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Solving Nonlinear Wave Equations by Elliptic Equation∗
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Abstract The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown
that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions,
periodic wave solutions and so on, so it can be taken as a generalized method.
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1 Introduction
Since more and more problems have to involve non-

linearity, it attracts much attention how the nonlinear
models can be solved. Many methods have been pro-
posed to construct exact solutions to nonlinear equations.
Among them are the sine-cosine method,[1] the homoge-
neous balance method,[2−4] the hyperbolic function expan-
sion method,[5−7] the Jacobi elliptic function expansion
method,[8,9] the nonlinear transformation method,[10,11]

the trial function method,[12,13] and others.[14−16]

Among these methods, a transformation is often intro-
duced to simplify solving process. For example, given a
nonlinear wave equation

N(u, ut, ux, utt, uxx, · · ·) = 0 , (1)
Yan[1] introduced a transformation

u = u(ω), dω/dξ = sinω, ξ = k(x− ct) . (2)
Fu et al.[17] extended this transformation as

u = u(ω), dω/dξ = ±λ0

√
1−m2sin2ω . (3)

These transformations are applied to solve nonlinear wave
equations, and more solutions have been obtained. And
in the hyperbolic function expansion methods, a trans-
formation is also needed, thus one can get more kinds of
solutions. Fan[5] introduced

u = u(w), dw/dξ = b + w2 . (4)
Yan et al.[18] extended it as

u = u(w), dw/dξ = R(1 + µw2) . (5)
Actually, Fan and Yan applied the well-known Riccati
equation as their transformations.

In this paper, we will consider the elliptic equation[19]

y′2 =
i=4∑
i=0

aiy
i, a4 6= 0 , (6)

where y′ = dy/dξ, and take it as a new transformation
to solve nonlinear wave equations. Obviously, equations
(4) abd (5) are just special cases of Eq. (6), so application
of Eq. (6) to nonlinear wave equations will lead to more
kinds of solutions. In the following sections, applications
of Eq. (6) to some well-known equations will be given.

2 KdV Equation
KdV equation reads

ut + uux + βuxxx = 0 . (7)
We seek its travelling wave solutions in the following frame

u = u(ξ), ξ = k(x− ct) , (8)
here c is wave velocity, k is wave number.

Substituting Eq. (8) into Eq. (7) and integrating once
yield

−cu + 1
2u2 + βk2u′′ = C , (9)

where C is an integration constant. And then we suppose
equation (7) has the following solution

u = u(y) =
n∑

j=0

bjy
j , y = y(ξ) , (10)

where y satisfies the elliptic equation (6), then

y′′ =
a1

2
+ a2y +

3a3

2
y2 + 2a4y

3 . (11)

There n in Eq. (10) can be determined by the partial bal-
ance between the highest order derivative terms and the
highest degree nonlinear term in Eq. (7). Here we know
that the degree of u is

O(u) = O(yn) = n , (12)
and from Eqs. (6) and (11), one has

O(y′2) = O(y4) = 4, O(y′′) = O(y3) = 3 , (13)
and actually one can have

O(y(l)) = l + 1 . (14)
So one has

O(u) = n, O(u′) = n + 1 ,

O(u′′) = n + 2, O(u(l)) = n + l . (15)
For KdV equation (7), we have n = 2, so the ansatz

solution of Eq. (10) can be rewritten as
u = b0 + b1y + b2y

2, b2 6= 0 , (16)
then

u2 = b2
0 + 2b0b1y + (2b0b2 + b2

1)y
2 + 2b1b2y

3 + b2
2y

4 , (17)

u′′ =
(

1
2a1b1 + 2a0b2

)
+ (a2b1 + 3a1b2)y

+
(

3
2a3b1 + 4a2b2

)
y2 + (2a4b1 + 5a3b2)y3
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+ 6a4b2y
4 . (18)

Substituting Eqs. (16), (17), and (18) into Eq. (9) and
collecting each order of y yield algebraic equations about
coefficients bj (j = 0, 1, 2) and ai (i = 0, 1, 2, 3, 4), i.e.,
−cb0 + 1

2b2
0 + βk2

(
1
2a1b1 + 2a0b2

)
− C = 0 , (19a)

−cb1 + b0b1 + βk2(a2b1 + 3a1b2) = 0 , (19b)

−cb2 + 1
2 (2b0b2 + b2

1) + βk2
(

3
2a3b1 + 4a2b2

)
= 0 , (19c)

b1b2 + βk2(2a4b1 + 5a3b2) = 0 , (19d)
1
2b2

2 + 6βk2a4b2 = 0 , (19e)
from which we have

b2 = −12βk2a4, b1 = −6βk2a3 ,

b0 = c− 4βk2a2 +
3βk2a2

3

2a4
, (20)

at the same time there is

a1 =
βk2a3

2a4

(
a2 −

a2
3

2a4

)
. (21)

So if a3 = 0, then
b1 = a1 = 0, b2 = −12βk2a4, b0 = c− 4βk2a2 , (22)

and the transformation (6) takes the following form
y′2 = a0 + a2y

2 + a4y
4 , (23)

which has many kinds of solutions, some of which we will
show next.

Case A Consider a0 = 0, then
y′2 = a2y

2 + a4y
4 , (24)

which has three kinds of solutions
(a) If a2 > 0 and a4 > 0, the solution is

y = ±
√

a2

a4
csch(

√
a2 ξ) , (25)

and
u = b0 + b2y

2 = c−4βk2a2−12βk2a2csch2(
√

a2 ξ) . (26)
(b) If a2 > 0 and a4 < 0, the solution is

y = ±
√
−a2

a4
sech(

√
a2 ξ) , (27)

and
u = b0 +b2y

2 = c−4βk2a2 +12βk2a2sech 2(
√

a2 ξ) . (28)
(c) If a2 < 0 and a4 > 0, the solution is

y = ±
√
−a2

a4
csc(

√
−a2 ξ) , (29)

and
u = b0+b2y

2 = c−4βk2a2+12βk2a2csc2(
√
−a2 ξ) . (30)

Case B Consider a0 = a2 = 0 and a4 > 0, so b0 = c,
then

y = ± 1
√

a4 ξ
, (31)

and

u = b0 + b2y
2 = c− 12βk2

ξ2
, (32)

this is a rational solution.
Case C Consider transformation (23) directly, from

which many more solutions expressed in terms of different
elliptic functions[19] can be got.

(i) If a0 = 1, a2 = −(1 + m2) and a4 = m2 (where
0 ≤ m ≤ 1, is called modulus of Jacobi elliptic functions,
see Refs. [19] ∼ [22]), then the solution is

y = sn(ξ, m) , (33)
where sn(ξ, m) is the Jacobi elliptic sine function (see
Refs. [19] ∼ [22]) and

u = b0 + b2y
2 = c + 4βk2(1 + m2)

− 12βk2m2sn2(ξ,m) . (34)
(ii) If a0 = 1−m2, a2 = 2m2 − 1 and a4 = −m2, then

the solution is
y = cn(ξ, m) , (35)

where cn(ξ, m) is the Jacobi elliptic cosine function (see
Refs. [19] ∼ [22]) and

u = b0 + b2y
2 = c− 4βk2(2m2 − 1)

+ 12βk2m2cn2(ξ, m) . (36)
(iii) If a0 = 1 −m2, a2 = 2 −m2, and a4 = −1, then

the solution is
y = dn(ξ,m) , (37)

where dn(ξ, m) is Jacobi elliptic function of the third kind
(see Refs. [19] ∼ [22]) and
u = b0 +b2y

2 = c−4βk2(2−m2)+12βk2dn2(ξ,m) . (38)
(iv) If a0 = m2, a2 = −(1 + m2), and a4 = 1, then the

solution is
y = ns(ξ, m) ≡ 1

sn(ξ,m)
, (39)

and
u = b0 +b2y

2 = c+4βk2(1+m2)−12βk2ns2(ξ,m) . (40)
(v) If a0 = −m2, a2 = 2m2− 1, and a4 = 1−m2, then

the solution is

y = nc(ξ, m) ≡ 1
cn(ξ,m)

, (41)

and
u = b0 + b2y

2 = c− 4βk2(2m2 − 1)

− 12βk2(1−m2)nc2(ξ,m) . (42)
(vi) If a0 = −1, a2 = 2 −m2, and a4 = m2 − 1, then

the solution is

y = nd(ξ, m) ≡ 1
dn(ξ,m)

, (43)

and
u = b0 + b2y

2 = c− 4βk2(2−m2)

− 12βk2(m2 − 1)nd2(ξ, m) . (44)
(vii) If a0 = 1, a2 = 2 −m2, and a4 = 1 −m2, then

the solution is

y = sc(ξ,m) ≡ sn(ξ, m)
cn(ξ, m)

, (45)

and
u = b0 + b2y

2 = c− 4βk2(2−m2)

− 12βk2(1−m2)sc2(ξ, m) . (46)
(viii) If a0 = 1, a2 = 2m2 − 1, and a4 = (m2 − 1)m2,

then the solution is

y = sd(ξ,m) ≡ sn(ξ,m)
dn(ξ, m)

, (47)
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and
u = b0 + b2y

2 = c− 4βk2(2m2 − 1)

− 12βk2(m2 − 1)m2sd2(ξ, m) . (48)
(ix) If a0 = 1−m2, a2 = 2−m2, and a4 = 1, then the

solution is

y = cs(ξ,m) ≡ cn(ξ, m)
sn(ξ, m)

, (49)

and
u = b0 + b2y

2 = c−4βk2(2−m2)−12βk2cs2(ξ,m) . (50)
(x) If a0 = 1, a2 = −(1 + m2), and a4 = m2, then the

solution is

y = cd(ξ,m) ≡ cn(ξ,m)
dn(ξ, m)

, (51)

and
u = b0 + b2y

2 = c + 4βk2(1 + m2)

− 12βk2m2cd2(ξ,m) . (52)
(xi) If a0 = m2(m2 − 1), a2 = 2m2 − 1, and a4 = 1,

then the solution is

y = ds(ξ,m) ≡ dn(ξ, m)
sn(ξ,m)

, (53)

and
u = b0+b2y

2 = c−4βk2(2m2−1)−12βk2ds2(ξ, m) . (54)
(xii) If a0 = m2, a2 = −(1+m2), and a4 = 1, then the

solution is

y = dc(ξ,m) ≡ dn(ξ, m)
cn(ξ,m)

, (55)

and
u = b0 +b2y

2 = c+4βk2(1+m2)−12βk2dc2(ξ, m) . (56)
Of course, we can get more generalized solutions:
(xiii) If a0 = µ2A2, a2 = −µ2(1 + m2), and a4 =

µ2m2/A2, then the solution is
y = Asn(µξ,m) , (57)

and
u = b0 + b2y

2 = c + 4βk2µ2(1 + m2)

− 12βk2µ2m2sn2(µξ,m) . (58)
(xiv) If a0 = µ2(1 − m2)A2, a2 = µ2(2m2 − 1), and

a4 = −µ2m2/A2, then the solution is
y = Acn(µξ,m) , (59)

and
u = b0 + b2y

2 = c− 4βk2µ2(2m2 − 1)

+ 12βk2µ2m2cn2(µξ,m) . (60)
(xv) If a0 = µ2(1 − m2)A2, a2 = µ2(2 − m2), and

a4 = −µ2/A2, then the solution is
y = Adn(µξ,m) , (61)

and
u = b0 + b2y

2 = c− 4βk2µ2(2−m2)

+ 12βk2µ2dn2(µξ,m) . (62)
(xvi) If a0 = µ2m2A2, a2 = −µ2(1 + m2), and

a4 = µ2/A2, then the solution is
y = Ans(µξ,m) , (63)

and
u = b0 + b2y

2 = c + 4βk2µ2(1 + m2)

− 12βk2µ2ns2(µξ,m) . (64)
(xvii) If a0 = −µ2m2A2, a2 = µ2(2m2 − 1), and

a4 = µ2(1−m2)/A2, then the solution is
y = Anc(µξ,m) , (65)

and
u = b0 + b2y

2 = c− 4βk2µ2(2m2 − 1)

− 12βk2µ2(1−m2)nc2(µξ,m) . (66)
(xviii) If a0 = −µ2A2, a2 = µ2(2 − m2), and a4 =

µ2(m2 − 1)/A2, then the solution is
y = And(µξ,m) , (67)

and
u = b0 + b2y

2 = c− 4βk2µ2(2−m2)

− 12βk2µ2(m2 − 1)nd2(µξ,m) . (68)
(xix) If a0 = µ2A2, a2 = µ2(2 − m2), and a4 =

µ2(1−m2)/A2, then the solution is
y = Asc(µξ,m) , (69)

and
u = b0 + b2y

2 = c− 4βk2µ2(2−m2)

− 12βk2µ2(1−m2)sc2(µξ,m) . (70)
(xx) If a0 = µ2A2, a2 = µ2(2m2 − 1), and a4 =

µ2(m2 − 1)m2/A2, then the solution is
y = Asd(µξ,m) , (71)

and
u = b0 + b2y

2 = c− 4βk2µ2(2m2 − 1)

− 12βk2µ2(m2 − 1)m2sd2(µξ,m) . (72)
(xxi) If a0 = µ2(1 − m2)A2, a2 = µ2(2 − m2), and

a4 = µ2/A2, then the solution is
y = Acs(µξ,m) , (73)

and
u = b0 + b2y

2 = c− 4βk2µ2(2−m2)

− 12βk2µ2cs2(µξ,m) . (74)
(xxii) If a0 = µ2A2, a2 = −µ2(1 + m2), and a4 =

µ2m2/A2, then the solution is
y = Acd(µξ,m) , (75)

and
u = b0 + b2y

2 = c + 4βk2µ2(1 + m2)

− 12βk2µ2m2cd2(µξ,m) . (76)
(xxiii) If a0 = µ2m2(m2−1)A2, a2 = µ2(2m2−1), and

a4 = µ2/A2, then the solution is
y = Ads(µξ,m) , (77)

and
u = b0 + b2y

2 = c− 4βk2µ2(2m2 − 1)

− 12βk2µ2ds2(µξ,m) . (78)
(xxiv) If a0 = µ2m2A2, a2 = −µ2(1 + m2), and

a4 = µ2/A2, then the solution is
y = Adc(µξ,m) , (79)

and
u = b0 + b2y

2 = c + 4βk2µ2(1 + m2)

− 12βk2µ2dc2(µξ,m) , (80)
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where A and µ are constants.
It is known that when m → 1, sn(ξ,m) → tanh ξ,

cn(ξ,m) → sech ξ, dn(ξ,m) → sech ξ and when m → 0,
sn(ξ,m) → sin ξ, cn(ξ, m) → cos ξ. And among the Jacobi
elliptic functions, Jacobi elliptic sine function, Jacobi el-
liptic cosine functions, and Jacobi elliptic function of the
third kind are the three basic ones, and all other Jacobi
elliptic functions can be expressed in terms of them. So
we can also get more solutions expressed in terms of hy-
perbolic functions and trigonometric functions.

3 Klein Gordon Equation
Nonlinear Klein–Gordon equation reads

utt − c2
0uxx + αu− βu3 = 0 . (81)

Substituting Eq. (8) into Eq. (81) leads to

u′′ + α1u− β1u
3 = 0 , (82)

where

α1 =
α

k2(c2 − c2
0)

, β1 =
β

k2(c2 − c2
0)

. (83)

Similarly, assuming that the solutions of Eq. (81) take
the form of Eq. (10), we can get n = 1 for Eq. (81), i.e.,

u = b0 + b1y, b1 6= 0 , (84)
where y satisfies the elliptic equation (6), then substitut-
ing Eq. (84) into Eq. (82) leads to

b1 = ±
√

2a4

β1
, b0 = ± a3

2β1

√
β1

2a4
, (85)

and

a2 = −α1 +
3a2

3

8a4
, a1 =

(a2
3 − 8α1a4)a3

16a2
4

, (86)

If a3 = 0, then b0 = a1 = 0 and

b1 = ±
√

2a4

β1
, a2 = −α1 , (87)

then the transformation takes the following form
y′2 = a0 + a2u

2 + a4u
4 . (88)

This is an elliptic equation, and it also has many kinds of
solutions, some of which we will show next.

Case A Consider a0 = 0, then we have two kinds of
solutions.

(a) If a2 = −α1 > 0 and a4 > 0, β1 > 0, the solution is

y = ±
√
−α1

a4
csch(

√
−α1 ξ) = ±

√
− α

k2(c2 − c2
0)a4

csch

[√
− α

k2(c2 − c2
0)

ξ

]
, (89)

and

u = b1y = ±
√
−2α

β
csch

[√
− α

k2(c2 − c2
0)

ξ

]
. (90)

(b) If a2 = −α1 > 0 and a4 < 0, β1 < 0, the solution is

y = ±
√

α1

a4
sech(

√
−α1 ξ) = ±

√
α

k2(c2 − c2
0)a4

sech

[√
− α

k2(c2 − c2
0)

ξ

]
, (91)

and

u = b1y = ±
√

2α

β
sech

[√
− α

k2(c2 − c2
0)

ξ

]
. (92)

Case B The ansatz just takes the form of Eq. (88), and there exist many kinds of solutions expressed in terms of
different Jacobi elliptic functions.[19] We show some generalized solutions just like what we have done in Sec. 2.

(i) If a0 = µ2A2, a2 = −α1 = −µ2(1 + m2) and a4 = µ2m2/A2, then the solution is

y = A sn

[
±

√
α

(1 + m2)k2(c2 − c2
0)

ξ, m

]
, (93)

and

u = b1y = ±

√
2m2α

(1 + m2)β
sn

[
±

√
α

(1 + m2)k2(c2 − c2
0)

ξ,m

]
. (94)

(ii) If a0 = µ2(1−m2)A2, a2 = −α1 = µ2(2m2 − 1) and a4 = −µ2m2/A2, then the solution is

y = A cn

[
±

√
− α

(2m2 − 1)k2(c2 − c2
0)

ξ, m

]
, (95)

and

u = b1y = ±

√
2m2α

(2m2 − 1)β
cn

[
±

√
− α

(2m2 − 1)k2(c2 − c2
0)

ξ, m

]
. (96)

(iii) If a0 = µ2(1−m2)A2, a2 = −α1 = µ2(2−m2) and a4 = −µ2/A2, then the solution is

y = A dn

[
±

√
− α

(2−m2)k2(c2 − c2
0)

ξ, m

]
, (97)
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and

u = b1y = ±

√
2α

(2−m2)β
dn

[
±

√
− α

(2−m2)k2(c2 − c2
0)

ξ,m

]
. (98)

(iv) If a0 = µ2m2A2, a2 = −α1 = −µ2(1 + m2) and a4 = µ2/A2, then the solution is

y = A ns

[
±

√
α

(1 + m2)k2(c2 − c2
0)

ξ, m

]
, (99)

and

u = b1y = ±

√
2α

(1 + m2)β
ns

[
±

√
α

(1 + m2)k2(c2 − c2
0)

ξ,m

]
. (100)

(v) If a0 = −µ2m2A2, a2 = −α1 = µ2(2m2 − 1) and a4 = µ2(1−m2)/A2, then the solution is

y = A nc

[
±

√
− α

(2m2 − 1)k2(c2 − c2
0)

ξ, m

]
, (101)

and

u = b1y = ±

√
−2(1−m2)α

(2m2 − 1)β
nc

[
±

√
− α

(2m2 − 1)k2(c2 − c2
0)

ξ, m

]
. (102)

(vi) If a0 = −µ2A2, a2 = −α1 = µ2(2−m2) and a4 = µ2(m2 − 1)/A2, then the solution is

y = A nd

[
±

√
− α

(2−m2)k2(c2 − c2
0)

ξ, m

]
, (103)

and

u = b1y = ±

√
2(1−m2)α
(2−m2)β

nd

[
±

√
− α

(2−m2)k2(c2 − c2
0)

ξ,m

]
. (104)

(vii) If a0 = µ2A2, a2 = −α1 = µ2(2−m2) and a4 = µ2(1−m2)/A2, then the solution is

y = A sc

[
±

√
− α

(2−m2)k2(c2 − c2
0)

ξ, m

]
, (105)

and

u = b1y = ±

√
−2(1−m2)α

(2−m2)β
sc

[
±

√
− α

(2−m2)k2(c2 − c2
0)

ξ, m

]
. (106)

(viii) If a0 = µ2A2, a2 = −α1 = µ2(2m2 − 1) and a4 = µ2(m2 − 1)m2/A2, then the solution is

y = A sd

[
±

√
− α

(2m2 − 1)k2(c2 − c2
0)

ξ, m

]
, (107)

and

u = b1y = ±

√
2m2(1−m2)α

(2m2 − 1)β
sd

[
±

√
− α

(2m2 − 1)k2(c2 − c2
0)

ξ, m

]
. (108)

(ix) If a0 = µ2(1−m2)A2, a2 = −α1 = µ2(2−m2) and a4 = µ2/A2, then the solution is

y = A cs

[
±

√
− α

(2−m2)k2(c2 − c2
0)

ξ, m

]
, (109)

and

u = b1y = ±

√
− 2α

(2−m2)β
cs

[
±

√
− α

(2−m2)k2(c2 − c2
0)

ξ,m

]
. (110)

(x) If a0 = µ2A2, a2 = −α1 = −µ2(1 + m2) and a4 = µ2m2/A2, then the solution is

y = A cd

[
±

√
α

(1 + m2)k2(c2 − c2
0)

ξ, m

]
, (111)

and

u = b1y = ±

√
2m2α

(1 + m2)β
cd

[
±

√
α

(1 + m2)k2(c2 − c2
0)

ξ,m

]
. (112)
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(xi) If a0 = µ2m2(m2 − 1)A2, a2 = −α1 = µ2(2m2 − 1) and a4 = µ2/A2, then the solution is

y = A ds

[
±

√
− α

(2m2 − 1)k2(c2 − c2
0)

ξ, m

]
, (113)

and

u = b1y = ±

√
− 2α

(2m2 − 1)β
ds

[
±

√
− α

(2m2 − 1)k2(c2 − c2
0)

ξ,m

]
. (114)

(xii) If a0 = µ2m2A2, a2 = −α1 = −µ2(1 + m2) and a4 = µ2/A2, then the solution is

y = A dc

[
±

√
α

(1 + m2)k2(c2 − c2
0)

ξ, m

]
, (115)

and

u = b1y = ±

√
2α

(1 + m2)β
dc

[
±

√
α

(1 + m2)k2(c2 − c2
0)

ξ,m

]
. (116)

Of course, we can have more solutions if we do not take a3 = 0, we do not discuss this here for sententiousness.

4 Conclusion
In this paper, we considered the elliptic equation as a new transformation to solve nonlinear wave equations. More

kinds of solutions can be got from there, including rational solutions, solitary wave solutions constructed in terms of
hyperbolic functions, periodic solutions expressed in terms of trigonometric functions and periodic solutions dealing
with elliptic functions. If a4 = 1 and a0 = a2

2/4 in Eq. (23) or Eq. (88), then

y′ =
a2

2
+ y2 , (117)

this just recovers transformation (4) given by Fan.[5] And if we take a0 = R2, a2 = 2µR2 and a4 = µ2R2, then
transformation (23) or (88) also recovers the transformation (5) given by Yan.[18] So it is obvious that transformations
(4) and (5) are just special cases of Eq. (6). But, by applying transformations (4) and (5) to solve nonlinear wave
equations, the periodic solutions expressed in terms of elliptic functions cannot be obtained.

By applying the transformation (6) to some nonlinear wave equations, the obtained solutions consist of those
from the hyperbolic tangent expansion method,[5−7] the Jacobi elliptic function expansion method,[8,9] the nonlinear
transformation method[10,11] and the trial function method,[12,13] so it can be taken as a unified method, and more
applications to solving other nonlinear wave equations are also applicable.
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