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Lamé Function and Multi-order Exact Solutions to Nonlinear Coupled Systems∗

LIU Shi-Kuo,1 FU Zun-Tao,1,2,† and LIU Shi-Da1,2

1School of Physics, Peking University, Beijing 100871, China‡

2State Key Laboratory for Turbulence and Complex System, Peking University, Beijing 100871, China

(Received February 9, 2004)
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1 Introduction
During the past three decades, the nonlinear wave

researches have made great progress, among which a
number of new methods have been proposed to get the
exact solutions to nonlinear wave equations. Among
these methods, the homogeneous balance method,[1−3]

the hyperbolic tangent function expansion method,[4−6]

the nonlinear transformation method,[7,8] the trial func-
tion method,[9,10] sine-cosine method,[11] the Jacobi ellip-
tic function expansion method,[12,13] and so on[14−16] are
widely applied to solve nonlinear wave equations exactly
and many solutions are obtained, from which the rich-
ness of structures is shown to exist in the different non-
linear wave equations. Furthermore, it deserves to dis-
cuss the stability of these solutions, there perturbation
method is often applied. In this paper, based on the Ja-
cobi elliptic functions and Lamé function,[17,18] perturba-
tion method[18,19] is applied to get the multi-order exact
solutions to nonlinear coupled systems.

2 Lamé Equation and Lamé Functions
Usually, Lamé equation[17] in terms of y(x) can be

written as
d2y

dx2
+ [λ− n(n + 1)m2sn2x]y = 0 , (1)

where λ is an eigenvalue, n is a positive integer, snx
is the Jacobi elliptic sine function with its modulus m
(0 < m < 1).

Set
η = sn2x , (2)

then the Lamé equation (1) becomes

d2y

dη2
+

1
2

(1
η

+
1

η − 1
+

1
η − h

) dy

dη

− µ + n(n + 1)η
4η(η − 1)(η − h)

y = 0 , (3)

where
h = m−2 > 1 , µ = −hλ . (4)

Equation (3) is a kind of Fuchs-typed equation with
four regular singular points η = 0, 1, h, and η = ∞, the
solution to Lamé equation (3) is known as Lamé function.

For example, when n = 3, λ = 4(1 + m2), i.e.
µ = −4(1 + m−2), the Lamé function is

L3(x) = η1/2(1− η)1/2(1− h−1η)1/2 = snx cn xdnx . (5)

When n = 2, λ = 1 + m2, i.e. µ = −(1 + m−2), the
Lamé function is

L2(x) = (1− η)1/2(1− h−1η)1/2 = cnxdnx . (6)

In the equations (5) and (6), cnx and dnx are the Jacobi
elliptic cosine function and the Jacobi elliptic function of
the third kind,[17,18] respectively.

3 Lamé Equation, Lamé Functions and Their
Application to Nonlinear Coupled Systems

3.1 Variant Boussinesq Equations

Variant Boussinesq equations read

∂u

∂t
+ u

∂u

∂x
+

∂v

∂x
+ α

∂3u

∂t∂x2
= 0 ,

∂v

∂t
+

∂uv

∂x
+ β

∂3u

∂x3
= 0 . (7)

We seek their travelling wave solutions of the following
form,

u = u(ξ) , v = v(ξ) , ξ = k(x− ct) , (8)

where k and c are wave number and wave speed, respec-
tively.

Substituting Eq. (8) into Eq. (7) yields

− c
du

dξ
+ u

du

dξ
+

dv

dξ
− αk2c

d3u

dξ3
= 0 ,
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− c
dv

dξ
+

duv

dξ
+ βk2 d3u

dξ3
= 0 . (9)

Integrating Eq. (9) once with respect to ξ and taking
the integration constants as zero, we have

αk2c
d2u

dξ2
+ cu− 1

2
u2 − v = 0 ,

βk2 d2u

dξ2
− cv + uv = 0 . (10)

Applying the perturbation method and setting
u = u0 + εu1 + ε2u2 + · · · , v = v0 + εv1 + ε2v2 + · · · , (11)
where ε(0 < ε � 1) is a small parameter, u0, u1, u2, and
v0, v1, v2 represent the zeroth-, the first- and the second-
order solutions, respectively.

Substituting Eq. (11) into Eq. (10), we can obtain var-
ious order equations, for example, the zeroth-order equa-
tion (for ε0) takes the following form,

αk2c
d2u0

dξ2
+ cu0 −

1
2
u2

0 − v0 = 0 ,

βk2 d2u0

dξ2
− cv0 + u0v0 = 0 , (12)

and the first-order equation (for ε1) is

αk2c
d2u1

dξ2
+ (c− u0)u1 − v1 = 0 ,

βk2 d2u1

dξ2
+ (u0 − c)v1 + v0u1 = 0 . (13)

For the second-order equation (ε2), it becomes

αk2c
d2u2

dξ2
+ (c− u0)u2 − v2 =

1
2
u2

1 ,

βk2 d2u2

dξ2
+ (u0 − c)v2 + v0u2 = −u1v1 . (14)

For the zeroth-order equation (12), the Jacobi elliptic
sine function expansion method can be applied to solve it,
i.e. the ansatz solution is supposed to take the following
form,

u0 = a0+a1sn ξ+a2sn2ξ , v0 = b0+b1sn ξ+b2sn2ξ , (15)

where the expansion coefficients a0, a1, a2, and b0, b1, b2

can be determined by substituting Eq. (15) into Eq. (12).
Then we have

a0 = c +
β

2αc
− 4(1 + m2)αk2c , a1 = 0 , a2 = 12m2cαk2 ,

b0 =
β2

4α2c2
+ 2(1 + m2)βk2 , b1 = 0 , b2 = −6m2βk2 , (16)

thus the zeroth-order solution for variant Boussinesq equations (7) is

u0 = c +
β

2αc
− 4(1 + m2)αk2c + 12m2cαk2sn2ξ , v0 =

β2

4α2c2
+ 2(1 + m2)βk2 − 6m2βk2sn2ξ , (17)

and there exists the relation between u0 and v0,

v0 −
β2

4α2c2
= − β

2cα

(
u0 − c− β

2αc

)
. (18)

Substituting Eq. (17) into the first-order equation (13) yields

αk2c
d2u1

dξ2
+

[
− β

2αc
+ 4(1 + m2)αk2c− 12m2cαk2sn2ξ

]
u1 − v1 = 0 ,

βk2 d2u1

dξ2
+

[ β

2αc
− 4(1 + m2)αk2c + 12m2cαk2sn2ξ

]
v1 +

[ β2

4α2c2
+ 2(1 + m2)βk2 − 6m2βk2sn2ξ

]
u1 = 0 , (19)

i.e.,

d2u1

dξ2
+

[
− β

2α2k2c2
+ 4(1 + m2)− 12m2sn2ξ

]
u1 −

1
αk2c

v1 = 0 ,

d2u1

dξ2
+

[ 1
2αk2c

− 4(1 + m2)
αc

β
+ 12m2 cα

β
sn2ξ

]
v1 +

[ β

4α2k2c2
+ 2(1 + m2)− 6m2sn2ξ

]
u1 = 0 . (20)

Here it is obvious that u1 in Eqs. (20) takes the similar form as y in Eq. (1), so we can suppose that u1 and v1 take
the following form,

u1 = AL3(ξ) , v1 = BL3(ξ) . (21)

Substituting Eq. (21) into Eq. (20) yields

A = −2cα

β
B , (22)

so the final first-order solution is

u1 = A sn ξ cn ξ dn ξ , v1 = − β

2cα
A sn ξ cn ξ dn ξ , (23)
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where A is an arbitrary constant. Obviously there exists the following relation

v1 = − β

2cα
u1 . (24)

In order to get the second-order solution of variant Boussinesq equations, we have to substitute the zeroth-order
solution (17) and the first-order solution (23) into the second-order equation (14), so we have

d2u2

dξ2
+

[
− β

2α2k2c2
+ 4(1 + m2)− 12m2sn2ξ

]
u2 −

1
αk2c

v2 =
A2

2αk2c
sn2ξcn2ξdn2ξ ,

d2u2

dξ2
+

[ 1
2αk2c

− 4(1 + m2)
αc

β
+ 12m2 cα

β
sn2ξ

]
v2

+
[ β

4α2k2c2
+ 2(1 + m2)− 6m2sn2ξ

]
u2 =

1
2αk2c

A2sn2ξcn2ξdn2ξ . (25)

Since cn2ξ = 1− sn2ξ, dn2ξ = 1−m2sn2ξ, the special solution to Eq. (25) can be supposed to be

u2 = A0 + A2sn2ξ + A4sn4ξ , v2 = B0 + B2sn2ξ + B4sn4ξ . (26)

Substituting Eq. (26) into Eq. (25) yields

A0 =
A2

48m2αck2
, A2 = − (1 + m2)A2

24m2αck2
, A4 =

A2

16αck2
,

B0 = − βA2

96m2α2c2k2
, B2 =

β(1 + m2)A2

48m2α2c2k2
, B4 = − βA2

32α2c2k2
, (27)

i.e., the second-order solution is

u2 =
A2

48m2αck2
[1− 2(1 + m2)sn2ξ + 3m2sn4ξ] , v2 = − βA2

96m2α2c2k2
[1− 2(1 + m2)sn2ξ + 3m2sn4ξ] . (28)

Obviously there exists the following relation,

v2 = − β

2cα
u2 . (29)

3.2 Coupled mKdV Equations

In the above section, we applied Lamé equation under
the condition of n = 3 and λ = 4(1 + m2) to solve variant
Boussinesq equations and got its multi-order exact solu-
tions. In this section, we will consider the Lamé equation
under the condition of n = 2 and λ = 1 + m2 and its ap-
plication to obtain multi-order exact solution to coupled
mKdV equations.

Here coupled mKdV equations read,
∂u

∂t
+ αu2 ∂u

∂x
+ β

∂3u

∂x3
+ c0

∂v

∂x
= 0 ,

∂v

∂t
+ γv

∂v

∂x
+ δ

∂uv

∂x
= 0 . (30)

We seek its travelling wave solutions in the frame of
Eq. (8), then we have

βk2 d3u

dξ3
+ αu2 du

dξ
− c

du

dξ
+ c0

dv

dξ
= 0 ,

− c
dv

dξ
+ γv

dv

dξ
+ δ

duv

dξ
= 0 . (31)

Integrating Eq. (31) once with respect to ξ and taking
the integration constants as zero, we have

βk2 d2u

dξ2
− cu +

α

3
u3 + c0v = 0 ,

− cv +
γ

2
v2 + δuv = 0 . (32)

Similarly, applying perturbation method and setting u

and v to be expanded as Eq. (11), we can have the multi-
order expansion equations, for example, the zeroth-order
equation (for ε0) is

βk2 d2u0

dξ2
− cu0 +

α

3
u3

0 + c0v0 = 0 ,

− cv0 +
γ

2
v2
0 + δu0v0 = 0 , (33)

the first-order equation (for ε1) is

βk2 d2u1

dξ2
+ (αu2

0 − c)u1 + c0v1 = 0 ,

− cv1 + (γv0 + δu0)v1 + δv0u1 = 0 , (34)

and the second-order equation (for ε2) is

βk2 d2u2

dξ2
− cu + (αu2

0 − c)u2 + c0v2 = −αu0u
2
1 ,

−cv2 + (γv0 + δu0)v2 + δv0u2 = −γ

2
v2
1 − δu1v1 . (35)

The zeroth-order equation (33) can be solved by the
Jacobi elliptic sine function expansion method, where the
ansatz solution

u0 = a0 + a1sn ξ , v0 = b0 + b1sn ξ (36)

is chosen. Substituting Eq. (36) into Eq. (33) results in

u0 = ±
√
−6β

α
mk sn ξ , v0 = −4δ

γ2
c0 −

2
γ

(1 + m2)βk2 ∓ 2δ

γ

√
−6β

α
mk sn ξ . (37)
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Then we can substitute Eq. (37) into the first-order equation (34) and get the rewritten first-order equation

d2u1

dξ2
+

[ 2δ

γβk2
c0 + (1 + m2)− 6m2sn2ξ

]
u1 +

c0

βk2
v1 = 0 , (38a)

[
−4δ2

γ2
c0 −

2δ

γ
(1 + m2)βk2 ∓ 2δ2

γ

√
−6β

α
mk sn ξ

]
u1 +

[
−2δ

γ
c0 − (1 + m2)βk2 ∓ δ

√
−6β

α
mk sn ξ

]
v1 = 0 . (38b)

It is obvious that u1 in Eq. (38a) takes the similar form as y in Eq. (1) under the condition of n = 2 and λ = 1 + m2,
so we can suppose that

u1 = AL2(ξ) , v1 = BL2(ξ) . (39)

Then substituting Eq. (39) into Eq. (38) leads to

B = −2δ

γ
A , (40)

so the first-order solution to coupled mKdV equations is

u1 = A cn ξ dn ξ , v1 = −2δ

γ
A cn ξ dn ξ . (41)

In order to solve the second-order equation (35) of coupled mKdV equations, we have to substitute Eqs. (37) and
(41) into the second-order (35) to get the rewritten form of the second-order equation,

d2u2

dξ2
+

[ 2δc0

γβk2
+ (1 + m2)− 6m2sn2ξ

]
u2 +

c0

βk2
= ∓ α

βk

√
−6β

α
mA2sn ξ[1− (1 + m2)sn2ξ + m2sn4ξ] ,

[
−4δ2

γ2
c0 −

2δ

γ
(1 + m2)βk2 ∓ 2δ2

γ

√
−6β

α
mk snξ

]
u2 +

[
−2δ

γ
c0 − (1 + m2)βk2 ∓ δ

√
−6β

α
mk sn ξ

]
v2 = 0 . (42)

Similarly, its ansatz solution can be written as

u2 = A1sn ξ + A3 sn3ξ , v2 = B1sn ξ + B3 sn3 ξ . (43)

Combining Eqs. (42) and (43) leads to

u2 = ± α

12βk

√
−6β

α

1 + m2

m
A2sn ξ(1− 2m2sn2ξ) , v2 = ∓ δα

6βγk

√
−6β

α

1 + m2

m
A2sn ξ

(
1− 2m2

1 + m2
sn2ξ

)
, (44)

which is the second-order exact solution to coupled mKdV equations.

4 Conclusion and Discussion
In this paper, the Lamé equation and Lamé functions are applied to solve nonlinear coupled systems. When

perturbation method is considered, the multi-order solutions are obtained to these nonlinear coupled systems. The
results got in this paper is very important for nonlinear instability of nonlinear coherent structures.
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