples were used to calculate the critical threshold 
of two TA measures to distinguish linear series from outputs 
of nonlinear processes.

3 � Methods

3.1 � DHVG and CSID

For any given real-value series{xt}t=1,2,…,N , where N is its 
data length, according to DHVG, each point can be taken as 
a node. Two points xi and xj in the series are mapped to links 
between two nodes i and j in the graph according to DHVG 
(Lacasa et al. 2012; Luque et al. 2009; Donner et al. 2010):

A schematic picture of what TA and TI are measuring is 
shown in Fig. 1. Taking an idealized periodic series, {xij, 
i = 1, 2, 3, …, N; j = 1, 2, 3, 4, 5} = (1, 2, 3, 5, 2.5, 1, 2, 3, 
5, 2.5, 1, 2, 3, 5, 2.5, …, 1, 2, 3, 5, 2.5), as an example to 
illustrate how DHVG and CSID work for any given series to 
quantify TA or TI. For simplicity, we only show the results 
for N = 20 from this idealized periodic series, more complex 
series can be similarly analyzed and qualitative features are 
unchanged. From the plot of this series, we can see that it is 
asymmetric due to an asymmetric local triangular structure 
with consecutive increasing three steps (xi1, xi2, xi3) followed 
by consecutive decreasing two steps (xi4, xi5). According to 
the DHVG, each point in the series is taken as a node, two 
points xi and xj are linked if for any given point xn with 
i < n < j or i > n > j, xn < xi and xn < xj. For series given in 
Fig. 1, taking x44 as an example, since x11 and x22 are smaller 
than x33, so there only one link between x33 and x44, which 
is taken an ingoing link of node x44 for it is from the past of 
x44; because x94 is larger than x55, x61, x72, x83, there is only 
a link between x94 and x44, similarly, there is a link between 
x83 and x44, between x55 and x44, and all these three links are 
from the future of x44, which are defined as outgoing links 
of node x44. An ingoing link and three outgoing links, which 
are labeled as (1, 3), are all links for node x44, see Fig. 1a. 
Similarly all nodes with their ingoing and outgoing links 
can be labeled as (kin, kout) in each specific node in the plot. 
Based on the kin and kout for all nodes, the TA/TI measure 
can be defined and calculated.

Figure 1b shows how the natural local increasing and 
decreasing trends can map the analyzed series to a persistent 

(3)xn < xi, xj, ∀ n|i < n < j,n|i > n > j .

trend step length series. Since there is only an asymmetric 
local triangular structure with consecutive increasing three 
steps (xi1, xi2, xi3) followed by consecutive decreasing two 
steps (xi4, xi5), the step length series can be coarsely grained 
with local pattern [i, d] = [3, 2] or [3, 1]. Since only local 
permutation is taken into account in CSID, the measure 
from CSID is more robust to noise and low frequency trend, 
which are common in temperature records (Gao and Franzke 
2017). For example, if the above given idealized series are 
transformed by locally rescaling as (1, 2, 3, 4, 2.5, 0.8, 1.6, 
2.4, 3.2, 2, 1.2, 2.4, 3.6, 4.8, 3,…), then the results from 
CSID are the same due to the unchanged local natural trend, 
but the results from DHVG are different, since more links 
from remote nodes available due to the larger magnitudes’ 
variations of some nodes.

So for any given real-value series{xt}t=1,2,…,N  , the 
degree k(t) is decomposed into ingoing degree kin(t) and 
outgoing degree kout(t). Correspondingly, their distribu-
tions of the ingoing degree kin(t) and the outgoing degree 
kout(t) are estimated as pin(k) and pout(k). Similarly, for this 
series{xt}t=1,2,…,N , each data point can be grouped into two 
states according to its ordinal structure with its neighbor-
ing points: decreasing xn < xn−1 and increasing xn > xn−1. 
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Fig. 1   Schematic picture of DHVG and CSID. a DHVG, b CSID, 
where different color horizontal arrows in a denote the links between 
both nodes, red for two close neighbor nodes, green for two nodes 
separated by other one node, blue for two nodes separated by other 
two nodes, black for two nodes separated by other three nodes with 
(kin, kout) for each node; and dash arrows with different colors in b 
denotes natural local trends, red for consecutive increasing trend and 
blue for consecutive decreasing trend with the horizontal colored 
lines showing the steps for consecutive increasing or decreasing 
trend, yellow for increasing and wine for decreasing with [i, d] for 
each increasing and decreasing trend
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And then according to CSID, distributions of consecutive 
s increasing or decreasing steps can be estimated as pi(s) or 
pd(s) (Xie et al. 2016).

3.2 � Measures for TA or TI

In this paper, measure for TA or TI is defined by the absolute 
distance between two probability distributions p(x) and q(x) 
(Xie et al. 2016):

Combining results from DHVG and CSID with Eq. (4), 
the distance between pd(s) and pi(s) is

while that between pin(k) and pout(k) is

The measure (4) has been compared with two well 
defined measures (Xie et al. 2016), the Kullback–Leibler 
divergence (Cover and Thomas 2006; Kowalski et al. 2011) 
and Euler distance between two distributions (Cover and 
Thomas 2006; Kowalski et al. 2011). It was confirmed (Xie 
et al. 2016) that both the Kullback–Leibler divergence and 

(4)L(p, q) =
∑

x⊂𝜒

|p(x) log p(x) − q(x) log q(x)|.

(5)L1(pd, pi) =
∑

s

||pd(s) log pd(s) − pi(s) log pi(s)
||,

(6)

L2(pin, pout) =
∑

k

||pin(k) log pin(k) − pout(k) log pout(k)
||.

Euler distance could result in the similar results as the meas-
ure (4). For the time series from the real world, the meas-
ure (4) works a little better than both the Kullback–Leibler 
divergence and Euler distance (Xie et al. 2016). So in this 
paper, all results will be shown based on the measures (5) 
and (6). Here it should be pointed out that since L1 from 
(5) quantifies asymmetry related to the local natural trend, 
it is more suitable to measure symmetry of gradual cool-
ing and fast warming or fast cooling and gradual warming 
found in temperature variations. L1 is only related to the 
local permutation not magnitude, so it is robust to noise 
or low-frequency variations. Contrarily, L2 from (6) may 
suffer from the effect of the isolated extreme value, which 
may provide remote links, so L2 is not so robust to noise or 
low-frequency variations compared with L1. And L2 may 
provide different information from those given by L1, such 
as magnitude variation of isolated extreme value.

4 � Results

4.1 � Distinct TA strength in different temperature 
variables

In Fig. 2, we show the spatial distribution of TA measure 
L2 from four daily surface temperature variables’ (includ-
ing Tmean, Tmax, Tmin and DTR) observed records. For 
comparative purpose, the same color bar is set for each 

Fig. 2   L2 to a Tmean, b Tmax, c Tmin, d DTR from 1960 to 2016 for station observations, where 0.036 is critical threshold of L2 at the significance 
level of 95% and solid black dots indicate L2 is below this critical threshold
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temperature variable. It is obvious that the TA strength is 
different among different temperature variables.

Here, in order to check the statistical significance of 
estimated TA measure L2, surrogates from PRS proce-
dure (each group has 1000 samples) with the same linear 
features (such as linear correlation) were carried out the 
same calculation to obtain 1000 values of TA measure L2. 
Among these 1000 values of TA measure L2, the 950th 
value (from the minimum to the maximum) was set as a 
critical threshold L2c (which is corresponding to standard 
95% confidence interval). Since all the surrogates have the 
same data length and linear features as each original tem-
perature variables’ fluctuations, this critical threshold L2c 
can be taken as a benchmark to distinguish the statistically 
significant L2 from statistically insignificant L2 or tempo-
ral symmetric L2. The similar course can be manipulated 
on estimated TA measure L1 to derive the critical thresh-
old L1c. It should be noted that the specific value for each 
critical threshold may change when time series of different 
data length is taken to calculate the estimated TA measure.

For Figs. 2 and 3, the data length spans from 1960 to 
2016, the value of L2c is 0.0360, and L1c is 0.0349. And 
these critical thresholds were marked as the lowest color 
level in spatial distributions of estimated TA measure 
(see the solid black dots in Figs. 2, 3). The same critical 
thresholds were marked in the scatter plots with dash lines, 
horizontal or vertical, see Fig. 4. When length span of 
analyzed temperature fluctuations is changed from 1979 

to 2016 (see Figs. 5, 6, 7, 8), the value of L2c is 0.0459, 
and L1c is 0.0456.

When the value of the estimated TA measure, L2 or L1, is 
below the established threshold, the analyzed series is taken 
to be statistically insignificant TA or temporal symmetric (at 
confidence level larger than 95%). On the contrary, when the 
value of the estimated TA measure, L2 or L1, is larger than 

Fig. 3   L1 to a Tmean, b Tmax, c Tmin, d DTR from 1960 to 2016 for station observations, where 0.0349 is critical threshold of L1 at the signifi-
cance level of 95% and solid black dots indicate L1 is below this critical threshold
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Fig. 4   Scatter plots for L1 vs. L2 for Tmean, Tmax, Tmin and DTR from 
1960 to 2016 for station observations. The horizontal and vertical 
dash black lines denote the critical thresholds of L1 and L2 at the sig-
nificance level of 95%, respectively
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the established threshold, the analyzed series is statistically 
significant TA (at confidence level larger than 95%).

Obviously, the dominated uniformly significant TA 
emerges in observed daily Tmean fluctuations, see Fig. 2a. 
All observed daily Tmean fluctuations are statistically sig-
nificant TA (at confidence level larger than 95%). Among 
them, more than half of the 179 analyzed Tmean fluctuations 
have their estimated L2 larger than 4 times of L2c (which 
can be taken as an extreme TA index), with a national scale 
averaged value of 0.19. The strength of TA in Tmean is really 
high and these results are consistent with previous findings 
(Xie et al. 2016).

Contrary to more TA studies to daily Tmean fluctuations, 
less study has been devoted to other three temperature vari-
ables. Comparing Fig. 2a with Fig. 2b–d, we can learn that 
the TA strength of other three variables is much weaker than 
those for Tmean. Among them, the TA strength of Tmax is 
only weakened a little, see Fig. 2b. The observed daily Tmax 

fluctuations over only one station are statistically insignifi-
cant TA. There are still more than half of the 179 analyzed 
Tmax fluctuations with their estimated L2 larger than 3 times 
of L2c, with a national scale averaged value of 0.14. How-
ever, the station numbers with extreme TA index are greatly 
reduced, the TA strength of the Tmax fluctuations over only 
10 stations is larger than 4 times of L2c.

The TA strength of the Tmin fluctuations is further 
reduced, see Fig. 2c. Although the value of L2 over two-
thirds of stations is still larger than L2c, there are only 2 sta-
tions evidencing their TA strength larger than 4 times of L2c.

Contrary to the marked TA in Tmean, TA behavior in DTR 
is totally different, where TA is much weaker, see Fig. 2d. 
Nearly one-third of L2 values in DTR are below the critical 
value L2c = 0.0360, and other two-thirds close to the critical 
value L2c 0.0360. And most of important, no station evi-
dences its TA strength larger than 4 times of L2c.
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Fig. 5   Scatter plots for station observations, a L1 (L2) from 1979 to 
2016 vs. L1 (L2) from 1960 to 2016 for Tmean, b L1 (L2) from 1979 to 
2016 vs. L1 (L2) from 1960 to 2016 for Tmax, Tmin and DTR
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1979 to 2016 for station observations, b L1 vs. L2 for Tmean, Tmax, Tmin 
and DTR from 1979 to 2016 for interpolated NCEP station. The hori-
zontal and vertical dash black lines denote the critical thresholds of 
L1 and L2 at the significance level of 95%, respectively
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From above detailed results for four temperature vari-
ables, we can make the first conclusion to their differential 
TA behaviors. Contrary to the marked uniformly significant 
TA in Tmean, this kind of uniformly significant TA can’t 
be found in Tmax, Tmin and DTR, see Fig. 2a–d. The TA 
is weakened in Tmax, further weakened in Tmin and DTR. 

Detailed differences are summarized in Table 1, where the 
mean value of L2 over China for Tmean is 0.19, Tmax is 0.14, 
Tmin is 0.074, DTR is 0.056. The mean value of L2 for DTR 
is close to the critical value L2c.

Fig. 7   L2 to a Tmean, b Tmax, c Tmin, d DTR from 1979 to 2016 for 
station observations (left column) and e Tmean, f Tmax, g Tmin, h DTR 
for interpolated NCEP station (right column), where 0.0459 is critical 

threshold of L2 at the significance level of 95% and solid black dots 
indicate L2 is below this critical threshold
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This distinct TA strength found in different temperature 
variables indicates that there are distinct temporal struc-
tures in variations of different temperature variables and 
correspondingly there are different factors controlling their 
nonlinear variations.

4.2 � Consistent TA between L2 and L1 for four 
temperature variables

Previous study found that both L2 and L1 can reach consist-
ent TI or TA in both outputs of theoretical asymmetry model 
and daily Tmean variations over China (Xie et al. 2016). Will 

Fig. 8   L1 to a Tmean, b Tmax, c Tmin, d DTR from 1979 to 2016 for 
station observations (left column) and e Tmean, f Tmax, g Tmin, h DTR 
for interpolated NCEP station (right column), where 0.0456 is critical 

threshold of L1 at the significance level of 95% and solid black dots 
indicate L1 is below this critical threshold
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this TA consistence between L2 and L1 be recovered in other 
temperature variables’ fluctuations or only specific to Tmean? 
The answer to this question is shown in Figs. 3 and 4. Fig-
ure 3 shows the spatial distribution of TA measure L1 of 
four daily surface temperature variables’ (including Tmean, 
Tmax, Tmin and DTR) observed records. Interestingly, Fig. 3 
is just a perfect copy of Fig. 2 for each temperature vari-
able if the TA measure absolute magnitude is not taken into 
account. There are almost the same spatial patterns for each 
temperature variable for both L2 and L1. And this perfect one 
to one correspondence between L2 and L1 can be directly 
observed in scatter plot of L2 vs. L1, see Fig. 4. For each 
temperature variable, L2 and L1 are all located in a straight 
line. At the same time, we can find in Fig. 4 that there are 
marked differential TA behaviors among these four analyzed 
temperature fluctuations by means of the TA strength. Actu-
ally, this well TA consistence between L2 and L1 can also be 
revealed for each temperature variables’ fluctuations in the 
NCEP reanalysis.

From the definition of L2 and L1, we can see that they 
reflect different aspects of temporal patterns in time series. 
The TA consistence between L2 and L1 indicates they can 
provide the same quantitative measure to nonlinearity hid-
den in the analyzed time series. The mechanism resulting in 
this well TA consistence deserves further studies.

4.3 � Length effect on TA

For all statistical analysis, the finite length effect can’t 
be omitted. In this subsection, we will discuss what will 
finite size of analyzed time series affect the estimated TA 
measure, both L1 and L2. The detailed results are shown 
in Fig. 5, and comparative results can also be reached by 
comparing the results given in Figs. 2 and 3 with what 
have been shown in Figs. 7a–d and 8a–d. The span for 
analyzed temperature fluctuations in both Figs. 2 and 3 is 
from 1960 to 2016, but changed to from 1979 to 2016 in 
both Figs. 7a–d and 8a–d. The reason why we chosen the 
span from 1979 to 2016 in both Figs. 7a–d and 8a–d is that 
the span for all four temperature variables given in NCEP 
reanalysis is available from 1979 to 2016. Only when the 

finite length effect on both L1 and L2 is negligible, the 
results obtained in former sections can be compared with 
those from NCEP reanalysis.

For a clear-cut comparison, Fig. 5a only presents the 
results for Tmean and Fig. 5b presents the results for Tmax, 
Tmin and DTR. Obviously, both L1 and L2 are uniformly 
along the 1:1 line, which indicates that both L1 and L2 
from 1960 to 2016 is nearly the same as those from 1979 
to 2016. Finite size of under analyzed time series affects 
very little the estimation of both L1 and L2, and the cor-
relation coefficient over two periods for L1 is 0.984 and L2 
0.987, respectively. Similar results can be found for other 
three temperature variables, and all these results indicate 
that the results are robust to the span choice.

These results are further confirmed in the spatial dis-
tributions of both L1 and L2 over two different spans, see 
Figs. 2, 3, 7a–d and 8a–d. Both Figs. 2 and 7a–d reach 
nearly the same spatial patterns, and the same results are 
for both Figs. 3 and 8a–d. The consistent results from two 
different time spans are summarized in Tables 1 and 2. 
The National scale averaged L1 and L2 for four tempera-
ture variables reach nearly the same results over two time 
spans. There are amazing results for Tmean, both the mean 
value and standard deviation of L1 and L2 are equal over 
both spans. The results for Tmax are also perfect, only the 
standard deviation of L1 is different, with 0.60 for span 
from 1960 to 2016 and 0.58 for span from 1979 to 2016.

For Tmin, the standard deviation of L1 and L2 are equal 
over both spans, there are minor different mean values 
for L1 and L2. For L2, the mean value is 0.074 over span 
from 1960 to 2016 and 0.079 for span from 1979 to 2016. 
For L1, the mean value is 0.087 over span from 1960 to 
2016 and 0.092 for span from 1979 to 2016. While for 
DTR, there are negligible differences in both the mean 
value and the standard deviation of L1 and L2 over two 
time spans. The mean value of L2 is equal over two spans 
with different standard deviation 0.023 and 0.021. While 
the mean value of L1 is 0.063 with the standard deviation 
0.030 over span from 1960 to 2016, and the mean value 
of L1 is 0.062 with the standard deviation 0.028 over span 
from 1979 to 2016.

Table 1   National scale averaged L1 and L2 for Tmean, Tmax, Tmin and 
DTR from 1960 to 2016 for station observations

Data Mean of L2 Standard 
deviation 
of L2

Mean of L1 Standard 
deviation 
of L1

Tmean 0.19 0.062 0.24 0.079
Tmax 0.14 0.045 0.16 0.060
Tmin 0.074 0.042 0.087 0.049
DTR 0.056 0.023 0.063 0.030

Table 2   National scale averaged L1 and L2 for Tmean, Tmax, Tmin and 
DTR from 1979 to 2016 for station observations

Data Mean of L2 Standard 
deviation 
of L2

Mean of L1 Standard 
deviation 
of L1

Tmean 0.19 0.062 0.24 0.079
Tmax 0.13 0.045 0.16 0.058
Tmin 0.079 0.042 0.092 0.049
DTR 0.056 0.021 0.062 0.028



595Differential temporal asymmetry among different temperature variables’ daily fluctuations﻿	

1 3

4.4 � Region dependent TA

Apart from distinct TA strength found in different tempera-
ture variables, strength of TA for each temperature variable 
is spatially non-uniform.

For Tmean, both L1 and L2 show that the strongest TA 
occurs over southeast (especially over south to middle and 
lower reaches of Yangze River) and parts of northwest of 
China, see Figs. 2a and 3a. Lower TI is found in the north-
east of China and Basin of Sichuan and Yun-Gui Plateau. 
Although different measures is applied to quantify the 
strength of TA in Tmean, this spatial patterns of TA matches 
well the results given in Ref. (Ashkenazy et al. 2008), where 
NCEP reanalysis Tmean was used to study rapid cooling and 
gradual warming at the mid-latitudes. It should be pointed 
out that there are predominantly zonal inhomogeneous TA 
patterns, zonal averaged TA will weaken its strength. At 
the same latitude, we can see that there is contrasting TA 
strength over parts of northwest of China and the northeast 
of China. And more significant differences are located Basin 
of Sichuan and Yun-Gui Plateau with weaker TA and South 
of China with the strongest TA.

These zonal inhomogeneous TA patterns are even more 
noticeable in Tmax. For Tmax (Figs. 2b, 3b), the higher TA 
mainly locates in south coastal regions, south Xinjiang 
and the lower reaches of Yangze River, lower TA around 
the upper and middle reaches of Yangze River, Basin of 
Sichuan and Yun-Gui Plateau. The contrasting TA patterns 
over different reaches of Yangze River (higher over the lower 
reaches and lower over reaches of Yangze River) deserve 
further studies.

For Tmin (Figs. 2c, 3c), higher TA is only noticeable over 
northwest of Xinjiang and Guangdong province. The TA 
below the critical threshold can be found mainly over north-
east of China, regions between Yangze River and Yellow 
River, and Yun-Gui Plateau. Since all TA is lower for DTR 
(Figs. 2d, 3d), TA below the critical threshold can be found 
over middle of China, which covers nearly one-third part of 
China. However, we can still find that the strength of TA is 
high over east part of northeast of China and lower reaches 
of Yangze River, see Figs. 2d and 3d.

4.5 � Distinguishable TA between observations 
and reanalysis

There are TA or TI studies reported on daily mean tempera-
ture from both NCEP reanalysis (Ashkenazy et al. 2008) and 
observations (Bartos and Jánosi, 2005; Gyure et al. 2007; 
Xie et al. 2016), however, no comparison studies of TA or 
TI between observations and reanalysis have been carried 
out. At the same time, quality of reanalysis data has been 
evaluated from different aspects, such as long-range cor-
relation (Zhao et al. 2017; He and Zhao 2018), however, 

assessment of reanalysis based on nonlinear features has not 
been reported. Comparison studies of TA among different 
temperature variables will be shown in this subsection. In 
order to make direct comparison between observations and 
reanalysis for these four temperature variables, all gridded 
temperature NCEP R-2 reanalysis were interpolated to the 
data points of measurements over each station, then we can 
make point-to-point comparison for each TA measure over 
all stations. Actually, interpolating will not change the spa-
tial distribution and magnitude information of calculated TA 
measures (Figures not shown here), and this process only 
makes the comparison studies easier and clearer.

From above subsections, we know that the strength of 
TA in observations is highest in Tmean, followed by Tmax and 
Tmin, and the last is DTR, see Figs. 4 and 6a and Tables 1 and 
2. However, for NCEP reanalysis, this order is changed. The 
TA strength in NCEP reanalysis is found highest in Tmax, 
followed by Tmean and Tmin, and the last is DTR, see Fig. 6b 
and Table 3. For NCEP reanalysis, TA in Tmean is overall 
only a little underestimated, TA in DTR is overall under-
estimated, however, TA in Tmax and Tmin is overall largely 
overestimated, see Fig. 6 and Table 3. This estimated TA 
departure in NCEP from observations is reflected in both 
mean value and standard deviation. The dispersion of TA 
in all temperature variables but DTR is enlarged, the same 
cases are found for the national scale mean value except for 
Tmean and DTR, whose mean value is reduced compared with 
those in observations. Especially, TA in Tmax is exaggerated 
greatly, which makes Tmax has the largest strength of TA.

The TA inconsistencies between observations and 
NCEP reanalysis are even more predominant in their 
spatial distributions. TA in Tmax is larger than the criti-
cal threshold over nearly all regions except Tibetan Pla-
teau, where unexpected insignificant TA is dominated, see 
Fig. 7f. Actually, TA over Tibetan Plateau is also markedly 
insignificant for Tmean and DTR, see Fig. 7e, h. Carefully 
check reveals that the overestimated TA in Tmax is mainly 
due to the unexpected high TA in Xinjiang and north to 
upper reaches of Yellow River, see Figs. 7f and 8f. Differ-
ent from what has been revealed in Tmax, the overall TA in 
Tmean estimated from reanalysis is consistent with what has 

Table 3   National scale averaged L1 and L2 for Tmean, Tmax, Tmin and 
DTR from 1979 to 2016 for NCEP reanalysis interpolated to observa-
tion station

Data Mean of L2 Standard 
deviation 
of L2

Mean of L1 Standard 
deviation 
of L1

Tmean 0.18 0.065 0.23 0.091
Tmax 0.20 0.064 0.25 0.083
Tmin 0.17 0.056 0.20 0.077
DTR 0.045 0.017 0.055 0.020
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been derived from observations. And compared to those 
from observations, the overall overestimated TA in Tmin 
from NCEP reanalysis comes mainly from the overestima-
tion of TA over middle of China, see Figs. 7g and 8g. For 
DTR, no significant larger difference in TA can be found 
between observations and NCEP reanalysis (see Figs. 7h, 
8h). Comparing the spatial distribution of significant TA 
inconsistencies between observation and NCEP reanalysis, 
we can find the dominated regions for Tmean, Tmax and Tmin 
are also different. The overestimated or underestimated 
TA can be revealed clearly in the plot from TA measures 
between observation and NCEP, see Figs. 9 and 10. The 
consistence for Tmean is the best with spatial Pearson cor-
relation coefficients 0.788 and 0.788 for L1 and L2, respec-
tively, see Figs. 9a and 10a. However, the consistence for 
Tmin is the worst with spatial Pearson correlation coef-
ficients 0.432 and 0.496 for L1 and L2, respectively, see 
Figs. 9c and 10c, where TA from all stations is almost 
overestimated. Nearly two-thirds of TA measures for Tmax 
from NCEP are overestimated (see Figs. 9b, 10b). Since all 
estimated TA in DTR from both observations and NCEP 
reanalysis are lower, the inconsistence between them is 
not so significant, with underestimation only over some 
stations, see Figs. 9d and 10d.

At last, we should point out that the consistent TA 
between L2 and L1 for four temperature variables has been 
revealed in observations. This good consistence is also pre-
sented in TA measure in NCEP reanalysis, see Fig. 6b. The 
well correspondence between L2 and L1 is even better in the 
NCEP results.

5 � Conclusion and discussion

Actually, DHVG and CSID reflect different aspects of ordi-
nal pattern hidden in the analyzed time series (Xie et al. 
2016). For daily fluctuations of temperature variables, the 
asymmetry intensity is not very large, and the quantifiers 
from both DHVG (L2) and CSID (L1) reach nearly the same 
qualitative results. There are very well TA consistence 
between L1 and L2 in the observed and NCEP temperature 
fluctuations. Due to the easier calculations of L1 than L2, and 
the direct connection of L1 to natural local trend in series, L1 
is recommended to be the first choice to quantify TA hidden 
in time series of daily variations of different temperature var-
iables, Tmean, Tmax, Tmin and DTR. Since the calculations of 
L1 are involved in the local variations of temperature fluctua-
tions with certain steps (for daily temperature variations over 
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China, the maximum steps are close to 15), more detailed 
temporal structures of TA can be revealed compared with 
those from methods adopted in previous studies (Ashkenazy 
et al. 2008, 2016).

At the same time, distinct TA behaviors are uncovered 
in different temperature variables. The strength of TA from 
observations is highest in Tmean (around 0.19) and lowest in 
DTR (around 0.056). The strengths of TA for Tmax (around 
0.13 from observations) are overall higher than those for 
Tmin (0.076 from observations). These findings are interest-
ing, since previous studies found there are asymmetric trends 
in daily Tmax and Tmin due to different causal mechanisms 
in daily Tmax and Tmin (Karl et al 1991, 1993; Weber et al. 
1994; Balling et al. 1999; Lauritsen and Rogers 2012). Dif-
ferent from this trend asymmetry with stronger trends in 
Tmin, the asymmetry by means of TA presents with higher 
TA in Tmax. And previous studies also show there are differ-
ent persistent features in Tmean, Tmax, Tmin and DTR (Yuan 
et al. 2010; Pattanyus et al. 2004), where the long-range 
memory strength of Tmin is overall a little bit higher than 
those for others. Both linear trend and persistence are linear 
characteristics of temperature variations. The new findings 
reported in this article are related to nonlinear features, and 
remarkable TA differences among Tmean, Tmax, Tmin and DTR 

have not been reported in the literature. Apart from distin-
guishable linear behavior in Tmean, Tmax, Tmin and DTR, there 
may be more nonlinear differential structures have not been 
uncovered among Tmean, Tmax, Tmin and DTR. For example, 
we can learn from these new findings that different natural 
trends in the Tmean may occur with unequal frequency and 
there are dominated natural trend patterns, however, natural 
trends in the DTR are symmetric and no dominated trend 
in its variations. These new findings may be also helpful to 
deep understanding the predictability in these four tempera-
ture variables’ variations, since previous studies show that 
increasing nonlinearity can contribute to enhanced predict-
ability in ENSO and Lorenz systems (Ye and Hsieh 2008). It 
was found that rapid cooling and gradual warming resulting 
in asymmetry in daily Tmean over mid-latitudes, which was 
conjectured to be partially related to cold fronts (Ashkenazy 
et al. 2008). Distinct TA structures in fluctuations of differ-
ent temperature variables indicate that correspondingly there 
are different dominated factors controlling their nonlinear 
variations. It has reported that the behavior (linear or nonlin-
ear) of Tmean can be free from those of Tmax or Tmin or DTR, 
and the asymmetry phenomenon in daily temperature cycle 
are governed by difference factors (Wang et al. 2017), such 
as increasing thermal storage from manmade structures, 
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which contributes greatly to small-scale asymmetry phe-
nomenon in daily temperature cycle by differential impacts 
on Tmax and Tmin (Wang et al. 2017). Different TA features in 
four temperature variables due to different dominated factors 
controlling their nonlinear variations are also reflected in the 
fact that TA of different temperature variables’ fluctuations 
is region-dependent. The strength of TA for each tempera-
ture variable is spatially non-uniform and it may depend on 
local weather or climate conditions. Therefore, the strength 
of TA is variable-dependent and process-dependent, and the 
correct simulation of this process by taking nonlinearity into 
account is of great importance to understand the nature of 
time irreversibility or temporal asymmetry.

In the previous studies, fluctuations of many atmospheric 
variables were often considered to be well modeled by linear 
processes or models, such as autoregressive (AR) processes 
(Storch and Zwiers 1999). It has been taken as a consensus 
in the literature that higher frequency daily surface tempera-
ture fluctuations can be well modeled without taking any 
nonlinear effect into account after proper detrending (Bartos 
and Janosi 2005). The findings in the study show that there 
are distinguished TA strength differences among different 
temperature variables’ variability, so this consensus may be 
not universally applied to these temperature variables’ vari-
ability. In order to reproduce these differential TA features, 
nonlinear effects should be differentially included in the 
newly rebuilt models.

Distinguishable TA features between observations and 
reanalysis provides a novel index to evaluate the quality 
of reanalysis (Zhao et al. 2017; He and Zhao 2018) from 
the nonlinear point of view. This is of great importance in 
extreme event related studies and understanding to small-
scale phenomenon, since the nonlinearity is closely related 
to extreme events and certain small-scale phenomena 
(Raghavendra et al. 2018). There are significant estimated 
TA differences between observations and reanalysis over 
some specific regions for specific temperature variable, such 
as Tmean in Southern parts of East China, Tmax in Northwest 
China and Western Inner Mongolia and Tmin over middle 
of China. The quality of NCEP reanalysis is questionable 
over these regions for some specific temperature variables. 
Contrary to the results based on long-range correlation, 
where the quality of NCEP reanalysis Tmax is best among 
four temperature variables (Zhao et al. 2017; He and Zhao 
2018), the worst quality of NCEP reanalysis is revealed in 
Tmin and Tmax based on nonlinear measures (i.e., TA). This 
indicates the assessment of NCEP reanalysis from linear 
feature may be different from those from nonlinear feature. 
At the same time, due to rare observations over Tibetan 
Plateau, where TA calculated from NCEP reanalysis for all 
temperature variables is different from those estimated from 
observations. Although the results of TA for all tempera-
ture variables over these regions require further check, the 

conclusions are consistent with what has been reached based 
on long-term correlation (He and Zhao 2018). The quality of 
reanalysis over these regions is questionable, since the prob-
lem how to correctly model the terrain of Tibetan Plateau 
is still unsolved in all related studies (He and Zhao 2018). 
True physical processes not completely including in related 
models may lead to distorted modeling or missing important 
structure information, and if outputs of these models are 
assimilated into reanalysis, they can cause distinguishable 
features between observations and reanalysis, such as bias 
in the variance of gridded data sets can lead to mislead-
ing conclusions about changes in climate variability and 
extremes (Begueria et al. 2016). And it has been reported 
that compared to the well modeled daily mean tempera-
ture, there are larger variability and inconsistency between 
observed and modeled daily minimum temperature and 
maximum temperature, where the daily minimum tempera-
ture is overestimated and the daily maximum temperature is 
underestimated (Raghavendra et al. 2018). So the modeled 
daily minimum temperature and maximum temperature are 
considered not suitable to study the extreme events, such as 
heat-waves (Raghavendra et al. 2018). The marked mismatch 
between observations and reanalysis found in this paper also 
indicates that the nonlinear conclusions or extreme event 
studies related to Tmax, Tmin and DTR reanalysis should be 
reevaluated and it is also of great important to reevaluate the 
performance of certain models over China, such as outputs 
from CMIP5 models (He et al. 2018).

Distinct TA behaviors in different temperature varia-
bles, region-dependent TA behaviors and distinguishable 
TA features between observations and reanalysis indicate 
that there are still many works required to understand 
the true dominated factors controlling the variations of 
specific temperature variables. One of urgently unsolved 
problems is what has caused the marked TA and why there 
are distinct TA behaviors in different temperature vari-
ables. If this problem is solved, it will contribute greatly 
to the understanding of region-dependent TA behaviors 
and distinguishable TA features between observations and 
reanalysis. There are some clues on solving this problem, 
such as cold fronts (Ashkenazy et al. 2008) for rapid cool-
ing and gradual warming asymmetry in daily Tmean over 
mid-latitudes. However, temperature TA mechanism stud-
ies remain deficient compared with the in-depth studies on 
asymmetry of ENSO, where it has been found that warm-
cold magnitude asymmetry is closely related to nonlinear 
advection heating (An and Jin 2004; An 2004; Su et al. 
2010), the specific mechanisms over different phases for 
asymmetry of ENSO are also different, and they may be 
related different mean states (An and Jin 2004; An 2004; 
Ye and Hsieh 2006; Su et al. 2010; Choi et al. 2012). 
Mechanisms causing TA in temperature fluctuations can 
draw lessons from these in-depth studies.
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