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Abstract From the controlling equations of atmosphere motion, Prandtl’s mixing length theory is used to derive
the atmospheric turbulence models, such as Burgers equation model and Burgers-KdV equation model. And then the
projective Riccati equations are applied to solve these atmospheric turbulence models, where much more patterns are
obtained, including solitary wave pattern, singular pattern, and so on.
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1 Introduction
If the fluctuation of density is neglected, for an invis-

cid and adiabatic atmosphere the averaged equations of
motion and thermodynamic equation can be written as[1]

dū
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dv̄

dt
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d
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∂t
+ ū

∂
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∂
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∂

∂z
, (2)

where (̄) and ()′ denote the average quantities and fluc-
tuating quantities, respectively, g is acceleration due to
gravity, and f is Coriolis parameter.

If extended Prandtl’s mixing length theory is applied,
then the fluctuating quantities can be expressed in terms
of corresponding averaged quantities, for example,

u′ = ū(z0)− ū(z) ≈ −∂ū

∂z
(z − z0)−

1
2

∂2ū

∂z2
(z − z0)2

= −l′
∂ū

∂z
− 1

2
l′2

∂2ū

∂z2
, (3)

where l′ = z − z0 is a mixing length. Thus

−u′w′ = ν
∂ū

∂z
− β

∂2ū

∂z2
(4)

with ν = l′w′ and β = −l′2w′/2, which are called eddy vis-
cosity coefficient and eddy dispersion coefficient, respec-
tively. So from Eq. (4), one has

−∂u′w′

∂z
= ν

∂2ū

∂z2
− β

∂3ū

∂z3
. (5)

If the assumption of homogeneous motion in various
directions is taken, then from Eqs. (1) we have

du

dt
− fv = −1

ρ

∂p

∂x
+ ν∇2u− β∇ ·�u , (6a)

dv

dt
+ fu = −1

ρ

∂p

∂y
+ ν∇2v − β∇ ·�v , (6b)

dw

dt
= −g − 1

ρ

∂p

∂z
+ ν∇2w − β∇ ·�w , (6c)

dθ
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= µ∇2θ − κ∇ ·�θ (6d)
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∇ = i
∂

∂x
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∂

∂y
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∂

∂z
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� = i
∂2

∂x2
+ j

∂2

∂y2
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∂2

∂z2
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where the averaged symbol is omitted, µ and κ are coef-
ficients of thermal diffusivity and thermal dispersion, re-
spectively.

If the hydrostatic equilibrium satisfies in vertical direc-
tion in the lowest-order and Coriolis force and the pressure
gradient force in horizontal directions can be neglected,
then for the higher-order motions, equations (6) reduce
approximatively to

du

dt
= ν∇2u− β∇ ·�u , (8a)

dv

dt
= ν∇2v − β∇ ·�v , (8b)

dw

dt
= ν∇2w − β∇ ·�w , (8c)

dθ

dt
= µ∇2θ − κ∇ ·�θ . (8d)

We can see that the above four equations take the same
form, and that if only x-direction is considered, equation
(8a) reduces to KdV-Burgers equation,[2]

ut + uux − νuxx + βuxxx = 0 . (9)
If classical Prandtl’s mixing length theory is applied, i.e.
β = 0, then we have Burgers equation,[3,4]

ut + uux − νuxx = 0 . (10)

Equation (10) was firstly proposed by Burgers[4] to
study issues of turbulence, and the interaction between
nonlinearity and dissipation can result in different co-
herent structures such as vortex sheets, pancakes, and
filaments.[3] Of course, the interaction between nonlinear-
ity and dissipation can also lead to turbulence and chaos,
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and it is generally recognized that turbulence in its fully
developed stage has a singular structure. But, in a fluid
system with dispersion low dissipation (large Reynolds
number) cannot necessarily lead to irregular turbulent
motion, there maybe exist some coherent structures. So
equation (9) was applied by Liu[5−7] to model the inverse
energy cascade[8] and intermittent turbulence, where dis-
persion effect is taken into account.

A number of problems are described in terms of suit-
able nonlinear models in branches of physics, mathemat-
ics, and other interdisciplinary sciences, such as nonlinear
Schrödinger equations in plasma physics,[9] KdV equa-
tion in shallow water model,[2] and so on. It is an in-
teresting topic to seek exact solutions to these nonlinear
models. Contrary to the integrable nonlinear equations,
non-integrable nonlinear equations are more difficult to be
solved. Especially, if odd-order derivatives and even-order
derivatives exist simultaneously in a nonlinear equation,
then it is much more difficult to derive solutions to them.
So new methods are needed for this kind of equations, for
many methods do not work yet.

In the next sections, we will introduce a transforma-
tion and then apply this transformation to solve the above
Burgers and Burgers-KdV equations. Then we will de-
rive many travelling wave solutions to these Burgers-type
equations, among which are solitary wave solutions.

2 Solutions to Burgers Equation
In order to solve the above Burgers-type equations, the

travelling wave frame is chosen, i.e.
ξ = x− ct . (11)

Substituting Eq. (11) into Burgers equation (10) yields

−c
du

dξ
+ u

du

dξ
− ν

d2u

dξ2
= 0 , (12)

which can be integrated once and rewritten as

−cu +
u2

2
− ν

du

dξ
= A , (13)

where A is an integration constant.
In order to solve Eq. (13) we introduce the following

crucial ansatz

u(ξ) =
n∑

i=1

f i−1(ξ)[aif(ξ) + big(ξ)] + a0 ,

a2
n + b2

n 6= 0 , (14)
where n can be determined by balancing the highest or-
der derivative term with the high degree nonlinear term
in Eq. (13). And f and g are solutions to the well-known
projective Riccati equations,[10−12]

f ′(ξ) = pf(ξ)g(ξ) , (15a)
g′(ξ) = q + pg2(ξ)− rf(ξ) , (15b)

where p 6= 0 is a real constant, q and r are two real con-
stants. When p = −1 and q = 1, equations (15) reduce
to the coupled equations given in Refs. [10] and [11], and
when p = ±1 and q ≥ 0, equations (15) reduce to the
coupled equations given in Ref. [12]. There is a relation

between f and g

g2 = −1
p

[
q − 2rf +

r2 + δ

q
f2

]
, (16)

where δ = ±1.
Apply the above expansion method, if we take the ex-

pansion order of u as O(u) = n and consider the relations
(15), then O(du/dξ) = n + 1, so partial balance between
the highest degree nonlinear term and the highest order
derivative term leads to n = 1. Obviously, the formal
solution can be written as

u = a0 + a1f(ξ) + b1g(ξ), a2
1 + b2

1 6= 0 . (17)
Considering the relation (16), from Eq. (17) one can

have

u′ = b1rf −
b1(r2 + δ)

q
f2 + a1pfg , (18)

u2 =
(
a2
0 −

b2
1q

p

)
+ 2

(
a0a1 +

b2
1r

p

)
f + 2a0b1g

+
[
a2
1 −

b2
1(r

2 + δ)
pq

]
f2 + 2a1b1fg . (19)

Substituting Eqs. (17) ∼ (19) into Eq. (13) results in
the following algebraic equations,

−1
2
a2
0 +

q

2p
b2
1 + ca0 = A , (20a)

νrb1 −
(
a0a1 +

r

p
b2
1

)
+ ca1 = 0 , (20b)

−a0b1 + cb1 = 0 , (20c)

−ν(r2 + δ)
q

b1 −
1
2
a2
1 +

r2 + δ

2pq
b2
1 = 0 , (20d)

νpa1 − a1b1 = 0 . (20e)
From Eqs. (20), four kinds of solutions can be derived.

The first one is
a0 = c, a1 = 0, b1 = 2νp, r = 0, (21)

the second one is
a0 = c, a1 = 0, b1 = νp, r = ±1 (δ = −1) , (22)

the third one is

a0 = c, a1 = ±

√
−ν2pδ

q
, b1 = νp, r = 0 , (23)

and the last one is

a0 = c, a1 = ±

√
−ν2p(r2 + δ)

q
, b1 = νp . (24)

For the projective Riccati equations (15), when pq < 0
and δ = 1, their solutions are

f1 =
q

r + sinh(
√
−pq ξ)

, (25)

g1 = −
√
−pq

p

cosh(
√
−pq ξ)

r + sinh(
√
−pq ξ)

, (26)

and when pq < 0 and δ = −1, their solutions are

f2 =
q

r + cosh(
√
−pq ξ)

, (27)

g2 = −
√
−pq

p
sinh(

√
−pq ξ)

r + cosh(
√
−pq ξ)

. (28)

When pq > 0 and δ = −1, their solutions are

f3 =
q

r + sin(
√

pq ξ)
, (29)
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g3 = −
√

pq

p

cos(
√

pq ξ)
r + sin(

√
pq ξ)

, (30)

and
f4 =

q

r + cos(
√

pq ξ)
, (31)

g4 =
√

pq

p

sin(
√

pq ξ)
r + cos(

√
pq ξ)

. (32)

Combining Eq. (13), Eq. (17), and results from
Eqs. (21) ∼ (32), we can derive various travelling solu-
tions including solitary wave solutions to Burgers equa-
tion (10). For example, for the first kind of solutions (21),
the following three cases must be considered.

Case 1 pq < 0 and δ = 1, the solution is
u1 = c− 2ν

√
−pq coth

√
−pq ξ . (33)

Case 2 pq < 0 and δ = −1, the solution is
u2 = c− 2ν

√
−pq tanh

√
−pq ξ . (34)

Case 3 pq > 0 and δ = −1, the solutions are
u3 = c− 2ν

√
pq cot

√
pq ξ (35)

and
u4 = c + 2ν

√
pq tan

√
pq ξ . (36)

The above four solutions have been obtained by other
methods, such as Ref. [13].

For the second kind of solutions (22), the following two
cases must be considered.

Case 1 pq < 0 and δ = −1, the solution is

u5,6 = c− ν

√
−pq sinh

√
−pq ξ

cosh
√
−pq ξ ± 1

. (37)

Case2 pq > 0 and δ = −1, the solutions are

u7,8 = c− ν

√
pq cos

√
pq ξ

sin
√

pq ξ ± 1
(38)

and

u9,10 = c + ν

√
pq sin

√
pq ξ

cos
√

pq ξ ± 1
. (39)

The above six solutions have not been obtained by
other methods, they are new solutions.

For the third kind of solutions (23), the following two
cases must be considered.

Case 1 pq < 0 and δ = 1, the solution is

u11,12 = c− ν
√
−pq

coth
√
−pq ξ ± 1

sinh
√
−pq ξ

. (40)

Case2 pq > 0 and δ = −1, the solutions are

u13,14 = c− ν
√

pq
cos
√

pq ξ ± 1
sin
√

pq ξ
(41)

and

u15,16 = c + ν
√

pq
sin
√

pq ξ ± 1
cos
√

pq ξ
. (42)

The above six solutions have not been obtained by other
methods, either.

For the last kind of solutions (24), the following two
cases must be considered.

Case 1 pq < 0 and δ = 1, the solution is

u17,18 = c±

√
−ν2p(r2 + 1)

q

q

sinh
√
−pq ξ + r

− ν
√
−pq

cosh
√
−pq ξ

sinh
√
−pq ξ + r

. (43)

Case 2 pq < 0, δ = −1 and r2 > 1, the solution is

u19,20 = c±

√
−ν2p(r2 − 1)

q

q

cosh
√
−pq ξ + r

− ν
√
−pq

sinh
√
−pq ξ

cosh
√
−pq ξ + r

. (44)

Case 3 pq > 0, δ = −1 and r2 < 1, the solutions are

u21,22 = c±

√
ν2p(1− r2)

q

q

sin
√

pq ξ + r

− ν
√

pq
cos
√

pq ξ

sin
√

pq ξ + r
(45)

and

u23,24 = c±

√
ν2p(1− r2)

q

q

cos
√

pq ξ + r

+ ν
√

pq
sin
√

pq ξ

cos
√

pq ξ + r
. (46)

The above eight solutions have not been obtained by
other methods, either.

3 Solutions to Burgers-KdV Equation
In the frame of Eq. (11), Burgers-KdV equation (9)

reduces to

−c
du

dξ
+ u

du

dξ
− ν

d2u

dξ2
+ β

d3u

dξ3
= 0 . (47)

Integrating Eq. (47) once yields

−cu +
1
2
u2 − ν

du

dξ
+ β

d2u

dξ2
= A , (48)

where A is an integration constant.
Similarly, combining Eq. (48) with series expansion

(14) yields n = 2, i.e., the formal solution to Eq. (48)
is

u = a0 + a1f + b1g + a2f
2 + b2fg, a2

2 + b2
2 6= 0 . (49)

So

u′ = (b1r − b2q)f +
[
3b2r −

b1(r2 + δ)
q

]
f2

+ a1pfg − 2b2(r2 + δ)
q

f3 + 2a2pf2g , (50)

u2 =
(
a2
0 −

b2
1q

p

)
+

(
2a0a1 +

2b2
1r

p
− 2b1b2q

p

)
f + 2a0b1g

+
[
a2
1 −

b2
1(r

2 + δ)
pq

+ 2a0a2 +
4b1b2r

p

− b2
2q

p

]
f2 + [2a1b1 + 2a0b2]fg

+
[
2a1a2 −

2b1b2(r2 + δ)
pq

+
2b2

2r

p

]
f3

+ (2b1a2 + 2a1b2)f2g

+
[
a2
2 −

b2
2(r

2 + δ)
pq

]
f4 + 2a2b2f

3g , (51)

u′′ = −a1pqf + (3a1pr − 4a2pq)f2 + (b1r − b2q)pfg
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+
[
10a2pr − 2a1p(r2 + δ)

q

]
f3

+
[
6b2pr − 2b1p(r2 + δ)

q

]
f2g

− 6a2p(r2 + δ)
q

f4 − 6b2p(r2 + δ)
q

f3g . (52)

Substituting Eqs. (49) and (52) into Eq. (48) results
in the following algebraic equations

− ca0 +
1
2

(
a2
0 −

q

p
b2
1

)
= A , (53a)

− ca1 +
(
a0a1 +

r

p
b2
1 −

q

p
b1b2

)
− νrb1

+ νqb2 − βpqa1 = 0 , (53b)
− cb1 + a0b1 = 0 , (53c)

− ca2 +
1
2

[
a2
1 −

(r2 + δ)
pq

b2
1 + 2a0a2 +

4r

p
b1b2 −

q

p
b2
2

]
− 3νrb2 +

ν(r2 + δ)
q

b1 + 3βpra1

− 4βpqa2 = 0 , (53d)
− cb2 + a1b1 + a0b2 − νpa1 + βprb1

− βpqb2 = 0 , (53e)

a1a2 −
(r2 + δ)

pq
b1b2 +

r

p
b2
2 +

2ν(r2 + δ)
q

b2

+ 10βpra2 −
2βp(r2 + δ)

q
a1 = 0 , (53f)

b1a2 + a1b2 − 2νpa2 + 6βprb2

− 2βp(r2 + δ)
q

b1 = 0 , (53g)

1
2
a2
2 −

(r2 + δ)
2pq

b2
2 −

6βp(r2 + δ)
q

a2 = 0 , (53h)

a2b2 −
6βp(r2 + δ)

q
a2 = 0 . (53i)

Solving Eqs. (53) yields two kinds of solutions. The
first one is

a0 = c, a1 = 0, a2 = 12βpδ/q ,

b1 = 12pν/5, b2 = 0, r = 0 (54)

with the constraint
pq = −ν2/100β2 < 0 . (55)

The second one is
a0 = c, a1 = ±6pβ, a2 = 6βp/q, b1 = 6pν/5 ,

b2 = ±6pν/5q, r = 0, δ = 1 (56)
with the constraint

pq = −ν2/25β2 < 0 . (57)
For the first kind of solutions (55), two cases must be

considered.
Case 1 δ = 1, the solution is

u1 = c +
6ν2

25β
− 3ν2

25β

(
coth

ν

10β
ξ + 1

)2

. (58)

Case 2 δ = −1, the solution is

u2 = c +
6ν2

25β
− 3ν2

25β

(
tanh

ν

10β
ξ + 1

)2

. (59)

For the second kind of solutions (56), only one case needs
be considered. The solution is

u3 = c− 6ν2

25β

[
coth

ν

5β
ξ ± csch

ν

5β
ξ + csch2 ν

5β
ξ

± coth
ν

5β
ξcsch

ν

5β
ξ
]
. (60)

In the above solutions, u1 and u2 have been found by
other method, such as Ref. [13], but u3 has not been found
yet.

4 Conclusion
In this paper, we first apply Prandtl’s mixing length

theory to derive Burgers equation and Burgers-KdV equa-
tion from the controlling equations of atmosphere mo-
tion. And then we introduce an intermediate transfor-
mation to solve these Burgers-type nonlinear equations.
Based on the results from simplified nonlinear equations,
solutions to the Burgers-type nonlinear equations are ob-
tained, where general travelling wave solutions and soli-
tary wave solutions are given. Compared with results ob-
tained from other methods,[14−16] more new solutions are
derived in this paper. These new solutions correspond to
different basic patterns that can be formed in atmospheric
motions.
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