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ABSTRACT

This study explores the assimilation of Doppler radar radial velocity observations for cloud-resolving

hurricane analysis, initialization, and prediction with an ensemble Kalman filter (EnKF). The case studied

is Hurricane Humberto (2007), the first landfalling hurricane in the United States since the end of the 2005 hur-

ricane season and the most rapidly intensifying near-landfall storm in U.S. history. The storm caused extensive

damage along the southeast Texas coast but was poorly predicted by operational models and forecasters. It is

found that the EnKF analysis, after assimilating radial velocity observations from three Weather Surveillance

Radars-1988 Doppler (WSR-88Ds) along the Gulf coast, closely represents the best-track position and intensity

of Humberto. Deterministic forecasts initialized from the EnKF analysis, despite displaying considerable

variability with different lead times, are also capable of predicting the rapid formation and intensification of

the hurricane. These forecasts are also superior to simulations without radar data assimilation or with a three-

dimensional variational scheme assimilating the same radar observations. Moreover, nearly all members from

the ensemble forecasts initialized with EnKF analysis perturbations predict rapid formation and intensification

of the storm. However, the large ensemble spread of peak intensity, which ranges from a tropical storm to a

category 2 hurricane, echoes limited predictability in deterministic forecasts of the storm and the potential of

using ensembles for probabilistic forecasts of hurricanes.

1. Introduction

Landfalling hurricanes are among the deadliest and

costliest natural hazards. Over the past decade, signifi-

cant progress has been made in short-range track fore-

casts of tropical cyclones. The current-day average 48-h

forecast position is as accurate as a 24-h track forecast

was 10 yr ago (Franklin 2004). However, there is virtu-

ally no improvement in our ability to predict hurricane

intensity in terms of minimum sea level pressure, max-

imum wind speed, or amount of precipitation (Houze

et al. 2007). We thus have very limited skill in pre-

dicting tropical cyclone formation, rapid intensification,
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fluctuation, or decay (Elsberry et al. 2007). High-resolution

cloud-resolving mesoscale models, along with better

initialization of the initial vortex, may be necessary to

faithfully represent the internal dynamics that is crucial

for hurricane intensity forecasts (Houze et al. 2007;

Chen et al. 2007; Davis et al. 2008).

Despite improvements in using advanced data assimi-

lation methods with or without initial vortex bogussing, our

ability to initialize a tropical cyclone with dynamically

consistent structure and intensity remains limited, even

with the assimilation of radar observations (e.g., Zou and

Xiao 2000; Pu and Braun 2001; Xiao et al. 2007). Nu-

merical weather prediction models also have known

difficulties in their ‘‘spinup’’ of a tropical cyclone or hurri-

cane vortex with appropriate moisture, diabatic, and di-

vergence structures at the initial time. Part of the difficulty

of hurricane initialization comes from the lack of routine

four-dimensional observations with sufficient spatial and

temporal resolution to represent the initial hurricane

structure and intensity. Another part of the difficulty co-

mes from the deficiency of the current generation of op-

erational data assimilation systems, which use static

background error covariance. The mostly balanced, iso-

tropic, flow-independent background statistics derived

from long-term averages of past short-term forecast error

(Parrish and Derber 1992) are ill-suited for the highly

flow-dependent background error covariances associated

with tropical cyclones. In addition, operational models

generally have insufficient model resolution to effectively

incorporate high-resolution convective-scale observations

(such as those from radars) for cloud-resolving hurricane

prediction. Physical (diabatic) initializations using rainfall,

radar, and/or satellite observations are a promising ap-

proach (Krishnamurti et al. 2001), though its effectiveness

in spinning up a full hurricane vortex for cloud-resolving

hurricane prediction remains to be fully explored.

The ensemble Kalman filter (EnKF) is a state-estimation

technique that uses short-term ensemble forecasts to

estimate flow-dependent background error covariance

or other probabilistic aspects of the background fore-

cast. It was first proposed by Evensen (1994) and has

been adopted for data assimilation of many disciplines

in the geosciences and beyond (Evensen 2003; Hamill

2006). For the past few years, the feasibility and per-

formance of the EnKF have been demonstrated through

both simulated and real-data observations ranging from

convective scales using radar observations (e.g., Snyder

and Zhang 2003; Zhang et al. 2004; Dowell et al. 2004;

Tong and Xue 2005) to mesoscale and regional scales

(e.g., Zhang et al. 2006a; Torn et al. 2006; Meng and

Zhang 2007; Fujita et al. 2007; Meng and Zhang 2008a,b).

The benefits of directly estimating forecast covariances

are also likely to increase with the next generation of

NWP models that resolve scales at which physical bal-

ances are not amenable to stationary, isotropic covari-

ance models currently used for operational forecasts.

The current study explores for the first time the use

of EnKF to directly assimilate Doppler radar radial

velocity observations for cloud-resolving hurricane anal-

ysis and prediction, both deterministically and prob-

abilistically. The case to be examined is Hurricane

Humberto (2007), the first landfalling hurricane in the

United States since the end of the 2005 hurricane season

and the most rapidly intensifying near-landfall storm in

U.S. history. Humberto strengthened from a 40 mile per

hour (mph) depression at 1200 UTC 12 September 2007

to a 92-mph hurricane at 0700 UTC 13 September, a

52 mph increase in surface wind speed in only 19 h. The

storm caused extensive damage along the southeast Texas

coast and was poorly predicted by operational models and

forecasters. The real-time forecast by the operational

Global Forecast System (GFS) running at the National

Centers for Environmental Prediction (NCEP) failed to

capture the intensification and genesis of the storm (Fig. 1).

The Weather Research and Forecasting (WRF) model

also failed in postevent, 4.5-km, cloud-resolving simula-

tions that were initialized with the GFS analyses (as in the

control ensemble analysis and forecast detailed in subse-

quent sections) with lead times every 6 h from 6 to 48 h.

At different stages of formation and intensification,

Humberto was within range of coastal Weather Sur-

veillance Radars-1988 Dopplers (WSR-88Ds) at Corpus

Christi (KCRP) and Houston–Galveston (KHGX) in

Texas and Lake Charles (KLCH) in Louisiana. These

radars provided valuable convective-scale observations

of the storm but were not assimilated by real-time

NCEP operational models. This study is among the first

to apply the EnKF to assimilate real-data radar velocity

observations for complex weather phenomena exhibit-

ing different scales of motion [moving beyond a single

supercell storm examined in Dowell et al. (2004)]. The

following section will introduce the forecast model, the

EnKF technique, and the processing of the observations

to be assimilated. Section 3 presents the use of the

EnKF for this storm in terms of analysis quality, and

deterministic and ensemble forecasts. Comparison to the

performance of data assimilation with a 3-dimensional

variational method that assimilates the same radar ob-

servations as in the WRF model is given in section 4.

Concluding remarks are given in section 5.

2. Methodology

a. The forecast model: WRF

The Advanced Research WRF (ARW) is used in

this study. WRF is a fully compressible, nonhydrostatic
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mesoscale model (Skamarock et al. 2005). The vertical

coordinate follows the terrain using hydrostatic pres-

sure, and the model uses an Arakawa C grid. Prognostic

variables are the column mass of dry air, velocities (u, y, w),

potential temperature, geopotential, and mixing ratios

for water vapor, cloud, rain, ice, snow, and graupel.

In the control experiments, three model domains with

two-way nesting are used (Fig. 2). The two coarse do-

mains (D1 and D2) both have 160 3 121 grid points and

grid spacings of 40.5 and 13.5 km, respectively. The in-

nermost domain, D3, has 253 3 253 grid points and a

grid spacing of 4.5 km. All model domains have 35

vertical layers, and the model top is set at 10 hPa. The

physical parameterization schemes include the Grell–

Devenyi cumulus scheme (Grell and Devenyi 2002),

WRF single-moment six-class microphysics with grau-

pel (Hong et al. 2004), and the Yonsei State University

(YSU) scheme (Noh et al. 2003) for planetary boundary

layer processes. The NCEP GFS operational analysis at

0000 UTC 12 September and its forecast are used to

create the initial and boundary conditions. Data as-

similation is performed for all domains but all verifica-

tion is performed for D3.

b. The data assimilation method: EnKF

The EnKF implemented in the WRF model is the

same as that in Meng and Zhang (2008a,b) except that

no multischeme ensemble is used for this study. This

version of the filter was originally implemented in the

fifth-generation Pennsylvania State University–National

Center for Atmospheric Research Mesoscale Model

(MM5), which is documented in Zhang et al. (2006a). It

uses the covariance relaxation of Zhang et al. (2004) to

inflate the background error covariance. Unlike the

standard inflation method (Anderson 2001), in which all

points in the prior field are inflated, this relaxation

method only inflates the covariance at updated points

via a weighted average between the prior perturbation

(denoted by superscript f) and the posterior perturba-

tion (denoted by superscript a) as follows:

(xa
new)9 5 (1� a)(xa)9 1 a(xf )9. (1)

The weighting coefficient, a, is set to 0.5 in the observing

system simulation experiment (OSSE) studies of Zhang

et al. (2004, 2006a) for the perfect-model experiments

but a range from 0.7 to 0.8 is found to be necessary for

imperfect-model experiments (Meng and Zhang 2007)

or real-data applications (Whitaker et al. 2008; Meng

and Zhang 2008a,b; Torn and Hakim 2008) due to un-

avoidable imperfections in the forecast model. A value

of 0.8 is used for the present real-data study.

c. Ensemble initial and boundary perturbations

Although the optimum ensemble size for estimating

the forecast uncertainty is still under active research, 30

members are used herein. An ensemble size of 20–50 was

found to be affordable and reasonable based on previous

studies (e.g., Houtekamer and Mitchell 2001; Anderson

2001; Snyder and Zhang 2003; Zhang 2005; Zhang

et al. 2006a; Meng and Zhang 2007; Meng and Zhang

2008a,b). As in Zhang et al. (2006a), the initial ensemble

is generated with the WRF’s three-dimensional varia-

tional data assimilation (3DVAR) using the cv3 back-

ground error covariance option (Barker et al. 2004). To

create a largely balanced perturbation, we first generate

a set of random control vectors with a normal distri-

bution (zero mean and unit standard deviation). Then,

the control increment vector is transformed back to

model space via an EOF transform, a recursive filter,

FIG. 1. Time evolution of (a) minSLP and (b) maxWSP forecasts by operational GFS forecasts starting every 6 h

from 0000 UTC 12 Sep to 0000 UTC 12 Sep 2007 and by 4.5-km WRF forecasts starting from the operational GFS

analyses in comparison to the NHC best-track estimate.
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and physical transformation via balance equations. The

perturbed variables include horizontal wind compo-

nents, potential temperature, and mixing ratio for water

vapor, and their error statistics are defined by the cli-

matological background error covariance. Other prog-

nostic variables such as vertical velocity (w) and mixing

ratios for cloud water (qc), rainwater (qr), snow (qs), and

graupel (qg) are not perturbed. The perturbation stan-

dard deviations thus generated are approximately

2 m s21 for horizontal wind components (u and y), 0.8 K

for temperature (T), 1 hPa for pressure perturbation

(p9), and 0.8 g kg21 for the water vapor mixing ratio (q).

The 3DVAR perturbations are added to the GFS

analysis to form an initial ensemble, which is then in-

tegrated for 9 h to develop an approximately realistic,

flow-dependent background error covariance structure

before the first observation is assimilated. Similar meth-

ods, using 3DVAR to generate the initial ensemble for

the EnKF, are also employed in Houtekamer et al.

(2005) and Barker (2005).

The simplest way to perturb lateral boundary condi-

tions for a limited-area model is to use a global en-

semble forecast with the correct size and resolution

[which are usually unavailable; Chessa et al. (2004)].

Torn et al. (2006) examined several alternative bound-

ary perturbation methods and concluded that the error

originating from using different methods is limited to

near the edges of the domain. In this paper, the GFS

operational forecasts are used to create boundary con-

ditions that are perturbed in the same manner as with

the initial ensemble.

d. Superobservations and quality control

With large volumes of radar observations that are

recorded at a much higher resolution than the forecast

model grid spacing for the EnKF data assimilation,

significant data thinning and quality control of obser-

vations become necessary. The process of combining

multiple observations into one high-accuracy ‘‘super’’

observation (SO) is often referred to as ‘‘superobbing.’’

An SO for radar radial velocity is created through

horizontal averaging in polar space of the raw polar

volume of data (Lindskog et al. 2000, 2004; Alpert and

Kumar 2007). To minimize horizontal correlations of

the SOs, each pixel of the raw data is allowed to influ-

ence one SO only. To avoid the averaging of the radial

velocity (Vr) in significantly different directions, the

averaging bin is confined within 5 km in the radial di-

rection and 58 in the azimuthal direction. Our selection

of the bin size is within the range of values used in the

literature (e.g., Lindskog et al. 2000; Alpert and Kumar

2007; Montmerle and Faccani 2009).

For quality control of the observations, we first use

the NCAR radar editing software called SOLO [infor-

mation online at http://www.eol.ucar.edu/rdp/solo/solo_

home.html] to dealias the range-folded data and to

FIG. 2. Configuration of WRF model domains 1, 2, and 3 with horizontal grid spacings of 40.5,

13.5, and 4.5 km, respectively. Also depicted are the NHC best-track estimates of Humberto

with intensity in gray scale and the three WSR-88D locations.
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remove apparently erroneous observations. We then

implement the following additional quality control mea-

sures in the SO generation for this study: 1) any raw

observations with values smaller than 2 m s21 or larger

than 70 m s21 or with distances to the radar smaller than

4 km will be discounted, 2) a raw Vr observation will be

discounted if its deviation from the bin mean exceeds

twice the standard deviation of all raw observations in

the bin, 3) there shall be at least four valid Vr raw ob-

servations within an averaging bin, 4) there will be no

SO for a bin whose standard deviation is twice the av-

erage of the standard deviations in all bins, and 5) the

final SO value of the bin will be the average of at most

10 raw observations that are closest to the center of the

bin. These quality control procedures are in place to

minimize the impact of ground clutter and to correct the

failures in the subjective dealiasing step; similar proce-

dures were also employed in Xu et al. (2003) and

Montmerle and Faccani (2009).

Additional quality controls are implemented in the

processing of EnKF analyses. The observation errors of

all SOs are assumed to be 3 m s21 in this study, and an SO

will also be discounted if the difference between this SO

and the forecast prior is larger than 5 times the obser-

vation error. The 3 m s21 observational error is consistent

with the range used in Dowell et al. (2004) and Montmerle

and Faccani (2009), and is also a conservative version of

the 2.4 m s21 estimated in Xu et al. (2003).

e. Successive covariance localization

A successive covariance localization (SCL) technique

is designed to assimilate dense radar observations that

contain information about the state of the atmosphere

at a wide range of scales. The method is also designed to

reduce computational costs and sampling errors. This

technique uses the Gaspari and Cohn (1999) fifth-order

correlation function for covariance localization, but a

different localization radius of influence (ROI) is used

for different groups of observations by random sam-

pling. SCL assumes that both large- and small-scale

errors are simultaneously present. First, one tries to

remove dynamically important aspects of the large-

scale error by assimilating a relatively small subset of

observations with a large ROI. Next, the ROI is made

smaller, and higher-density observations are used to

constrain both smaller-scale errors and what remains of

the large-scale error. The process is repeated until all

scales resolved by the observational network have been

adequately dealt with. The SCL method has some re-

semblance to the successive correction method used

in some earlier empirical objective analysis schemes

(e.g., Barnes 1964), though in the EnKF the same ob-

servation will not be used twice. Sensitivity experiments

that demonstrate the benefits of using the SCL method

over using single ROIs for all observations will be pre-

sented in section 3e. The use of SCL is partially moti-

vated by the fact that with serial observation processing

of the EnKF, the error correlation length scale de-

creases as the previously assimilated observations better

define the large scales; hence, later observations should

be assimilated with tighter localization (Bishop and

Hodyss 2007).

In this particular case, we first use a horizontal ROI of

1215 km for 10% of all SOs to capture the large-scale

background flow in all three domains (the numbers of

SOs at each time from each radar are shown in Fig. 3).

We then use an ROI of 405 km to assimilate another

20% of the total SOs to represent the mesoscale flow

(i.e., tropical cyclone scale) for the 13.5- and 4.5-km

domains (i.e., D2 and D3). Last, we use an ROI of 135 km

to assimilate another 60% of the total SOs to capture

even smaller-scale phenomena that include mesoscale

vortices just in D3. In other words, we assimilate 10%,

30%, and 90% of the total SOs for D1, D2, and D3,

respectively. While the partitioning of the observa-

tions into different bins remains subjective, we binned

more observations to smaller scales since arguably

there are larger degrees of freedom and lesser degrees

of balance at smaller scales. The remaining 10% of the

SOs that are not assimilated by any domain will be used

for verifications.

The vertical ROI is 34 based on the number of ver-

tical levels (as in Zhang et al. 2006a) for all three do-

mains. The Gaspari and Cohn (1999) fifth-order corre-

lation function is also used for the vertical covariance

localization.

3. EnKF performance

a. EnKF analyses

The control EnKF experiment begins to assimilate

the SOs from the KCRP and KHGX WSR-88Ds at 0900

UTC 12 September 2007, 6 h before the tropical de-

pression status was declared by National Hurricane

Center (NHC). The EnKF continues to assimilate SOs

from these two radars every hour until 1800 UTC 12

September. After this time, the KCRP radar is too far

from the storm to have any significant impact while

KLCH radar begins to offer significant coverage of the

storm. The KLCH radar observations are thus assimi-

lated beginning at 1900 UTC 12 September. The EnKF

assimilation continues every hour until 1200 UTC 13

September, a few hours after the storm in the NHC best

track reaches its peak intensity and starts weakening

over land. The numbers of SOs from the three radars by
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the EnKF at different times and example distributions

of the SOs at 0900 and 1900 UTC 12 September are

shown in Fig. 3.

Figure 4 shows the time evolution of the minimum sea

level pressure (minSLP) and maximum surface wind

speed (maxWSP) estimated from the posterior EnKF

mean analysis field (gray; hereafter ‘‘the EnKF anal-

ysis’’) as well as the average (red) of the maximum–

minimum values estimated from each ensemble mem-

ber’s posterior (green) in comparison to the NHC

best-track analyses (black). Minimum SLP in the EnKF

analysis (gray) agrees well with the average of the

members’ minimum values (red) due to collocation of

the centers of most members. The analysis mean and

some ensemble members also compare favorably with

the NHC best-track analysis. However, due to the

strong spatial and temporal variability of the maximum

surface wind speed, maxWSP in the EnKF analysis

(gray) is significantly smaller than that of the average

(red) of the members’ maxima. Yet, the average of each

member’s maxWSP (red) matches well with the NHC

best-track estimate (black) but larger errors are seen

after landfall. We therefore believe it is more appro-

priate to use the averages of maxWSP and minSLP from

each member for verifying ensemble forecasts in terms

of extreme values.

There is large ensemble spread of both minSLP and

maxWSP among the analysis members (Fig. 4). Stan-

dard deviation of minSLP (maxWSP) increases from

1 to 2 hPa (1–3 m s21) during the first few assimilation

cycles to 10.2 hPa (8.3 m s21) near the peak intensity

time at 0800 UTC 13 September but drops quickly to

5.4 hPa (4.0 m s21) at 0900 UTC 13 September after the

storm in most members makes its landfall (not shown).

Likewise, the minSLP (maxWSP) at the peak intensity

time varies from 992 (27 m s21) to 960 hPa (59 m s21). In

terms of the corresponding intensity categories, this

represents a range from a strong tropical storm to a

major hurricane. Large disparities between ensemble

members demonstrate significant EnKF analysis un-

certainties during and after the rapid intensification of

Humberto.

Despite the large spread, data assimilation with the

EnKF is clearly beneficial. All analysis ensemble mem-

bers capture the storm’s formation and intensifica-

tion when EnKF assimilates Vr observations. This is in

FIG. 3. (a) The number of SOs from each radar at different times by the control EnKF

experiment and the exemplar distributions of SOs at (b) 0900 and (c) 1900 UTC 12 Sep 2007.
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strong contrast to pure ensemble forecasts started with

the same prior perturbations but without EnKF assim-

ilation of Vr (hereafter refer to as ‘‘NoDA’’). The

NoDA ensemble neither captures the mean develop-

ment nor the realistic uncertainties associated with the

mean forecast (blue curves in Fig. 4).

Figure 5 compares the observed 0.58 base scan of the

radial velocity from KHGX (only 1/10 of the observa-

tions plotted) with corresponding simulated values from

both the EnKF analysis and the NoDA ensemble fore-

cast mean valid at 0900 and 1800 UTC 12 September,

and 0300 UTC 13 September. The benefit of assimilat-

ing Vr observations with EnKF is evident even after

the first volume of observations is assimilated at 0900

UTC 12 September. The analyses at this time capture

the coastal mesoscale circulation much better than the

NoDA ensemble mean. Since NoDA at 0900 UTC 12

September is simply the EnKF prior estimate with no

Vr observations assimilated, a comparison of Figs. 5b

and 5c (verifying against Fig. 5a) shows the immediate

benefit of the EnKF at the initial assimilation time.

Subsequently, the EnKF well analyzes the cyclone vortex

structure, intensity, and evolution (Fig. 5).

The quality of the EnKF analysis is also indepen-

dently verified against the additional 10% of the total

radial velocity SOs from both the KHGX and KLCH

radars that have never been assimilated (refer to sec-

tion 2e). Figure 6 shows the root-mean-square error

(RMSE) of the EnKF analysis in comparison to the

NoDA experiment plotted every 3 h (RMSE is the dif-

ference between the simulated radial velocity and

the 10% SOs verified at the SO’s locations). Except

for at the first analysis time for the KLCH radar and

consistent with the other measures of analysis qual-

ity discussed above, the EnKF analysis error main-

tained a remarkably smaller amplitude verifying against

these independent radial velocity SOs. The mean anal-

ysis errors verified against both radars are similar to

the assumed observational error of 3 m s21. Consistent

with the increasing analysis ensemble spread in the

maxWSP in Fig. 3c, there is a significant increase in

the analysis error during the peak intensity times, es-

pecially when verifying against the KHGX radar SOs

(Fig. 6a).

Figure 7 shows a comparison of the radar reflectivities

from the observed composite, the EnKF analysis, and

the NoDA ensemble forecast mean valid at 1200 UTC

12 September, and 0000 and 1200 UTC 13 September,

respectively. The impact of Vr observation assimilation

on the unobserved reflectivity variable is evident in the

progressively better posterior estimates (analysis means)

of reflectivity. At 1200 UTC 12 September, while the

NoDA ensemble forecast mean simulates a broader

area of light precipitation, the EnKF analysis begins to

localize the precipitation into two primary bands. The

first band is located along the Gulf coast of Texas and

Louisiana to the east and northeast of Houston, and the

other is farther west but far south of the display domain.

This compares much more favorably to the observations

(though the convection in the EnKF analysis is still

weaker and broader partly due to the ensemble aver-

aging effects discussed above).

At 0000 UTC 13 September, during the storm’s rapid

intensification, the EnKF analysis captures an im-

pressive developing tropical cyclone south of KHGX

with multiple spiral rainbands to the north and east

FIG. 4. Time evolutions of (a) minSLP and (b) maxWSP estimated from the EnKF analysis and NoDA ensemble

forecast. Thin green (cyan) lines represent the maxWSP and minSLP estimated from each ensemble member of the

EnKF analysis (NoDA forecast) with thick red (blue) lines representing the average of maxWSP and minSLP in each

member. The gray line indicates the maxWSP–minSLP estimated from the EnKF analysis mean while the black curve

is the NHC best-track estimate.
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quadrants fueled by warm moist air from the south.

Except for a spurious onshore mesoscale rainband right

across the Texas and Louisiana border, the position,

intensity, and structure of the rainbands, including the

developing eyewall in the EnKF analysis (Fig. 7e),

compare remarkably well with the observed reflectivity

(Fig. 7d). At 1200 UTC 13 September, the final analysis

time after the storm begins its rapid weakening over

land, the EnKF analysis correctly places the center of

the storm over the Texas–Louisiana border. It also cor-

rectly analyzes the broad rainbands to the east of the

storm (Figs. 7g and 7h). The NoDA ensemble forecast

mean, on the other hand, does not simulate any tropical

development (Figs. 7c, 7f, and 7i).

b. Deterministic forecasts from the EnKF analysis

Next, we examine the value that using EnKF to assim-

ilate Vr adds to forecasts. Single, deterministic forecasts

from the control EnKF mean analyses are performed

every 3 h from 1200 UTC 12 September to 1200 UTC 13

FIG. 5. The raw radial velocity observations from the (left) 0.58 base scan of the KHGX radar (OBS), (middle) corresponding EnKF

analysis, and (right) NoDA ensemble forecast mean valid at 0900 and 1800 UTC 12 Sep, and 0300 UTC 13 Sep 2007, respectively.
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September. All these simulations are integrated until

1200 UTC 14 September.

Figure 8 shows the simulated cyclone position,

minSLP, and maxWSP in deterministic WRF forecasts

initialized with EnKF analyses at different times. De-

spite a slight delay in peak intensity compared to the

best-track estimates, all forecasts initialized with EnKF

analyses simulate significant tropical cyclone formation

and intensification if WSR-88D radial velocity obser-

vations are assimilated for 9 h or longer. On average,

continuous assimilation through time and assimilating

more observations produces both better analyses of the

initial storm and better deterministic track and intensity

forecasts, which is especially evident for forecasts ini-

tialized before 1800 UTC 12 September. These WRF

forecasts from the EnKF analyses are in strong contrast

to the nearly complete forecast failure of the WRF

forecasts (with the same model configuration) cold star-

ted from the GFS analyses at all lead times (Fig. 1). This

signifies the importance and potential of assimilating

radar observations in improving cloud-resolving tropical

cyclone initialization and prediction at all lead times.

Among the simulations initialized from the mean

EnKF analyses, forecasts from 1800 and 2100 UTC 12

September are the most remarkable. The peak intensity

of both simulations (which have significant lead times) is

within 2 hPa of the observed (best track) peak intensity.

Also, the maximum surface winds in both runs reach or

nearly reach category 1 hurricane intensity, which is less

than 5 m s21 different from the best-track estimates.

Both forecasts are considered to be quite successful

given the uncertainties in the best-track estimate and

since a relatively small number of model outputs (every

3 h) is used for determining the simulated intensity. The

slight delay in the peak intensity for all forecasts reflects

a slight lag in the simulated landfall time compared to

the best-track observations. Broadly speaking, the ini-

tial positions and subsequent track errors in the EnKF

analyses become smaller as the radar data assimilation

cycle proceeds.

Figure 9 compares the observed composite radar re-

flectivity with the corresponding simulated reflectivity

in deterministic forecasts valid at 2100 UTC 12 Sep-

tember and 0300 and 0900 UTC 13 September. Exper-

iment NoDA is initialized at 0900 UTC 12 September

from the ensemble-mean forecast, and experiment

EnKF is initialized at 1800 UTC 12 September after 9 h

of EnKF analysis. Consistent with the track and inten-

sity forecasts shown in Fig. 8, the deterministic forecast

from the EnKF analysis mean compares favorably with

radar observations in terms of the structure and place-

ment of rainbands and the formation of the eyewall

right before moving over the coast. These phenomena

are nonexistent in the forecast without EnKF assimila-

tion of Vr observations (Figs. 9c, 9f, and 9i). The fore-

cast without data assimilation also develops widespread

convection over the Gulf region across the display do-

main, but the convection is highly disorganized with

only weak cyclonic circulation in the center. While the

above forecast from the EnKF analysis is far better, it is

also far from perfect. For example, the outer spiral

rainband to the far east of the storm is not well captured,

partly because this forecast is initialized at 1800 UTC 12

September, before the KLCH radar observations are

assimilated.

c. Deterministic forecast with a 1.5-km
movable nested domain

Since the 4.5-km control experiments only marginally

resolve moist convection, we perform another high-

resolution experiment that nests an additional domain

with 1.5-km horizontal grid spacing (1.5KM). Experi-

ment 1.5KM has a fourth domain of 253 3 253 grid

points centered on the maximum vorticity and moves

FIG. 6. The RMSE of the radial velocity of the EnKF analysis vs the NoDA experiment verified against the 10%

independent radial velocity SOs from (a) KHGX and (b) KLCH.
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with the tropical cyclone using a vortex-tracking method

(Chen et al. 2007) and two-way nesting. Experiment

1.5KM is initialized at 1800 UTC 12 September with the

same EnKF analysis from the 4.5-km domain discussed

above. Figure 10 shows the 1.5KM-simulated minSLP

and maxWSP in comparison to both the best-track es-

timate and the 4.5-km control experiment starting at the

same time. Aside from having slightly slower move-

ment, the simulated track in this 1.5-km forecast is

nearly identical to that of the 4.5-km control forecast

initialized at the same time (Fig. 10a). The peak inten-

sity is 5 hPa weaker in terms of minSLP (Fig. 10b) and is

comparable in terms of maxWSP (Fig. 10c). The dif-

ference is well within the uncertainties of the EnKF

analysis (Fig. 4), and the ensemble forecasts started at

the same time with the EnKF analysis perturbations

(next subsection).

Although the storm in 1.5KM is slightly weaker in

terms of peak intensity, Fig. 11 shows that the higher-

resolution simulation captures a much more realistic

detailed mesoscale structure (e.g., 0000 and 0600 UTC

13 September) of the cyclone. This additional structure

compares more favorably to the observed radar re-

flectivity at different stages of the cyclone development

than that of the 4.5-km control forecast. In particular, it

is only the 1.5KM run that captures the strong asym-

metry of the observed reflectivity at 0600 UTC 13

September. Future studies will perform high-resolution

forecasts at different times and/or utilize the EnKF

analysis on the 1.5-km model domain.

FIG. 7. Comparison of the (left) radar reflectivity (dBZ) from the observational composite mosaic (OBS), (middle) corresponding EnKF

analysis, and (right) NoDA ensemble forecast mean valid at 1200 UTC 12 Sep, and 0000 and 1200 UTC 12 Sep 2007, respectively.
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d. Ensemble forecasts from EnKF analysis

Large variations between deterministic forecasts ini-

tialized with the EnKF mean analysis at different times

and the difficulty in real-time operational forecasting

suggest that the predictability of this storm is rather

limited. The EnKF analysis helps to understand this

predictability problem because it provides consistent,

flow-dependent uncertainties that are used for initial-

izing ensembles for probabilistic prediction.

A 30-h ensemble forecast is initiated with the control

EnKF analysis and perturbations at 1800 UTC 12 Sep-

tember. Consistent with the large variations between

deterministic forecasts starting with EnKFs at different

times (Fig. 8), there is also large spread among different

members from the EnKF-initialized ensemble. This is

shown in Fig. 12, which plots the evolution of the posi-

tion, minSLP, and maxWSP as simulated by all mem-

bers and the deterministic forecast initialized from the

EnKF analysis (mean). The spread of minSLP triples

over 30 h from less than 1.5 hPa at 1800 UTC 12 Sep-

tember (the initial time) to 4.5 hPa at 0900 UTC 13

September, while the spread of maxWSP grows from

1.6 to 6.3 m s21 during the same period (even larger

ensemble spreads are observed at 0700 and 0800 UTC

13 September; not shown).

The large forecast uncertainty and sensitivity to initial

perturbation can also be clearly seen in Fig. 13, which

shows a scatterplot of minSLP in the ensemble members

at 1800 UTC 12 September (i.e., the initial time for the

ensemble) versus minSLP at 0900 UTC 13 September

(i.e., a 15-h forecast near the peak intensity time). The

strong correlation (;0.7) between the initial minSLP

and minSLP at the time of peak intensity highlights the

importance of the initial analysis accuracy. The initial

ensemble spread at 1800 UTC 12 September is com-

parable to or even smaller than the typical errors in the

best-track estimates, which further demonstrates the

limited predictability of deterministic forecasts even

after radar observations are assimilated. Thus, the need

for probabilistic/ensemble forecasting of tropical cy-

clones is clear.

To further exemplify error growth between ensemble

members, Fig. 14 shows the simulated maximum re-

flectivity from one of the weakest members and one of

the strongest members at 1800 UTC 12 September and

0900 UTC 13 September (based on minSLP at 0900

UTC 13 September; marked in Fig. 13). Despite having

apparently similar structures and strengths at 1800 UTC

12 September, the two members diverge tremendously

by 0900 UTC 13 September, again signifying large un-

certainties in the deterministic forecasts of hurricanes.

Ongoing studies are currently investigating both the

FIG. 8. The simulated (a) positions, (b) minSLP, and (c)

maxWSP of Humberto in the deterministic WRF forecasts (color

curves) initialized with the EnKF analyses every 3 h from 1200

UTC 12 Sep to 1200 UTC 13 Sep 2007 in comparison with the

NHC best-track estimate (black).
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mechanism leading to rapid tropical cyclone formation

and intensification and the dynamics that lead to the

rapid error growth for this event. Recently, studies re-

vealed that upscale growth of moist convection, such as

in the form of vertical hot towers, may play a critical

role in the internal dynamics (Krishnamurti et al. 2005;

Montgomery et al. 2006). Limited predictability of

moist convection could ultimately limit the predict-

ability of tropical cyclones (Sippel and Zhang 2008;

Zhang and Sippel 2009), as is the case for extratropical

cyclones (Zhang et al. 2002, 2003, 2007; Tan et al. 2004)

or continental warm season mesoscale convective sys-

tems (Zhang et al. 2006b; Hawblitzel et al. 2007; Bei and

Zhang 2007).

e. Sensitivity experiments

In the control EnKF analysis and forecasts discussed

above, we use the SCL technique that is designed to

assimilate dense radar observations that contain infor-

mation about the state of the atmosphere at a wide

range of scales and also to reduce the computational

costs and sampling errors (refer to section 2e). Four sen-

sitivity experiments are performed to examine the ef-

fectiveness of SCL in comparison to typical covariance

localization. Experiments FIX1, FIX2, and FIX3 assim-

ilate the same SOs as in the control EnKF analysis except

that fixed ROIs of 1215, 405, and 135 km, respectively,

are used for all domains. Experiment DX30 uses a fixed

FIG. 9. Comparison of radar reflectivity (dBZ) from (left) the observational composite mosaics (OBS), (middle) the deterministic

forecast initialized with the EnKF analysis at 1800 UTC 12 Sep 2007, and (right) with the NoDA ensemble forecast mean valid at 2100

UTC 12 Sep, and 0300 and 0900 UTC 13 Sep 2007, respectively.
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ROI in the unit of horizontal grid spacings in each do-

main (30 grid points) but will have varying ROIs in

physical distance (1215 km for D1, 405 km for D2, and

135 km for D3). DX30 is somewhat similar to the con-

trol EnKF analysis with SCL except that the ROIs will

not change in a given domain.

The forecast performance of the WRF simulations

initialized at 1800 UTC 12 September with analyses

from these four experiments in comparison to the con-

trol EnKF analysis is displayed in Fig. 15. Neither FIX1

or FIX2 with a fixed ROI captures the rapid develop-

ment of the storm while DX30, which uses different

ROIs for different domains, has decent tropical devel-

opment, though it is significantly weaker than using the

control EnKF analysis with SCL. FIX3 also simulates

noticeably stronger development of the storm than do

either FIX1 or FIX2 (implying the benefits and need for

tighter covariance localization for the convective-scale

radar observations) but its results are progressively

weaker than those of DX30 and the CNTL analysis

(implying the benefit of updating larger scales with

convective-scale radar observations using broader co-

variance localization in addition to the tighter localiza-

tion for the convective scales). The track forecasts from

all four sensitivity experiments are significantly worse

than that using the SCL technique. Nevertheless, we

acknowledge that the assignment of the numbers of SOs

to different bins and the selections of different ROIs for

different groups of SOs are still empirical at present and

deserve more in-depth study in the future.

Since we use the relaxation method as in Eq. (1) to

inflate the covariance in order to avoid filter divergence,

a weighting coefficient, a, set to 0.8 (similar to Meng and

Zhang 2008a,b; Torn and Hakim 2008) implies that an

overwhelmingly large portion of the final variance co-

mes from the prior. A large value of a is found to be

necessary for imperfect-model experiments (Meng and

Zhang 2007) to compensate for unavoidable imperfec-

tions in the forecast model. However, in the presence of

significant model error (and with limited ensemble size

and different covariance localization), it is unclear

whether the data assimilation configurations are opti-

mal. We performed two experiments (MIX1 and MIX2)

with a values of 0.5 and 0.65, respectively, to examine

the sensitivity of the EnKF’s performance to the choice

of inflation factor (i.e., the relaxation coefficient a).

Neither experiment gave better analyses or forecasts

in terms of both track and intensity (Fig. 16) compared

to the CNTL experiment (with weighting coefficient

a 5 0.8), despite better agreement between the mean-

square error and the predicted innovation variance (not

shown), which should be more desirable (Houtekamer

et al. 2005). Results from these two sensitivity experiments

FIG. 10. The simulated (a) position, (b) minSLP, and (c)

maxWSP of Humberto from the 1.5-km deterministic forecast

initialized with the EnKF analysis at 1800 UTC 12 Sep 2007

(1.5KM) in comparison with the 4.5-km forecast and the best-track

estimate.
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are consistent with our recent studies (Meng and Zhang

2008a,b) for regional-scale real-data applications. Sev-

eral factors may have contributed to this mismatch be-

tween the mean-square error and predicted innovation

variance: 1) the observational uncertainty is usually in-

flated to be conservative; 2) the consistency assumption

is based on perfect-model and unbiased statistics, which

are unattainable in real-data experiments; and 3) there

are some decaying modes (such as numerical noise) in

the ensemble variance that may not be projected well

onto the ensemble mean error.

We also performed experiments examining the im-

pacts of assimilating conventional observations in com-

parison to the radar observations used in the CNTL

analysis (Fig. 17). Experiment OBS1 assimilates all of the

conventional observations archived in the Meteorologi-

cal Assimilation Data Ingest System (MADIS) dataset

hourly from 0900 to 1800 UTC 12 September, including

radiosonde, wind profiler, mesonet, METAR (routine

aviation weather report), maritime, and satellite-cloud-

derived wind observations. Forecasts initialized from the

EnKF analysis in OBS1 at 1800 UTC 12 September are

not capable of capturing the rapid development of

Humberto (Figs. 16c and 16d). On the other hand, ex-

periment OBS2 assimilates hourly all conventional ob-

servations archived in MADIS along with the same radar

observations used in the CNTL EnKF analysis. Not

surprisingly, forecasts initialized with the EnKF analysis

in OBS2 simulate the rapid development of the storm.

However, at least for the relatively shorter time scales

considered in this case, there is no apparent improvement

in the analyses and forecasts by assimilating conven-

tional observations in addition to the radar observations

used in the CNTL experiment. The minimum SLP from

OBS2 is not as low as in the CNTL run but it is well

within the range of uncertainty shown in the control

ensemble forecasts (Fig. 12). These additional sensitivity

experiments further demonstrate the importance of the

convective-scale radial velocity observations provided by

the coastal WSR-88Ds. The success of the deterministic

forecasts from the EnKF analyses of CNTL and OBS2

suggests that the larger-scale flow may be good enough

not to adversely impact the storm development with the

24–48-h periods that we examined.

4. Comparison with WRF-3DVAR

Since the data assimilation schemes used in opera-

tional forecast models at NCEP at the time of Humberto

FIG. 11. Comparison of radar reflectivity (dBZ) from (left) observational composite mosaics (OBS) with (middle) those derived from the

4.5-km control forecast, and (right) the 1.5-km forecast valid at 0000 and 0600 UTC 13 Sep 2007, respectively.

2118 M O N T H L Y W E A T H E R R E V I E W VOLUME 137



were based on the 3DVAR methodology, here we use

the WRF model and its 3DVAR system to assimilate

exactly the same observations for a comparison with the

EnKF analysis discussed above.

The WRF-3DVAR method used here was developed

primarily at NCAR and is now operational at the Air

Force Weather Agency (Barker et al. 2004). Its config-

uration is based on an incremental formulation, pro-

ducing a multivariate analysis in the model space. Its

incremental cost function is minimized in a precondi-

tioned control variable space where the errors of dif-

ferent control variables are largely uncorrelated. As in

any other variational data assimilation technique, the

structure of the background error covariance may play a

very important role in the 3DVAR system. Experiment

‘‘3DVAR1’’ uses the WRF-3DVAR default background

error statistic (its ‘‘cv’’ option 3 originated from an

earlier version of the NCEP GFS system). The first

guess comes from the 9-h WRF 4.5-km (single, deter-

ministic) forecast initialized with the GFS Final Global

Data Assimilation System (FNL) analysis at 0000 UTC

12 September. WRF/3DVAR begins assimilation at

0900 UTC 12 September and continues to assimilate

exactly the same radar observations as in the EnKF

analysis hourly until 1800 UTC 12 September, after

which time a 30-h forecast without further data assimi-

lation is performed. Experiment 3DVAR2 is performed

in the same manner as 3DVAR1 except that a 30-member

12-h short-term ensemble forecast initialized at 0000

UTC 12 September (the same as in the initial ensemble

FIG. 12. The simulated (a) position, (b) minSLP, and (c)

maxWSP of Humberto by the ensemble forecast initialized with

the EnKF perturbations at 1800 UTC 12 Sep 2007 (light gray) in

comparison to the deterministic forecast initialized from the EnKF

mean analysis (dark gray) and the NHC best-track estimate

(black). Analysis and uncertainty until 1800 UTC 12 Sep 2007 are

also shown in dashed curves.

FIG. 13. The scatterplot of the forecasted minimum SLP at 1800

UTC 12 Sep (x axis; 0 h) and 0900 UTC 13 Sep 2007 (y axis; 15 h)

in different ensemble members with the weakest and strongest

members at 0900 UTC 13 Sep highlighted.
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for the EnKF analysis) is used to recalculate the WRF/

3DVAR background error statistics [its ‘‘cv’’ option 5,

as in Meng and Zhang (2008a)].

Figure 18 shows the evolution of minSLP and

maxWSP from both WRF/3DVAR experiments in

comparison to the corresponding EnKF analysis and

forecast. Although both 3DVAR and EnKF assimilate

exactly the same observations with the same model

resolution, both 3DVAR experiments fail to perform

satisfactorily. This result is in spite of the fact that the

3DVAR analyses may have a better fit of maximum

wind speed at 1800 UTC 12 September before the pure

forecast starts. We acknowledge that the performance

of 3DVAR may be further improved through further

tuning of the background error covariance (some im-

provement is seen when using the ensemble to generate

the background error covariance in 3DVAR2) and/or

with the addition of initial vortex bogussing (Q. Xiao,

NCAR, 2008, personal communication), but the sensi-

tivity of the performance of 3DVAR to different con-

figurations and representations of background error

statistics is beyond the scope of this study. On the other

hand, there may still be room to improve the perfor-

mance of EnKF through further tuning, which is also

beyond the scope of the current study.

5. Summary and conclusions

This study explores the uses of Doppler radar obser-

vations for cloud-resolving hurricane analysis, initiali-

zation, and prediction with an ensemble Kalman filter

(EnKF). The case studied is Hurricane Humberto (2007),

the first landfalling hurricane in the United States since

the end of the 2005 hurricane season and the most

rapidly intensifying near-landfall storm in U.S. history.

The storm caused extensive damage along the southeast

FIG. 14. The comparison of the simulated maximum reflectivity (dBZ) derived from the (left) strongest member and

(right) weakest member of the ensemble valid at 1800 UTC 12 Sep and 0900 UTC 13 Sep 2007, respectively.
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FIG. 15. The simulated (a) position, (b) minSLP, and (c)

maxWSP of Humberto from four deterministic forecasts initialized

with the EnKF analyses using fixed radii of influence (1215 km in

FIX1, 405 km in FIX2, 135 km in FIX3, and 30 grid points for each

domain in DX30) in comparison with the 4.5-km forecast from the

control EnKF analysis using SCL and the best-track estimate.

FIG. 16. The simulated (a) position, (b) minSLP, and (c)

maxWSP of Humberto from two deterministic forecasts initialized

with the EnKF analyses using different covariance relaxation co-

efficients (a 5 0.5 for MIX1 and a 5 0.65 for MIX2) in comparison

to the 4.5-km forecast from the control EnKF analysis using SCL

and the best-track estimate.

JULY 2009 Z H A N G E T A L . 2121



Texas coast but was poorly predicted by operational

models and forecasters. It is found that the EnKF

analysis, after assimilating radial velocity observations

from three WSR-88Ds along the Gulf coast, closely

represents the best-track position and intensity of

Humberto. Deterministic forecasts initialized from the

EnKF analysis, despite having considerable variability

with different lead times, are also capable of predicting

the rapid formation and intensification of the hurricane.

These forecasts are superior to operational forecasts,

simulations without radar data assimilation, and fore-

casts initialized with the assimilation of the same ob-

servations with a three-dimensional variational method

implemented with the same forecast model. Moreover,

ensemble forecasts initialized with EnKF analysis per-

turbations before the rapid intensification show large

spread among ensemble members. Such large spread

further exemplifies the significant uncertainties in the

deterministic prediction of hurricanes, especially the

intensity forecasts.

In this study, EnKF demonstrates great promise in

assimilating Doppler radar observations to initialize

hurricanes with detailed, accurate mesoscale struc-

tures. Even though ground-based radar may only have

FIG. 17. The simulated (a) minSLP and (b) maxWSP of Humberto from the deterministic forecasts initialized with

two different EnKF analyses (OBS1 and OBS2) at 1800 UTC 12 Sep 2007 in comparison with the 4.5-km forecast

from the EnKF analysis and the best-track estimate. OBS1 assimilates only conventional observations while OBS2

assimilates both conventional observations and the radar observations.

FIG. 18. The simulated (a) minSLP and (b) maxWSP of Humberto from the deterministic forecasts initialized with

two different WRF-3DVAR analyses (3DVAR1 and 3DVAR2) at 1800 UTC 12 Sep 2007 in comparison with the

4.5-km forecast from the EnKF analysis and the best-track estimate. The WRF-3DVAR default background error

covariance statistics is used in 3DVAR1 while a 12-h ensemble is used to generate the background statistics in

3DVAR2.
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limited range in providing observations for hurricane

prediction with lead times beyond 24 h, this may be

complemented with airborne radar with Doppler ob-

servations and longer lead times that will soon become

available for all hurricane aircraft reconnaissance mis-

sions (F. Marks, NOAA/HRD, 2008, personal com-

munications). However, since only radial winds from

three radars are assimilated in this study, the setup in

these experiments may only be most effective for short

periods of time. Beyond a couple of days, better con-

straints by observations at the synoptic scales will be

needed to further improve hurricane track and inten-

sity forecasts.

Future studies are planned to examine the dynamics

and predictability of Humberto with the EnKF analysis

and forecasts. It remains unclear what observations

are necessary and sufficient to define the initial tropical

cyclone vortex and large-scale environment. Answers

to these questions have strong implications related to

how society might better distribute resources to cope

with future hurricane-related disasters. This is extremely

important given that the number of hurricanes and

their intensity/destructiveness are reportedly on the rise

with the warming climate (Emanuel 2005; Webster et al.

2005).

Despite the promising performance of both deter-

ministic and probabilistic forecasts from the EnKF

analysis, the intrinsic limit of hurricane predictability

(i.e., in the face of nearly perfect observations and ini-

tialization) remains unclear in terms of both track and

intensity forecasts. The limit of formation–intensity pre-

dictability given realistic initial conditions and model

errors (which are still large at present) in numerical

weather prediction models may be alleviated through

improving our understanding of their dynamics and

physics, the development of better numerical models,

and improved data coverage and assimilation tech-

niques. However, there always will be forecast errors

due to the inherent limit of predictability arising from

initial errors with amplitudes far smaller than any ob-

servation or analysis system (e.g., Zhang and Sippel

2009); these are errors that society will always have to

cope with (Pielke 1997).

Such inherent uncertainties in hurricane forecasts

highlight the need for developing advanced ensemble

prediction systems to provide event-dependent proba-

bilistic forecasts and risk assessments. In practice, de-

spite an increasing role and the demonstrated benefits

of using ensembles in aiding deterministic hurricane

forecasting (Krishnamurti et al. 1999), the uncertainty

involved with today’s operational hurricane forecasts is

still based on averaged climatological errors and thus is

not case dependent. This case clearly demonstrates that

uncertainty can be quite large at some times (e.g., Sippel

and Zhang 2008) and having access to such information

in the operational environment would serve forecasters

well.
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