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Abstract The envelope periodic solutions to some nonlinear coupled equations are obtained by means of the Jacobi
elliptic function expansion method. And these envelope periodic solutions obtained by this method can degenerate to
the envelope shock wave solutions and/or the envelope solitary wave solutions.
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1 Introduction
Numerous nonlinear models (nonlinear equations) are

proposed to understand the physical mechanism in differ-
ent physical problems. Generally speaking, the exact an-
alytical solutions to these nonlinear equations are hardly
obtained, and many numerical methods have to be applied
to solve these nonlinear equations. Fortunately, a few ex-
act analytical solutions for some nonlinear equations can
be found under certain conditions, for example, the soli-
tary wave solutions, shock wave solutions and periodic
solutions, and so on. Applying these analytical solutions,
we can check the reliability of numerical solutions in the
same control parameters. Much effort has been spent on
the construction of exact solutions of nonlinear equations.
A number of methods have been proposed, such as the ho-
mogeneous balance method,[1−3] the hyperbolic tangent
function expansion method,[4−6] the nonlinear transfor-
mation method,[7,8] the trial function method,[9,10] and
sine-cosine method.[11] These methods, however, can only
obtain the shock and solitary wave solutions or the pe-
riodic solutions with the elementary functions,[1−12] but

cannot get the generalized periodic solutions of nonlinear
equations. Although Porubov et al.[13−15] have obtained
some periodic solutions to some nonlinear equations, they
used the Weierstrass elliptic function and involved com-
plicated deduction. The Jacobi elliptic function expan-
sion method[16,17] has been proposed and applied to ob-
tain the generalized periodic solutions to some nonlinear
equations and their corresponding shock wave and soli-
tary wave solutions. In this paper, this method is applied
to get the envelope periodic solutions and corresponding
envelope shock or solitary wave solutions to some coupled
nonlinear equations.

2 Envelope Periodic Solutions for Coupled
NLS Equations
The coupled nonlinear Schrödinger (NLS) equations

read

i
∂u

∂t
+ α

∂2u

∂x2
+ [β1|u|2 + β2|v|2]u = 0 ,

i
∂v

∂t
+ α

∂2v

∂x2
+ [β1|v|2 + β2|u|2]v = 0 . (1)

We seek the following wave packet solutions

u = φ(ξ) e i(kx−ωt) , v = ψ(ξ) e i(kx−ωt) , ξ = p(x− cgt) . (2)

Substituting Eq. (2) into Eqs. (1) yields

αp2 d2φ

dξ2
+ ip(2αk − cg)

dφ
dξ

+ (ω − αk2)φ+ β1φ
3 + β2φψ

2 = 0 ,

αp2 d2ψ

dξ2
+ ip(2αk − cg)

dψ
dξ

+ (ω − αk2)ψ + β1ψ
3 + β2φ

2ψ = 0 . (3)

Taking 2αk = cg, ω − αk2 = −γ (γ > 0), we have

αp2 d2φ

dξ2
− γφ+ β1φ

3 + β2φψ
2 = 0 , αp2 d2ψ

dξ2
− γψ + β1ψ

3 + β2φ
2ψ = 0 . (4)
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Next, we solve Eq. (4) using Jacobi elliptic function expansions.

2.1 Jacobi Elliptic Sine Function Expansion

By the Jacobi elliptic function expansion method, φ(ξ) and ψ(ξ) can be expressed as a finite series of Jacobi elliptic
function, sn ξ, i.e.,

φ(ξ) =
n1∑

j=0

ajsnjξ , ψ(ξ) =
n2∑

j=0

bjsnjξ , (5)

we can select n1 and n2 to balance the derivative term of the highest order and nonlinear term in Eq. (4) and get the
ansatz solution of Eq. (4) in terms of sn ξ

φ(ξ) = a0 + a1sn ξ , ψ(ξ) = b0 + b1sn ξ . (6)

Substituting Eq. (6) into Eqs. (4), one can get

(−γ + β1a
2
0 + β2b

2
0)a0 + {[−γ + 3β1a

2
0 − (1 +m2)αp2]a1 + β2(2a0b1 + a1b0)b0}sn ξ

+ [3β1a0a
2
1 + β2(a0b1 + 2a1b0)b1]sn2ξ + (β1a

2
1 + 2m2αp2 + β2b

2
1)a1sn3ξ = 0 ,

(−γ + β1b
2
0 + β2a

2
0)a0 + {[−γ + 3β1b

2
0 − (1 +m2)αp2]b1 + β2(2a1b0 + a0b1)a0}sn ξ

+ [3β1b0b
2
1 + β2(a1b0 + 2a0b1)a1]sn2ξ + (β1b

2
1 + 2m2αp2 + β2a

2
1)b1sn

3ξ = 0 , (7)

and then set the coefficients of the different powers for sn ξ to be zeros to obtain the algebraic equations about aj and
bj ,

(−γ + β1a
2
0 + β2b

2
0)a0 = 0 , [−γ + 3β1a

2
0 − (1 +m2)αp2]a1 + β2(2a0b1 + a1b0)b0 = 0 ,

3β1a0a
2
1 + β2(a0b1 + 2a1b0)b1 = 0 , (β1a

2
1 + 2m2αp2 + β2b

2
1)a1 = 0 ,

(−γ + β1b
2
0 + β2a

2
0)a0 = 0 , [−γ + 3β1b

2
0 − (1 +m2)αp2]b1 + β2(2a1b0 + a0b1)a0 = 0 ,

3β1b0b
2
1 + β2(a1b0 + 2a0b1)a1 = 0 , (β1b

2
1 + 2m2αp2 + β2a

2
1)b1 = 0 , (8)

from which the coefficients aj and bj and corresponding constraints can be determined as

a0 = b0 = 0 , p2 = − γ

(1 +m2)α
, a1 = b1 = ±

√
−2m2αp2

β1 + β2
. (9)

Then the envelope periodic solutions for u and v are

u = v = ±

√
2m2γ

(1 +m2)(β1 + β2)
sn

√
− γ

(1 +m2)α
(x− cgt) e i(kx−ωt) (10)

and when m→ 1, corresponding envelope solitary wave solutions are

u = v = ±
√

γ

β1 + β2
tanh

√
− γ

2α
(x− cgt) e i(kx−ωt) . (11)

2.2 Jacobi Elliptic Cosine Function Expansion

φ(ξ) and ψ(ξ) can be expressed as a finite series of Jacobi cosine elliptic function, cn ξ, i.e.,

φ(ξ) =
n1∑

j=0

ajcnjξ , ψ(ξ) =
n2∑

j=0

bjcnjξ , (12)

and the ansatz solution of Eq. (4) in terms of cn ξ is

φ(ξ) = a0 + a1cn ξ , ψ(ξ) = b0 + b1cn ξ . (13)

Similarly, another kind of envelope periodic solutions can be obtained, for cn ξ, which are

u = v = ±

√
2m2γ

(β1 + β2)(2m2 − 1)
cn

√
γ

α(2m2 − 1)
(x− cgt) e i(kx−ωt) , (14)
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and the limited solutions are

u = v = ±
√

2γ
β1 + β2

sech
√
γ

α
(x− cgt) e i(kx−ωt) . (15)

2.3 Jacobi Elliptic Function of the Third Kind Expansion

φ(ξ) and ψ(ξ) can be expressed as a finite series of Jacobi elliptic function of the third kind, dn ξ, i.e.,

φ(ξ) =
n1∑

j=0

ajdnjξ , ψ(ξ) =
n2∑

j=0

bjdnjξ , (16)

and the ansatz solution of Eq. (4) in terms of dn ξ is

φ(ξ) = a0 + a1dn ξ , ψ(ξ) = b0 + b1dn ξ . (17)

Similarly, another kind of envelope periodic solutions can be obtained, for dn ξ, which are

u = v = ±

√
2m2γ

(β1 + β2)(2−m2)
dn

√
γ

α(2−m2)
(x− cgt) e i(kx−ωt) , (18)

and the limited solutions are the same one as Eq. (15).

2.4 Jacobi Elliptic Function cs ξ Expansion

φ(ξ) and ψ(ξ) can be expressed as a finite series of Jacobi elliptic function, cs ξ, i.e.,

φ(ξ) =
n1∑

j=0

ajcsjξ , ψ(ξ) =
n2∑

j=0

bjcsjξ , cs ξ =
cn ξ
sn ξ

(19)

and the ansatz solution of Eq. (4) in terms of cs ξ is

φ(ξ) = a0 + a1cs ξ , ψ(ξ) = b0 + b1cs ξ . (20)

Similarly, another kind of envelope periodic solutions can be obtained, for cs ξ, which are

u = v = ±

√
2m2γ

(β1 + β2)(2−m2)
cs

√
γ

α(2−m2)
(x− cgt) e i(kx−ωt) , (21)

and the limited solutions are

u = v = ±
√

2γ
β1 + β2

csch
√
γ

α
(x− cgt) e i(kx−ωt) . (22)

The above analysis shows that the expansion in terms of different Jacobi elliptic functions can lead to different
envelope periodic solutions and envelope solitary wave solutions, and more new results can be got in these expansions.

3 Envelope Periodic Solutions for Coupled Nonlinear Schrödinger–KdV Equations
The coupled nonlinear Schrödinger–KdV equations read

∂u

∂t
+ u

∂u

∂x
+ β

∂3u

∂x3
− ∂|v|2

∂x
= 0 , i

∂v

∂t
+ α

∂2v

∂x2
− δuv = 0 . (23)

We seek its following wave packet solutions

u = u(ξ) , v = φ(ξ) e i(kx−ωt) , ξ = p(x− cgt) , (24)

where both φ(ξ) and u(ξ) are real functions.
Substituting Eq. (24) into Eqs. (23) yields

− cg
du
dξ

+ u
du
dξ

+ βp2 d3u

dξ3
− dφ2

dξ
= 0 , (25a)

αp2 d2φ

dξ2
+ ip(2αk − cg)

dφ
dξ

+ (ω − αk2)φ− δuφ = 0 . (25b)
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Integrating Eq. (25a) once and taking integration constant as zero, setting cg = 2αk and ω−αk2 = −γ in Eq. (25b),
then equations (25a) and (25b) take the following forms

−cgu+
1
2
u2 + βp2 d2u

dξ2
− φ2 = 0 , αp2 d2φ

dξ2
− γφ− δuφ = 0 . (26)

By the Jacobi elliptic function expansion method, φ(ξ) and u(ξ) can be expressed as a finite series of Jacobi elliptic
function, sn ξ, i.e.,

u(ξ) =
n1∑

j=0

ajsnjξ , φ(ξ) =
n2∑

j=0

bjsnjξ . (27)

We can select n1 and n2 to balance the derivative term of the highest order and nonlinear terms in Eq. (26) and get
the ansatz solution of Eq. (26) in terms of sn ξ,

u(ξ) = a0 + a1sn ξ + a2sn2ξ , φ(ξ) = b0 + b1sn ξ + b2sn2ξ . (28)

It is obvious that there are the following formula

d2u

dξ2
= 2a2 − (1 +m2)a1sn ξ − 4(1 +m2)a2sn2ξ + 2m2a1sn3ξ + 6m2a2sn4ξ ,

d2φ

dξ2
= 2b2 − (1 +m2)b1sn ξ − 4(1 +m2)b2sn2ξ + 2m2b1sn3ξ + 6m2b2sn4ξ ,

u2 = a2
0 + 2a0a1sn ξ + (2a0a2 + a2

1)sn
2ξ + 2a1a2sn3ξ + a2

2sn
4ξ ,

φ2 = b20 + 2b0b1sn ξ + (2b0b2 + b21)sn
2ξ + 2b1b2sn3ξ + b22sn

4ξ ,

uφ = a0b0 + (a0b1 + a1b0)sn ξ + (a0b2 + a1b1 + a2b0)sn2ξ + (a1b2 + a2b1)sn3ξ + a2b2sn4ξ . (29)

Then substituting Eqs. (28) and (29) into Eq. (26) leads to

[−cga0 + a2
0/2 + 2βp2a2 − b20] + [−cga1 + a0a1 − βp2(1 +m2)a1 − 2b0b1]sn ξ

+ [−cga2 + (2a0a2 + a2
1)/2− 4βp2(1 +m2)a2 − (2b0b2 + b21)]sn

2ξ

+ [a1a2 + 2m2βp2a1 − 2b1b2]sn3ξ + [a2
2/2 + 6m2βp2a2 − b22]sn

4ξ = 0 ,

[2αp2b2 − γb0 − δa0b0] + [−αp2(1 +m2)b1 − γb1 − δ(a0b1 + a1b0)]sn ξ

+ [−4αp2(1 +m2)b2 − γb2 − δ(a0b2 + a1b1 + a2b0)]sn2ξ

+ [2αp2m2b1 − δ(a1b2 + a2b1)]sn3ξ + [6αp2m2b2 − δa2b2]sn4ξ = 0 . (30)

Setting the coefficients of each power of sn ξ to be zero, one can get the algebraic equations about ai and bi (i =
0, 1, 2), i.e.,

− cga0 + a2
0/2 + 2βp2a2 − b20 = 0 , −cga1 + a0a1 − βp2(1 +m2)a1 − 2b0b1 = 0 ,

− cga2 + (2a0a2 + a2
1)/2− 4βp2(1 +m2)a2 − (2b0b2 + b21) = 0 , a1a2 + 2m2βp2a1 − 2b1b2 = 0 ,

a2
2/2 + 6m2βp2a2 − b22 = 0 , 2αp2b2 − γb0 − δa0b0 = 0 ,

− αp2(1 +m2)b1 − γb1 − δ(a0b1 + a1b0) = 0 , −4αp2(1 +m2)b2 − γb2 − δ(a0b2 + a1b1 + a2b0) = 0 ,

2αp2m2b1 − δ(a1b2 + a2b1) = 0 , 6αp2m2b2 − δa2b2 = 0 , (31)

from which one can determine the coefficients

a2 =
6m2αp2

δ
, b2 = ±6m2p2

√
α2 + 2αβδ

2δ2
, a1 = b1 = 0 ,

a0 =
α

2(α+ βδ)

{
cg + 4βp2(1 +m2)− (α+ 2βδ)

δ

[
4p2(1 +m2) +

γ

α

]}
,

b0 = ± 1
2δ

√
2δ2

α2 + 2αβδ
[a0 − cg − 4βp2(1 +m2)] . (32)
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So the periodic solutions for the coupled nonlinear Schrödinger–KdV equations are

u = a0 +
6m2αp2

δ
sn2[ p(x− cgt)] , (33a)

v = b0 ± 6m2p2

√
α2 + 2αβδ

2δ2
sn2[ p(x− cgt)] e i(kx−ωt) , (33b)

where a0 and b0 are given in Eqs. (32), and equation (33b) is envelope periodic solutions. When m→ 1, equations (33a)
and (33b) degenerate to soliton and envelope soliton solution, respectively. Moreover, there are relations

sn2ξ + cn2ξ = 1 , m2sn2ξ + dn2ξ = 1 , (34)

so one can get the same results by using sn ξ, cn ξ or dn ξ expansion in solving the coupled nonlinear Schrödinger-KdV
equations.

4 Envelope Periodic Solutions for Coupled Nonlinear Klein–Gordon–Schrödinger Equations
The coupled nonlinear Klein–Gordon–Schrödinger equations read

∂2u

∂t2
− c20

∂2u

∂x2
+ f2

0u− γ|v|2 = 0 , i
∂v

∂t
+ α

∂2v

∂x2
+ βuv = 0 . (35)

We seek its following wave packet solutions

u = u(ξ) , v = φ(ξ) e i(kx−ωt) , ξ = p(x− cgt) , (36)

where both φ(ξ) and u(ξ) are real functions.
Substituting Eq. (36) into Eqs. (35) yields

p2(c2g − c20)
d2u

dξ2
+ f2

0u− γφ2 = 0 , (37a)

αp2 d2φ

dξ2
+ ip(2αk − cg)

dφ
dξ

+ (ω − αk2)φ+ βuφ = 0 . (37b)

Setting cg = 2αk and ω − αk2 = −δ in Eq. (37b), then equations (37a) and (37b) take the following forms

p2(c2g − c20)
d2u

dξ2
+ f2

0u− γφ2 = 0 , αp2 d2φ

dξ2
− δφ+ βuφ = 0 . (38)

By the Jacobi elliptic function expansion method, φ(ξ) and u(ξ) can be expressed as a finite series of Jacobi elliptic
function sn ξ, i.e.,

u(ξ) =
n1∑

j=0

ajsnjξ , φ(ξ) =
n2∑

j=0

bjsnjξ . (39)

We can select n1 and n2 to balance the derivative term of the highest order and nonlinear term in Eq. (38) and get
the ansatz solution of Eq. (38) in terms of sn ξ,

u(ξ) = a0 + a1sn ξ + a2sn2ξ , φ(ξ) = b0 + b1sn ξ + b2sn2ξ . (40)

Similarly, substituting Eq. (40) into Eq. (38) will lead to the following results

a2 = −6m2αp2

β
, b2 = ±6m2p2

√
−
α(c2g − c20)

βγ
, a1 = b1 = 0 ,

a0 =
α

f2
0β

{
12m2p4(c2g − c20)−

[f2
0 − 4(1 +m2)p2(c2g − c20)]

4(c2g − c20)

}
,

b0 = ±
[f2

0 − 4(1 +m2)p2(c2g − c20)]
2(c2g − c20)

√
−
α(c2g − c20)

βγ
. (41)

So the periodic solutions for the coupled nonlinear Klein–Gordon–Schrödinger equations are

u =
α

f2
0β

{
12m2p4(c2g − c20)−

[f2
0 − 4(1 +m2)p2(c2g − c20)]

4(c2g − c20)

}
− 6m2αp2

β
sn2[ p(x− cgt)] , (42a)
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v = ±
[f2

0 − 4(1 +m2)p2(c2g − c20)]
2(c2g − c20)

√
−
α(c2g − c20)

βγ
± 6m2p2

√
−
α(c2g − c20)

βγ
sn2[ p(x− cgt)] e i(kx−ωt) , (42b)

where equation (42b) is envelope periodic solutions. When m → 1, equations (42a) and (42b) degenerate to soliton
and envelope soliton solution, respectively.

5 Conclusion
In this paper, the exact envelope periodic solutions to some coupled nonlinear equations are obtained by use of

Jacobi elliptic function expansion method. The envelope periodic solutions got by this method can degenerate as
the envelope shock wave and envelope solitary wave solutions. Similarly, this solving process can be applied to other
nonlinear equations, such as Landau–Lifshitz equations, Kadomtsev–Petviashvili equation and some others.
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