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Abstract

The cubic nonlinear Schr€odinger (NLS for short) equation with new type of external heating source is derived for

large amplitude equatorial envelope Rossby wave in a shear flow. And then various periodic structures for these

equatorial envelope Rossby waves are obtained with the help of Jacobi elliptic functions and elliptic equation. It is

shown that different types of phase-locked diabatic heating play different roles in structures of equatorial envelope

Rossby wave.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In the last decades, the theory of equatorial waves has attracted much more attention on equatorial atmospheric

dynamics and nonlinear dynamics. It provides a dynamical frame to analyze the slowly evolving large-scale phenomena

in low latitudes and underlining dynamics. These theories of equatorial waves have been used for various purposes,

especially in explaining some fundamental features of tropical climate and global changes, such as Walker circulation

[1], the low-frequency Madden–Julian oscillation [2] and ENSO [3]. Among the nonlinear theories for equatorial waves,

many are related to nonlinear Rossby wave activity, for it can manifest some of the prime events of geophysical fluid

flows, and this activity often leads to a large-scale localized coherent structures that have remarkable permanence and

stability. When the zonal flow shear is taken to be nonuniform, one can derive Rossby solitary waves and envelope

Rossby solitary waves. Benney [4], Yamagata [5] and Zhao [6] investigated envelope Rossby solitary waves in baro-

tropic shear and uniform or nonuniform flows, independently. However, they all did not consider the effect of external

sources, especially the influence of diabatic heating from oceans. In our last paper [7], we applied the method of multi-

scale expansion to derive the NLS equation with an external heating source satisfied by the large-amplitude equatorial

Rossby waves. It reads
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þ a
o2A
oX 2

þ djAj2A ¼ gQ11ðX ; T Þ ð1Þ
with the following coordinates transformation defined by Jeffrey [8]
T ¼ T2; X ¼ 1

e
ðX2 � cgT2Þ ¼ X1 � cgT1 ð2Þ
where Q11ðX ; T Þ is the slowly varying external heating source, g denotes its strength, e is a small parameter.
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In Ref. [7], we just considered two cases of diabatic heating, the first one is
Q11ðX ; T Þ ¼ 0 ð3Þ
and then Eq. (1) reduces to the canonical NLS equation
i
oA
oT

þ a
o2A
oX 2

þ djAj2A ¼ 0 ð4Þ
The second case is that the external heating source is an external travelling wave source, i.e.
Q11ðX ; T Þ ¼ ei½kX�xT � ð5Þ
then Eq. (1) reduces to
i
oA
oT

þ a
o2A
oX 2

þ djAj2A ¼ gei½kX�xT � ð6Þ
And there the basic structures of these two NLS equations without and with phase-locked source are obtained by using

knowledge of Jacobi elliptic functions and elliptic equation. It is shown that phase-locked diabatic heating plays an

important role in periodic structures of rational form.

In this paper, we will consider other types of external heating to discuss the influence of different external heating on

the structures of the equatorial envelope Rossby wave.
2. Structures to NLS equation with a new type of external heating source

First of all, we suppose that Eq. (1) takes solution of the following form
AðX ; T Þ ¼ /ðnÞeiðkX�xT Þ; n ¼ sðX � CgT Þ ð7Þ
and the external heating is chosen as
Q11ðX ; T Þ ¼ wðnÞei½kX�xT � ð8Þ
Then Eq. (1) is rewritten as
d2/

dn2
¼ c

as2
/� d

as2
/3 þ g

as2
w ð9Þ
with
Cg ¼ 2ak; �c ¼ x� ak2 ð10Þ
The two cases of external heating considered in Ref. [7] are
wðnÞ ¼ 0 ð11Þ
and
wðnÞ ¼ 1 ð12Þ
There are still more types of wðnÞ, here we consider the quadratic external heating, i.e.
wðnÞ ¼ /2 ð13Þ
which can be taken as a resonant forcing, then Eq. (9) reduces to
d2/

dn2
¼ c

as2
/þ g

as2
/2 � d

as2
/3 ð14Þ
Eq. (14) can be solved in terms of Jacobi elliptic functions [9–11], here ansatz solution to Eq. (14) is taken as
/ðnÞ ¼
Xn

j¼0

bjzj ð15Þ
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with
z02 ¼ a0 þ a1zþ a2z2 þ a3z3 þ a4z4; or z00 ¼ a1
2
þ a2zþ

3a3
2

z2 þ 2a4z3 ð16Þ
Partial balance between the highest degree nonlinear term and the highest order derivative term yields n ¼ 1, i.e.
/ðnÞ ¼ b0 þ b1z; b1 6¼ 0 ð17Þ
Substituting Eq. (17) into Eq. (14) results in
as2a1b1
2

�
� cb0 � gb20 þ db30

�
þ ½as2a2b1 � cb1 � 2gb0b1 þ 3db20b1�zþ

3as2a3b1
2

�
� gb21 þ 3db0b21

�
z2

þ ½2as2a4b1 þ db31�z3 ¼ 0 ð18Þ
then we have
as2a1b1
2

� cb0 � gb20 þ db30 ¼ 0 ð19Þ

as2a2b1 � cb1 � 2gb0b1 þ 3db20b1 ¼ 0 ð20Þ

3as2a3b1
2

� gb21 þ 3db0b21 ¼ 0 ð21Þ

2as2a4b1 þ db31 ¼ 0 ð22Þ
From above four equations, we have
b1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2as2a4

d

r
; b0 ¼

g
3d

� as2a3
2db1

a2 ¼
c
as2

þ 2g
as2

b0 �
3d
as2

b20; a1 ¼
2

as2
b0
b1

ðcþ gb0 � db20Þ
ð23Þ
When g 6¼ 0, there are two cases to be considered, the first one is a3 ¼ 0 and a1 ¼ 0, then we have
b1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2as2a4

d

r
; b0 ¼

g
3d

; a2 ¼
g2

das2
ð24Þ
with constraint
c ¼ 2g2

3d
ð25Þ
and Eq. (16) is rewritten as
z02 ¼ a0 þ a2z2 þ a4z4; or z00 ¼ a2zþ 2a4z3 ð26Þ
Eq. (26) has many more kinds of solutions, we will show some next expressed in terms of different Jacobi elliptic

functions [12].

(1) If a0 ¼ 1, a2 ¼ g2

das2 ¼ �ð1þ m2Þ and a4 ¼ m2, then the solution is
/1 ¼
g
3d

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2as2m2

d

r
snðn;mÞ ð27Þ
where 06m6 1, is called modulus of Jacobi elliptic functions, see [12–16], and sn(n;m) is Jacobi elliptic sine

function, see [12–16].

(2) If a0 ¼ 1� m2, a2 ¼ g2

das2 ¼ 2m2 � 1 and a4 ¼ �m2, then the solution is
/2 ¼
g
3d

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2as2m2

d

r
cnðn;mÞ; m2 >

1

2
ð28Þ
where cnðn;mÞ is Jacobi elliptic cosine function, see [12–16].
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(3) If a0 ¼ 1� m2, a2 ¼ g2

das2 ¼ 2� m2 and a4 ¼ �1, then the solution is
/3 ¼
g
3d

�
ffiffiffiffiffiffiffiffiffi
2as2

d

r
dnðn;mÞ ð29Þ
where dnðn;mÞ is Jacobi elliptic function of the third kind, see [12–16].

(4) If a0 ¼ m2, a2 ¼ g2

das2 ¼ �ð1þ m2Þ and a4 ¼ 1, then the solution is
/4 ¼
g
3d

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2as2

d

r
nsðn;mÞ; nsðn;mÞ � 1

snðn;mÞ ð30Þ
(5) If a0 ¼ �m2, a2 ¼ g2

das2 ¼ 2m2 � 1 and a4 ¼ 1� m2, then the solution is
/5 ¼
g
3d

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2as2ð1� m2Þ

d

r
ncðn;mÞ; ncðn;mÞ � 1

cnðn;mÞ ; m2 <
1

2
ð31Þ
(6) If a0 ¼ �1, a2 ¼ g2

das2 ¼ 2� m2 and a4 ¼ m2 � 1, then the solution is
/6 ¼
g
3d

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2as2ðm2 � 1Þ

d

r
ndðn;mÞ; ndðn;mÞ � 1

dnðn;mÞ ð32Þ
(7) If a0 ¼ 1, a2 ¼ g2

das2 ¼ 2m2 � 1 and a4 ¼ ðm2 � 1Þm2, then the solution is
/7 ¼
g
3d

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2as2ðm2 � 1Þm2

d

r
sdðn;mÞ; sdðn;mÞ � snðn;mÞ

dnðn;mÞ ; m2 >
1

2
ð33Þ
(8) If a0 ¼ 1, a2 ¼ g2

das2 ¼ �ð1þ m2Þ and a4 ¼ m2, then the solution is
/8 ¼
g
3d

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2as2m2

d

r
cdðn;mÞ; cdðn;mÞ � cnðn;mÞ

dnðn;mÞ ð34Þ
(9) If a0 ¼ m2ðm2 � 1Þ, a2 ¼ g2

das2 ¼ 2m2 � 1 and a4 ¼ 1, then the solution is
/9 ¼
g
3d

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2as2

d

r
dsðn;mÞ; dsðn;mÞ � dnðn;mÞ

snðn;mÞ ; m2 <
1

2
ð35Þ
(10) If a0 ¼ m2, a2 ¼ g2

das2 ¼ �ð1þ m2Þ and a4 ¼ 1, then the solution is
/10 ¼
g
3d

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2as2

d

r
dcðn;mÞ; dcðn;mÞ � dnðn;mÞ

cnðn;mÞ ð36Þ
There still exist many other kinds of solutions in terms of Jacobi elliptic functions [9–11], we do not show here. It is

known that when m ! 1, snðn;mÞ ! tanh n, cnðn;mÞ ! sechn, dnðn;mÞ ! sechn and when m ! 0, snðn;mÞ ! sin n,
cnðn;mÞ ! cos n, so we also can derive solutions expressed in terms of hyperbolic functions and trigonometric func-

tions.

The second case we consider is a0 ¼ 0 and a1 ¼ 0, then Eq. (16) is rewritten as
z02 ¼ a2z
2 þ a3z

3 þ a4z
4; or z00 ¼ a2zþ

3

2
a3z

2 þ 2a4z
3 ð37Þ
whose solutions are
z ¼ �
a2a3 sech

2
ffiffiffiffi
a2

p

2
n

a23 � a2a4 1� tanh
ffiffiffiffi
a2

p

2
n

� �2
; a2 > 0 ð38Þ
and
z ¼ 2a2 sech
ffiffiffiffiffi
a2

p
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a23 � 4a2a4
p

� a3 sech
ffiffiffiffiffi
a2

p
n
; a2 > 0; a23 � 4a2a4 > 0 ð39Þ
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Actually, Eq. (37) is the same as Eq. (14) with
a2 ¼
c
as2

; a3 ¼
2g
3as2

; a4 ¼ � d
2as2

ð40Þ
So when ca > 0, one solution to Eq. (14) is
/11 ¼ �
12cg sech2

ffiffiffiffiffiffi
c

4as2

p
n

8g2 þ 9dc
�
1� tanh

ffiffiffiffiffiffic
4as2

p
n
�2

ð41Þ
and the other solution is
/12 ¼
3c sech

ffiffiffiffiffic
as2

p
n

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

a2 þ
9cd
2a2

q
� g sech

ffiffiffiffiffic
as2

p
n

ð42Þ
with the constraint
2g2 þ 9cd > 0 ð43Þ
3. Conclusion and discussion

A simple shallow-water model with influence of diabatic heating on a b-plane is applied to investigate the nonlinear

equatorial Rossby waves in a shear flow. By the asymptotic method of multiple scales, the cubic nonlinear Schr€odinger
equation with an external heating source is derived for large amplitude equatorial envelope Rossby wave in a shear flow

[7]. And there various periodic structures for these equatorial envelope Rossby waves are obtained with the help of

Jacobi elliptic functions and elliptic equation. It is shown that the results are different for equatorial envelope Rossby

waves without a source and with a phase-locked diabatic heating source, they have different structures due to the phase-

locked diabatic heating source, and the phase-locked diabatic heating source plays an important role in forming

periodic structures of rational form. Of course, these periodic structures contain solitons, solitary waves, as also sin-

gular structures, and they also have their different practical applications in explaining atmospheric events. Moreover, in

this paper, we only consider another special case of external heating and find some new exact results. Actually, when

g ¼ 0, i.e. there is no external heating, then from Eq. (23), we have
b1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2as2a4

d

r
; b0 ¼ � as2a3

2db1
; a2 ¼

c
as2

� 3d
as2

b20; a1 ¼
2

as2
b0
b1

ðc� db20Þ ð44Þ
If a3 ¼ 0, then b0 ¼ 0 and
b1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2as2a4

d

r
; a2 ¼

c
as2

; a1 ¼ 0 ð45Þ
If b1 is set as 1, then the solutions from /1 to /10 are just the same as we given in Ref. [7]. Here we can see the external

forcing plays an important role in two aspects. The first one is the basic state b0 ¼ g
3d, which is in proportion to the

external strength, this results in different structures for equatorial envelope Rossby wave. And the second one is the

modulation of a2 or the modulus of Jacobi elliptic function m, which also leads to different structures for equatorial

envelope Rossby wave. Moreover, the external heating results in structures for equatorial envelope Rossby wave of

rational form, for example, /11 and /12. Different from the results obtained in Ref. [7], there the solutions of rational

form are composed of Jacobi elliptic functions. These two solutions are of the rational forms in terms of hyperbolic

functions, which are resulted from diabatic heating. So we can say that different types of external heating will lead to

different structures for equatorial envelope Rossby wave.

There needs more further research for more various heating sources, for this effort provides a better starting point

for the treatment of general external heating sources and their impacts on the equatorial Rossby waves and climate

changes.
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