
Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data
Assimilation. Part I: Perfect Model Experiments

FUQING ZHANG, ZHIYONG MENG, AND ALTUG AKSOY

Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

(Manuscript received 4 August 2004, in final form 25 July 2005)

ABSTRACT

Through observing system simulation experiments, this two-part study exploits the potential of using the
ensemble Kalman filter (EnKF) for mesoscale and regional-scale data assimilation. Part I focuses on the
performance of the EnKF under the perfect model assumption in which the truth simulation is produced
with the same model and same initial uncertainties as those of the ensemble, while Part II explores the
impacts of model error and ensemble initiation on the filter performance. In this first part, the EnKF is
implemented in a nonhydrostatic mesoscale model [the fifth-generation Pennsylvania State University–
NCAR Mesoscale Model (MM5)] to assimilate simulated sounding and surface observations derived from
simulations of the “surprise” snowstorm of January 2000. This is an explosive East Coast cyclogenesis event
with strong error growth at all scales as a result of interactions between convective-, meso-, and subsynoptic-
scale dynamics.

It is found that the EnKF is very effective in keeping the analysis close to the truth simulation under the
perfect model assumption. The EnKF is most effective in reducing larger-scale errors but less effective in
reducing errors at smaller, marginally resolvable scales. In the control experiment, in which the truth
simulation was produced with the same model and same initial uncertainties as those of the ensemble, a 24-h
continuous EnKF assimilation of sounding and surface observations of typical temporal and spatial reso-
lutions is found to reduce the error by as much as 80% (compared to a 24-h forecast without data assimi-
lation) for both observed and unobserved variables including zonal and meridional winds, temperature, and
pressure. However, it is observed to be relatively less efficient in correcting errors in the vertical velocity
and moisture fields, which have stronger smaller-scale components. The analysis domain-averaged root-
mean-square error after 24-h assimilation is �1.0–1.5 m s�1 for winds and �1.0 K for temperature, which
is comparable to or less than typical observational errors. Various sensitivity experiments demonstrated that
the EnKF is quite successful in all realistic observational scenarios tested. However, as will be presented in
Part II, the EnKF performance may be significantly degraded if an imperfect forecast model is used, as is
likely the case when real observations are assimilated.

1. Introduction

The ensemble-based data assimilation method [en-
semble Kalman filter (EnKF); Evensen 1994], which
uses short-term ensemble forecasts to estimate the
flow-dependent background error covariance, has re-
cently been implemented in various atmospheric and
oceanic models. These models vary from idealized ex-
amples based on simplified equation sets to those based
on the complete, primitive equations with assimilation
of real observations (Houtekamer and Mitchell 1998,

2001; Hamill and Snyder 2000; Keppenne 2000; Ander-
son 2001; Mitchell et al. 2002; Keppenne and Rienecker
2002; Whitaker and Hamill 2002; Zhang and Anderson
2003; Snyder and Zhang 2003; Houtekamer et al. 2005;
Whitaker et al. 2004; Dowell et al. 2004; Zhang et al.
2004; Aksoy et al. 2005). These experimental studies
demonstrated the feasibility and effectiveness of the
EnKF for different scales and flows of interest and the
advantages of using the EnKF over existing data as-
similation schemes, which assume stationary, isotropic
background error covariance. This present study seeks
to exploit the potential of using the EnKF to assimilate
simulated sounding and surface observations for meso-
scale and regional-scale numerical weather prediction
systems, which often include dynamics and interactions
among convective, meso-, and subsynoptic scales.
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Recently, short-term ensemble forecasts generated
with different sets of initial perturbations were used to
examine the dynamics and structure of mesoscale error
covariance of the 24–25 January 2000 surprise snow-
storm (Zhang 2005). In the ensemble forecast initiated
with rescaled random perturbations, initial errors grow
from smaller-scale, largely unbalanced and uncorre-
lated perturbations to larger-scale, quasi-balanced dis-
turbances within 12–24 h. Comparable ensemble spread
is found in ensemble forecasts initialized with balanced
random perturbations or with gridpoint random pertur-
bations. In all ensemble forecasts, the error growth is
maximized in the vicinity of the strongest mean poten-
tial vorticity (PV) gradient and over the area of active
moist convection, consistent with the lower predictabil-
ity in these regions (Zhang et al. 2002, 2003). Conse-
quently, the initially largely uncorrelated, mostly ran-
dom errors evolve into strong coherent structures with
spatial correlation not only within individual variables
(autocovariance) but also between different forecast
variables (cross covariance), especially over the region
of strong cyclogenesis and along the upper-level front.
The error covariance is highly anisotropic. Dramatic
differences in magnitude, structure, and sign are found
between covariances estimated from the same set of
ensemble forecasts but verified at different times. The
structure of the mesoscale error covariance is ulti-
mately determined by the underlying governing dynam-
ics and the associated error growth.

The spatial and cross covariance estimated from the
short-term ensemble forecast has the potential to
spread observational information nonuniformly to both
observed and unobserved variables at different vertical
layers (e.g., from the upper troposphere to the surface
and vice versa) with a horizontal radius of influence
potentially greater than 1000 km. The flow-dependent
nature of the error growth dynamics and the covariance
structure further demonstrates the necessity to use
anisotropic and flow-dependent representations of
background error covariance for mesoscale and re-
gional-scale data assimilation.

The current study seeks to examine the significance
and the effectiveness of the error covariance estimated
from the short-term ensemble forecasts for mesoscale
and regional-scale data assimilation for the same event
as in Zhang (2005). Section 2 introduces the forecast
model and the formulation and configuration of the
EnKF. The truth simulation and the reference forecast
ensemble are presented in section 3. Performance of
the control EnKF experiment is examined in section 4.
Forecast error growth from ensembles with and without
the EnKF is discussed in section 5. The sensitivity ex-
periments to EnKF configuration, data coverage, fre-

quency, and uncertainty of observations are presented
in section 6. Summary and conclusions are presented in
section 7. The impacts of model error and ensemble
initiation on the filter performance will be explored in
Meng and Zhang (2005; manuscript submitted to Mon.
Wea. Rev., hereafter Part II).

2. Forecast model and EnKF

The study uses the nonhydrostatic fifth-generation
Pennsylvania State University–National Center for At-
mospheric Research (NCAR) Mesoscale Model
(MM5) (Dudhia 1993). The model domain has 190 �
120 horizontal grid points with 30-km grid spacing and
covers the continental United States (Fig. 1). There are
27 layers in the terrain-following vertical coordinate
with model top at 100 hPa and vertical spacing smallest
within the boundary layer. The model has a total of 10
prognostic variables including three Cartesian velocity
components (u, �, w), pressure perturbation (p�), tem-
perature (T), and mixing ratios for water vapor (q),
cloud water (qc), rainwater (qr), cloud ice (qi), and
graupel (qg). Details and references on the model con-
figuration can be found in Zhang et al. (2002, hereafter
ZSR02). The state dimension of the forecast model is
�107. Observations are taken only from the shaded
area in Fig. 1 and only state vectors in this inner box are
updated and analyzed.

The EnKF was first proposed for geophysical appli-
cations by Evensen (1994). The implementation of the
EnKF used in the current study follows closely that of
Snyder and Zhang (2003). As in standard Kalman filter,

xa � xf � K�y � Hxf	, �1	

where xf represents the prior estimate or first guess, xa

is the posterior estimate or analysis, y is the observation
vector, H is the observation operator that returns ob-

FIG. 1. Map of the model domain. Only data in shaded areas
are assimilated and analyzed.
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served variables given the state, and K is the so-called
Kalman gain matrix defined as

K � PfHT�HPfHT � R	�1, �2	

where Pf and R represent the background and obser-
vational error covariance, respectively. In the EnKF,
the flow-dependent Pf is estimated through an en-
semble of short-range forecasts. Observations are taken
sequentially with uncorrelated observations errors.
Further background on the EnKF can be found in Sny-
der and Zhang (2003) and references therein.

One modification to Snyder and Zhang (2003) is to
adopt the covariance relaxation method proposed in
Zhang et al. (2004) in which a modified analysis devia-
tion (xa

new)� is computed by “relaxing” or weighting (xf)�
and (xa)�:

�xnew
a 	� � �1 � �	�xa	� + ��xf	�, �3	

where deviations from the mean are denoted by primes,
and 
 � 0.5 is used in this study. The modified analysis
deviations are then used as initial conditions for the
ensemble forecasts to the next assimilation time. Since
the analysis (posterior) deviation (xa)� is smaller than
the forecast (prior) deviation (xf)�, reflecting the reduc-
tion of uncertainty after assimilating observations, the
use of (3) will overestimate (inflate) the uncertainty in
the analysis, as an alternative to the covariance infla-
tion used by Anderson (2001). It is worth noting that,
both the covariance relaxation using Eq. (3) and the
covariance inflation of Anderson (2001) are ad hoc
ways of dealing with the tendency of the spread of a
small ensemble to underestimate the true error of the
ensemble mean. Another alternative is to use an EnKF
configuration with a pair of ensembles (Houtekamer
and Mitchell 1998; Houtekamer et al. 2005), which does
not require any “adjustable” inflation or relaxation pa-
rameters.

In addition, a covariance localization method using
the Gaspari and Cohn (1999) compactly supported
fifth-order correlation function is performed in the full
three-dimensional physical space. The covariance is set
to be zero if the total gridpoint distance [r � (rx � ry �
r�)0.5, where rx, ry, and r� are distance in number of grid
points in the x, y, and � (or z) directions, respectively]
is greater than 30, equivalent to a horizontal distance of
900 km.

3. The truth simulation and the reference forecast
ensemble

The truth simulation and the reference forecast en-
semble are produced by randomly perturbing the ref-

erence analysis at 0000 UTC 24 January 2000. The per-
turbations used are directly derived from the back-
ground error covariance of the MM5 three-dimensional
variational data assimilation (3DVAR) system (Barker
et al. 2004). The reference analysis is generated using
the National Centers for Environmental Prediction
(NCEP)– NCAR reanalysis. The MM5 3DVAR analy-
sis (and thus the initial perturbations) is performed on
a transformed streamfunction field (Barker et al. 2003).
Forty random perturbations of the streamfunction,
which are consistent with the background error covari-
ance used by the MM5 3DVAR system, are selected
and then transformed to derive the horizontal wind (u
and �), temperature (T), and pressure perturbations
(p�) (Barker et al. 2003, 58–59). The derived initial
wind, temperature, and pressure perturbations are thus
geostrophically balanced. The use of the 3DVAR back-
ground error covariance to generate the initial en-
semble for the EnKF can also be found in Houtekamer
et al. (2005). The domain-averaged standard deviation
(STD) of such perturbations is approximately 1 m s�1

for u and �, 0.5 K for T, 0.4 hPa for p� and 0.2 g kg�1 for
q. Other prognostic variables (vertical wind w, mixing
ratios of cloud water qc, rainwater qr, snow qs, and grau-
pel qg) are not perturbed in the MM5 3DVAR system
used here. These perturbations are then added to the
reference analysis at 0000 UTC 24 January 2000 to gen-
erate a 40-member reference forecast ensemble that is
integrated for 36 h with boundary conditions provided
by the NCEP–NCAR reanalysis updated every 12 h.

The truth simulation is generated in the same manner
(i.e., the same model and the same initial uncertainties)
as one of the members of the reference forecast en-
semble but with a different realization of random per-
turbations. The truth simulation is used to generate ob-
servations and is also used as the reference to evaluate
the performance of the EnKF. Only state vectors and
observations in the shaded region of Fig. 1, an area of
2400 km � 2400 km, are analyzed and assimilated. Se-
lection of the shaded areas (instead of the total model
domain) as the analysis domain is to minimize the im-
pact of using the same boundary conditions for the in-
tegration of both the truth and the reference forecast
ensemble. Over the 36-h integration, state variables in-
side the shaded domain have little influence from the
model lateral boundary conditions.

Figure 2 shows the mean sea level pressure (MSLP)
and model-derived reflectivity at the 12-, 24-, and 36-h
forecast times from the truth simulation (upper panels)
and the reference forecast ensemble mean (lower pan-
els). Corresponding geopotential heights, PV, and vec-
tor winds at 300 hPa are displayed in Fig. 3. The truth
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simulation is chosen from 50 different random realiza-
tions to compare most favorably to observations of this
event in terms of the location and strength of the sur-
face cyclone (Figs. 3a, b of ZSR02) and 300-hPa short-
wave trough (Fig. 2 of ZSR02) and the onshore pre-
cipitation band (Figs. 3c, d of ZSR02).

After 12 h of simulation, the reference forecast en-
semble mean, which is used as the first guess in the
following EnKF experiments, has noticeable difference
from the truth simulation in all fields. In addition to a
�1.5 hPa weaker surface incipient cyclone (differences
of wind vectors and MSLP are shown in Fig. 4a), the
incipient inland precipitation from the Gulf Coast
across Georgia to South Carolina in the reference fore-
cast ensemble mean is much weaker (Fig. 2a versus Fig.
2d). Moreover, the reference forecast ensemble mean
of the 300-hPa short-wave PV trough is slightly but
systematically shifted to the east (Figs. 3a,d and 5a).

At 24 h, the maximum differences of MSLP and
winds associated with the surface cyclone between the
ensemble mean and the truth simulation are as large as
5 hPa and 12.5 m s�1, respectively (Figs. 2b,e and 4b).

Moreover, the reference forecast ensemble mean (Fig.
2e) also misses the strong inland precipitation across
the Carolinas seen in the reference run (Fig. 2b) and
radar observations (Fig. 3a of ZSR02). Associated with
a systematic eastward shift of the upper-level PV
trough (fronts) in the ensemble mean forecast, the
maximum PV and wind differences at 300-hPa reached
an amplitude of 2.5 PVU and 22.5 m s�1, respectively
(Figs. 3b,e and 5b). Growth of maximum difference
along fronts is consistent with the error evolution in the
quasigeostrophic model examined by Snyder et al.
(2003). After 36 h of simulation, due to the strong dia-
batic destruction of the upper-level PV as the cyclone
reaches its peak intensity, the maximum PV difference
at 300 hPa (Fig. 5c) is slightly smaller than that at 24 h
(Fig. 5b). Nevertheless, the maximum MSLP difference
between the truth simulation and ensemble mean is as
high as 8.5 hPa in addition to the even stronger dislo-
cation of the surface cyclone and precipitation band
(Figs. 2c,f and 4c).

The evolution of the forecast error growth revealed
from the difference between the truth simulation and

FIG. 2. The mean sea level pressure (MSLP, every 2 hPa) and model-derived reflectivity (shaded) at the 12-, 24-, and 36-h forecast
times from the (a)–(c) truth simulation and (d)–(f) reference forecast ensemble mean.
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the reference forecast ensemble mean can be best sum-
marized in terms of difference total energy (DTE):

DTE � 0.5�u�u� � ���� � kT�T�	, �4	

where primes denote difference between any two simu-
lations and k � Cp/Tr (Cp � 1004.7 J kg�1 K�1 and the
reference temperature Tr � 270 K). The horizontal dis-
tributions of the (vertically averaged) root-mean (RM)
of DTE (RM_DTE) at 12, 24, and 36 h are displayed in
Figs. 6a–c. The initial RM_DTE from the random ini-
tialization of the ensemble forecast using the MM5
3DVAR method is �1.2 m s�1 and is nearly constant
across the domain (not shown). By 24 and 36 h, it has
become greater than 4 m s�1 all across the Atlantic
Coast with maxima of �16 m s�1. Consistent with Figs.
2–5 and Zhang (2005), the maximum error growth oc-
curs near the surface cyclone, the upper-level short-
wave trough, and associated fronts and moist processes
(Figs. 2 and 3).

Throughout the study, the reference forecast en-
semble is used as a benchmark for the performance of
EnKF and the evolution of the analysis error. It is also

regarded as the worst-case scenario in which no obser-
vations are assimilated.

4. The control EnKF experiment

In the control EnKF experiment with a 40-member
ensemble (CNTL), simulated sounding and surface
wind and temperature observations are taken from the
truth simulation. Typical of the standard sounding and
surface observational network over the continental
United State, the sounding observations are spaced 300
km apart horizontally and at every sigma level; the sur-
face observations are spaced every 60 km apart and are
available at the lowest model level. We assume that the
observations have independent, Gaussian random er-
rors of zero mean and variance of 2.0 m s�1 for u and �,
and 1.0 K for T. Sounding and surface observations are
assimilated every 12 and 3 h, respectively. The forecast
model is assumed to be perfect, namely, the same nu-
merical model produces the forecasts and the truth
simulation from which observations are taken. We be-
gin assimilating observations at 12 h using the 12-h

FIG. 3. As in Fig. 2 but for the geopotential heights (every 80 m), potential vorticity [shaded every 1 PVU (potential vorticity unit),
where 1 PVU � 1.0 � 10�6 m2 s�1 K kg�1], and vector winds (full barb 5 m s�1) at 300 hPa.
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short-term reference forecast ensemble as the first
guess and to estimate the background error covariance.

Differences in MSLP and surface winds between the
ensemble mean analysis after the EnKF assimilation
(EnKF analysis) and the truth simulation at 12, 24, and
36 h are displayed in Figs. 4d–f. At 12 h, after the first
cycle of assimilating both the surface and sounding ob-
servations, there is only marginal, overall reduction of
MSLP error (compared to the reference forecast en-
semble) but errors in surface winds are significantly
reduced (Fig. 4d versus Fig. 4a). At 300 hPa, not only
are the errors in the winds reduced by �30%, but errors
in PV (as signature of balanced dynamics) are also sig-
nificantly reduced (Fig. 5d versus Fig. 5a). The overall
improvement after the EnKF assimilation across the
domain is clearly seen in the horizontal distribution of
the (column averaged) RM_DTE in Fig. 6d. Compared
to the RM_DTE of the mean forecast error of the ref-
erence ensemble at this time (Fig. 6a), we can see that
the improvement is more pronounced in the vicinity of
the upper-level short-wave trough than near the surface
low, consistent with Figs. 4d and 5d.

At 24 h, after assimilating five sets of surface obser-
vations (every 3 h) and two sets of sounding observa-
tions (every 12 h), the EnKF analyses of the surface
winds and MSLP and the 300-hPa winds and PV (not
shown) approach those in the truth simulation (Figs. 2b
and 3b). More specifically, the maximum analysis errors
in surface winds and MSLP are �2.5 m s�1 and 1 hPa,
respectively (Fig. 4e), which represent 60%–80% re-
duction of the ensemble mean forecast error without
the EnKF (Fig. 4b). A similar or even larger degree of
improvement can also be seen in the analysis error dis-
tribution at 300 hPa (Fig. 5e versus Fig. 5b). The two
local maxima of RM_DTE associated respectively with
the upper-level front and the surface low in the forecast
(Fig. 6b) are no longer noticeable in the DTE of the
EnKF analysis (Fig. 6e).

Error reduction in both observed and unobserved (or
derived) variables continues through 36 h, with more
surface and sounding observations assimilated (Figs. 4f,
5f, and 6f). Most strikingly, compared to the 8.5-hPa
MSLP forecast error without EnKF (Fig. 4c), the EnKF
analysis of MSLP has become nearly indistinguishable

FIG. 4. Differences of wind vectors (full barbs 5 m s�1) and MSLP (every 0.5 hPa) between the truth simulation and the reference
forecast ensemble mean at (a) 12, (b) 24, and (c) 36 h, and between the truth simulation and the EnKF mean analyses at (d) 12, (e)
24, and (f) 36 h.
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from that of the truth simulation. There are only a few
small areas with the MSLP error greater than 1 hPa
(Fig. 4f).

The vertical distribution of the mean analysis and
forecast errors in terms of (horizontally averaged)
RM_DTE, p�, w, and q at different times is shown in
Fig. 7. For the RM_DTE (Fig. 7a), the forecast error of
the reference ensemble gradually grows into a distinct
double-peak structure over the 36-h forecast, becoming
maximum in the upper and lower troposphere, respec-
tively. The primary peak in the upper troposphere is
consistent with the forecast-error statistics of opera-
tional ensemble prediction systems (e.g., Molteni et al.
1996) as well as in simplified dry systems (Hamill et al.
2002, 2003). The secondary peak in the lower tropo-
sphere is likely due to the lower-level fronts associated
with strong moist processes. On the other hand, the
analysis error exhibits nearly the same amplitude ver-
tically throughout the troposphere, implying that the
largest improvement occurs where the reference fore-
cast ensemble has the largest forecast errors.

For the pressure perturbation p� (Fig. 7b), the largest
forecast error occurs near the surface. Consistently,
through continuous analysis and forecast cycles, the

most error reduction occurs in the lower troposphere.
For the vertical velocity field (Fig. 7c), the reference
forecast ensemble mean error peaks at 400–500-hPa
layer. Unlike the RM_DTE or p�, the forecast error in
w follows closely the strength of w in the truth simula-
tion (as an index of the intensity of the background
cyclogenesis): the strongest forecast error occurs at �24
h when there is strongest vertical motion in the truth
simulation (not shown); there is an apparent decay of
forecast error at 36 h when the surface cyclone has
matured and begins to decay. Compared to the refer-
ence forecast ensemble mean, the overall error reduc-
tion for w at 36 h is 30%–40%. Error reduction comes
not only from direct EnKF analyses at any given time
but also from a better first guess due to the improve-
ment in unobserved variables.

The ensemble forecast error for the moisture field q
peaks at 800–900 hPa in association with the abundance
of lower-level background moisture as well as moist
convection (Fig. 7d). The peak error is approximately
constant in the EnKF analysis with an overall error
reduction of �50% compared to the reference forecast
ensemble.

The performance of the EnKF in this control experi-

FIG. 5. As in Fig. 4 but for the difference of 300-hPa potential vorticity (every 0.5 PVU) and winds (full barb 5 m s�1).
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ment is best summarized in Fig. 8, which shows the
evolution of the domain-averaged root-mean-square
(rms) errors in the EnKF analyses of the six prognostic
variables (u, �, T, p�, w, q), the corresponding STD of
the analysis ensemble, and the rms errors of the refer-
ence forecast ensemble. Compared to the reference
forecast ensemble, over the 24-h assimilation period,
the overall error reduction for the observed variables u,
�, and T is �60%–80%. The overall analysis quality of
all variables stays fairly constant throughout the EnKF,
indicating that at later times, the error growth during
the short-term (3 h) ensemble forecast will be approxi-
mately equal to the reduction of analysis error through
assimilation of new observations. The final domain-
averaged rms error after 24-h assimilation is �1.0–1.5
m s�1 for winds and �1.0 K for temperature, which is
less than or at most comparable to typical observational
errors. The unobserved variable p� has the biggest over-
all improvement with the 36-h analysis error being only
one-sixth of the forecast error. Nearly 50% overall er-
ror reduction is observed in the moisture field. Again,
there is relatively small (30%–40%) overall improve-
ment in the vertical velocity field.

The difference in the degree of error reduction

among different variables is also examined through the
comparison of the power spectra of analysis and fore-
cast errors of the reference forecast ensemble and
CNTL at different times (Fig. 9). The vertical velocity
and moisture fields, for which the EnKF assimilation is
the least effective, have the most error energy in
smaller scales. The pressure field, which has the most
power energy at larger scales, in general enjoys the
biggest error reduction. As a result of stronger error
reduction at larger scales, power spectra in all the vari-
ables (except for w) become increasingly flattened at
smaller and smaller wavenumbers (“whitening”; Hamill
et al. 2002; Daley and Menard 1993) through the EnKF
assimilation (Fig. 9). In essence, the EnKF is very effi-
cient in reducing errors at larger scales but less effective
in reducing errors at smaller, marginally resolvable
scales. The EnKF analyses of other water substances
associated with clouds, which have the strongest
smaller-scale variations, are found to be problematic
(not shown), suggesting the accurate estimation of
clouds with the current EnKF is not yet possible, at
least for the current filter configuration and model
resolution with parameterized moist convection.

In an examination of spectral characteristics of Kal-

FIG. 6. As in Fig. 4 but for the root-mean of column-averaged DTE (RM_DTE; every 2 m s�1).
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man filter systems, Daley and Menard (1993, their Fig.
2) showed that the Kalman filter has a much larger
impact on the large scales than the smaller scales. Be-
cause the uncorrelated observational error is projected
equally to all scales when the model-error spectrum is
red, the observations are considered to be more accu-
rate with respect to the background for the large scales
than they are for the small scales. As discussed in Daley
(1991, his Fig. 5.9), this is strictly applicable to univari-
ate analysis in which the larger scales have the most
error energy. The scale-dependent filter performance
in the multivariate analysis is much more complex (Da-
ley 1991, his Fig. 5.10), probably even more so for those
unobserved variables using the flow-dependent back-
ground error covariance at the mesoscales for the cur-
rent study. Besides the possible mechanisms discussed
by Daley (1991, his book section 5.4–5.5), the scale- and
variable-dependent filter performance may also be due
to faster error saturation (thus shorter predictability)
resulting in poorer estimate of the prior guess and back-
ground error covariance at the smaller, marginally re-
solvable scales. It could also arise from observations

that are too sparse to provide sufficient information for
analysis at smaller scales while larger scales are influ-
enced (corrected) by observations of similar (compa-
rable) horizontal resolutions.

5. Forecast experiments with the EnKF analysis

To evaluate the performance of short-range en-
semble forecasts with improved analyses and to exam-
ine the forecast error growth dynamics after the EnKF
assimilation, two 40-member ensemble forecast experi-
ments (“EF12H” and “EF24H”) are performed with
the analyses from CNTL at 12 and 24 h as initial con-
ditions. The horizontal distribution of the (vertically
averaged) RM_DTE from the 12- and 24-h integration
of EF12H and the12-h integration of EF24H are shown
in Fig. 10. For EF12H, which starts from the EnKF
analysis cycle that assimilated only the observations at
12 h, there are noticeably smaller ensemble mean er-
rors in RM_DTE at both 24 and 36 h compared to the
reference forecast ensemble (Figs. 10a,b versus Figs.
6b,c). Even smaller RM_DTE error is found in the 12-h

FIG. 7. Vertical distribution of the mean analysis errors of the control EnKF experiment (dark) and the mean
forecast errors of the reference forecast ensemble (gray) for (a) (horizontally averaged) RM_DTE, (b) p�, (c) w,
and (d) q valid at 12 (dotted), 24 (dashed), and 36 h (solid). Errors in the initial ensemble are denoted with
dotted–dashed gray curves.
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ensemble forecast by EF24H, which starts with the
EnKF analysis at 24 h (after a 12-h assimilation period;
Fig. 10c). Compared to a maximum RM_DTE error of
�16 m s�1 just off the Atlantic coast in the reference
forecast ensemble (Fig. 6c), the maximum RM_DTE
error for the 12-h forecast of EF24H is merely �6 m s�1

(Fig. 10c).
Evolution of the forecast errors of the six prognostic

variables from these two forecast experiments (EF12H
and EF24H) and the reference forecast ensemble as
well as the analysis errors from CNTL is plotted in Fig.
11. Again, compared to the reference forecast en-
semble, the positive effect of improved initial condi-
tions using the EnKF analysis can be seen in both fore-
casts verified at 36 h in all prognostic variables shown.
It is also seen that, with a longer assimilation period and
thus more data being assimilated, the mean forecast
error verified at 36 h of EF24H is considerably smaller
than that of EF12H and the reference forecast en-
semble.

6. Sensitivity experiments

a. Ensemble size, variance relaxation, and
localization

Difference in error spectral distribution and error
growth dynamics among the different state variables

will potentially result in inconsistencies between the
analysis/forecast error and ensemble spread between
different variables if the same localization or error in-
flation/relaxation is used for all state variables. For the
control EnKF experiment (CNTL), the domain-
averaged standard deviations (ensemble spread) of the
ensemble forecast and EnKF analysis (Fig. 8) stay very
close to the rms errors of the ensemble forecasts and
EnKF analyses for all variables. There is no obvious
filter divergence, which would be indicated by the
growth of the ratio of ensemble mean error to ensemble
spread. The (domain averaged) RM_DTE also agrees
reasonably well with the STD of the analyses when a
20-member ensemble (“CNTL20”) is used to estimate
the background error covariance (Fig. 12a). The differ-
ence of the analysis accuracy (in terms of RM_DTE)
between CNTL and CNTL20 is rather insignificant
(�0.1–0.2 m s�1) throughout the assimilation. On the
other hand, though much less accurate than CNTL and
CNTL20, a 10-member ensemble EnKF experiment
still performed reasonably well albeit with a signifi-
cantly larger ratio of rms error to STD (not shown).

We observed that even though the pressure pertur-
bation has the maximum overall improvement, the
analysis error from CNTL20 after the EnKF assimila-
tion at 12 h is greater than the forecast error at this time
(not shown). The degradation occurred only in the

FIG. 8. Evolution of the domain-averaged root-mean-square errors of the EnKF analysis (solid black) with respect to the truth
simulation for six prognostic variables (u, �, T, p�, w, q), the corresponding standard deviation (solid gray) of analysis ensemble, and
the root-mean-square errors of the reference forecast ensemble (dotted black, computed every 12 h only).
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lower troposphere for the first assimilation cycle. To
test whether the degradation is systematic, we exam-
ined three additional experiments: the control experi-
ment with 40 members, an experiment similar to
CNTL20 but with different random realizations, and an
experiment similar to CNTL20 but with a different
truth (discussed section 6c). In all three experiments,
we observed that the degradation of the pressure analy-
sis did not occur, suggesting that the covariance be-
tween the observed variables and the pressure field

may be unrepresentative of the true forecast error in
pressure perturbations at this time when the ensemble
has only 20 members.

The impact of the variance relaxation can be clearly
seen in a 40-member EnKF experiment similar to
CNTL but without the application of variance relax-
ation (“NOMIX”), which has larger overall RM_DTE
and poorer agreement between RM_DTE and STD
(Fig. 12b). The deficiency in the ensemble spread be-
comes even more severe when a 20-member ensemble

FIG. 10. As in Fig. 6 but from ensemble forecasts for (a) EF12H at 24 h, (b) EF12H at 36 h, and (c) EF24H at 36 h.

FIG. 9. Power spectrum analysis of the EnKF analysis errors (dark) and the reference forecast ensemble errors (gray) at 12 (dotted),
24 (dashed), and 36 h (solid) for six prognostic variables (u, �, T, p�, w, q). The minimum (maximum) wavenumber of 1 (40) corresponds
to a horizontal wavelength of 2400 (60) km. Error spectra in the initial ensemble are denoted with dotted–dashed gray curves.
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is used (not shown). Thus, the application of the vari-
ance relaxation from Zhang et al. (2004) helps prevent
filter divergence, which occurs when small ensembles
are used. We also tested different implementations of
the variance inflation method (e.g., applying the variance
inflation either before or after the EnKF analysis) used in
Anderson (2001) using 40-member ensembles, with the
inflation factors from 1.05 to 1.5, either applied before or
after the EnKF analysis. None of these additional experi-
ments (not shown) exhibited satisfactory performances
comparable to that from the control experiment.

The performance of the EnKF assimilation is also
very sensitive to covariance localization. Apparent deg-
radation of EnKF performance and the lack of en-
semble spread compared to analysis error (possible fil-
ter divergence) are seen in the EnKF experiment
(“IR60DX”; Fig. 12c) in which the three-dimensional
distance used in the Schur-product is set to be too large
(60 rather than 30 grid points in the CNTL, which is
equivalent to 1800 km versus 900 km in terms of purely
horizontal distance). When a 450-km cutoff radius of
influence is used in another EnKF experiment (not

FIG. 12. Time evolution of the domain-averaged RM_DTE (m s�1, black, thick) and standard deviation (m s�1, black, thin) from
sensitivity experiments (a) CNTL20, (b) NOMIX, and (c) IR60DX. RM_DTE and standard deviation from the control experiment and
the RM_DTE from the reference forecast ensemble are also displayed in thick gray, thin gray, and dotted curves, respectively.

FIG. 11. Time evolution of domain-averaged root-mean-square errors from the reference forecast ensemble (dotted), EF12H (solid
black; from 12 h), EF24H (solid black; from 24 h), and the CNTL analysis (gray) for six prognostic variables (u, �, T, p�, w, q).
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shown), the overall performance is similar to CNTL but
the ensemble spread is bigger than the analysis error
throughout the assimilation period. Similar sensitivity
was also reported in the EnKF experiments in
Houtekamer and Mitchell (2001, their Fig. 4). Since the
best value for the radius of influence is not known a
priori, the current EnKF configuration may unavoid-
ably need to be “tuned” for different weather systems
for best performance.

These sensitivity experiments demonstrate that the
ratio of the rms error of the ensemble forecast and
EnKF analysis to the STD of ensemble variance, as a
common index of filter divergence, is a complex func-
tion of ensemble size, the cutoff radius of influence, and
variance inflation. Bigger ensemble size, smaller cutoff
radius, and the implementation of variance relaxation
method lead to larger ensemble spread, potentially pre-
venting severe filter divergence.

b. Observation quality and availability

The ensemble Kalman filter combines information
from the initial estimate, the dynamics of the forecast
model and the observations to get the best estimate and
the associated uncertainty. The quality and availability
(coverage, resolution, and accuracy) of sounding and

surface observations is different from case to case,
which could impact the ability to estimate the true state.
In this subsection, various possible observational sce-
narios are tested using the EnKF, some of which follow
closely those of Zhang et al. (2004). We use a 20-
member EnKF with the same truth simulation and the
same initial ensemble as those in CNTL20 for all the
sensitivity experiments investigated in this subsection
since the difference between CNTL and CNTL20 is
rather insignificant (Fig. 12a).

Experiment “HALFERR” (“TWICEERR”) differs
from CNTL20 in that the observational errors of the
observed variables (u, �, and T) are reduced (increased)
to half (twice) of those used in CNTL20. The rms of the
DTE in HALFERR (TWICEERR), albeit slightly
(�5%) smaller (larger), shows very similar convergence
toward the reference solution in comparison to that of
CNTL20 (gray curves; Figs. 13a,b). These two experi-
ments demonstrate that, as long as the observational er-
rors are uncorrelated, assimilation with the ensemble
filter is rather insensitive to the observational accuracy
given the typical range of observational errors for sound-
ing and surface observations, consistent with those con-
vective scale experiments in Zhang et al. (2004).

Experiment “UONLY” differs from CNTL20 in that

FIG. 13. Time evolution of the domain-averaged RM_DTE (m s�1, thick solid curve) from sensitivity experiments (a) HALFERR,
(b) TWICEERR, (c) UONLY, (d) SND450KM, (e) SNDONLY, and (f) SFCONLY. RM_DTE from experiment CNTL20 and the
20-member reference forecast ensemble are also displayed in gray and dotted curves, respectively.
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only the zonal wind from the sounding observations is
assimilated, which is similar to a case if we use radar
radial velocity instead of sounding observations. Again,
the EnKF analysis converges well toward the truth
simulation over the 24-h assimilation; the RM_DTE at
36 h is only �10%–20% larger than that in the CNTL20
(Fig. 13c). In another experiment similar to CNTL20
but with the addition of pressure perturbation and
moisture observations in the soundings, there is no sig-
nificant improvement in the EnKF analysis compared
to CNTL20 for all prognostic variables including p� and
q (not shown). Filter performance is also nearly un-
changed when the horizontal spacing of the sounding
network changed from 300 km in CNTL20 to 450 km in
the experiment “SND450KM” (Fig. 13d).

Experiments “SNDONLY” and “SFCONLY” differ
from CNTL20 in that only either sounding or surface
observations are assimilated every 3 h. For the first 12-h
assimilation period of SNDONLY, the analysis follows
closely that of the CNTL20 but the loss of surface ob-
servations cannot be corrected by more frequent
sounding observations for the final 12-h assimilation
period (Fig. 13e). Consistent with Whitaker et al.
(2004), it is very encouraging to notice that the filter
also converges well to the truth simulation when only
surface observations are assimilated (Fig. 13f), even
though the advantage of sounding observations is
clearly seen when compared to CNTL20.

c. Different truth simulations

We also performed several additional experiments
with the same set of initial ensembles as in CNTL20 but
using different realizations of the 3DVAR perturba-
tions to generate the truth simulation. Quantitatively
similar performance (to the CNTL20) has been
achieved in all of these EnKF experiments (not shown).
Another experiment with the same truth simulation as
in CNTL20 but a different set of 20 ensemble members
behaves in a similar manner (not shown).

7. Summary and discussions

Through various observing system simulation experi-
ments, this study exploits the potential of using the en-
semble Kalman filter (EnKF), which estimates error
covariances through an ensemble of short-term fore-
casts, for mesoscale and regional-scale data assimila-
tion. The EnKF is implemented in the nonhydrostatic
MM5 to assimilate simulated sounding and surface ob-
servations derived from truth simulations of the “sur-
prise” snowstorm of January 2000. This is an explosive
east coast cyclogenesis event with strong error growth
at all scales as a result of interactions between convec-
tive-, meso-, and subsynoptic-scale dynamics.

It is found that the EnKF is very effective in keeping
the analysis close to the truth simulation. In the control
experiment (CNTL), a 24-h continuous EnKF assimi-
lation of sounding and surface observations with real-
istic temporal and spatial resolutions can have an error
reduction of as much as 80% for horizontal winds and
temperature, 85% for pressure perturbation, and 45%
for water vapor mixing ratio in comparison to the ref-
erence forecast ensemble.

Error growth characteristics in the ensemble forecast
with and without the EnKF, including the scale, struc-
ture, and evolution of the forecast and analysis errors of
different variables are also examined. It is found the
EnKF is most effective in reducing larger-scale errors
but less effective in reducing errors at smaller, margin-
ally resolvable scales. This is consistent with the analy-
sis of spectral characteristics of Kalman filter systems
by Daley (1991) and Daley and Menard (1993). The
scale-dependent error reduction may also be due to the
faster error saturation (thus shorter predictability) and
thus poorer quality of the prior estimate and back-
ground error covariance at the smaller, marginally re-
solvable scales. It could also arise from observational
information that is insufficient to allow for a good es-
timate at smaller scales. There are also apparent im-
provements in the forecast initiated with EnKF analy-
sis. Since error grows at all scales but saturates quicker
at smaller scales, error growth in the ensemble forecasts
may be dominated by initial errors at larger scales.

Error growth characteristics and the quality of initial
estimate and background error covariance also differ
greatly from variable to variable, resulting in different
degrees of error reduction for different variables. The
EnKF is least effective on the vertical motion and mois-
ture fields, which have more energy in smaller scales
while pressure perturbation in general enjoys the big-
gest error reduction because it has the strongest larger-
scale component among all variables. Different error
growth from different variables also results in inconsis-
tency between the analysis error and ensemble spread
of different variables when the same localization or er-
ror inflation/relaxation is used for all variables.

It is also found that the ratio of the root-mean-square
analysis/forecast error to the standard deviation of the
ensemble variance, as a common index of filter diver-
gence, is a complex function of ensemble size, the cutoff
radius of influence (localization), and variance relax-
ation (inflation). Consistent with past studies, it is
found that bigger ensemble size, smaller cutoff radius,
and the implementation of the variance relaxation
method all lead to larger ensemble spread and poten-
tially prevent filter divergence.
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Various experiments are also performed to test the
sensitivity of the EnKF to the number of observed vari-
ables and the density and accuracy of sounding and sur-
face observations. The EnKF is found to be quite resilient
in most of the realistic observational scenarios tested.

The above conclusions on the mesoscale data assimi-
lation with the EnKF are drawn from observation sys-
tem simulation experiments under the perfect model
assumption. Such a strong EnKF performance should
not be readily expected in real-world situations where
the forecast model unavoidably has errors and the ini-
tial ensemble statistics may be far from perfect (refer to
Houtekamer et al. 2005). The EnKF performance un-
der various imperfect-model scenarios will be explored
in Part II.
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