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1. Introduction

Sine-Gordon-type equations, including the single
sine-Gordon (S8G) equation

Hy = Lsing, Q)]
the double sine-Gordon {IDXSG) equation

Hy = Osing + Bsinlu 2)
and the triple sine-G'ordon (TSG) equatian

uy = osine + fsin2u + ysindi, (3

are widely applied in physics and engineering, For ex-
ample, the DSG equation is a frequent object of study
in numerous physical applications, such as Josephson
arrays. ferromagnetic materials, charge density waves,
smectic liquid crystal dynamics |1 -35]. Actually, the
$SG equation and the DSG equation also arise in non-
linear optics, *He spin waves and other fields. In a
resonant fivefold degenerate medium, the propagation
and creation of ultra-short optical pulses, the $SG and
the DSG models are usually used. However, in some
cases, one has to consider other sine-Gordon equa-
tions. For instance, the TSG equation is used to de-
scribe the propagation of strictly resonant sharp line
optical pulses |6].

Due to the wide applications of sine-Gordoen-
type equations, many sclutions to them in different
functional forms. such as tan~'coth&. tan~'tanh&,

tan~'sech &, tan~’ sn&, have been obtained by differ-
ent methaods [7—12]. Due to the special forms of sine-
Gordon-type equations, it is rather difticult to solve
them directly, so there is need [or some appropri-
ate transformations. [n this paper, based on the intro-
duced transformations, we will show systematical re-
sults about solutions for the DSG equation (2) by us-
ing knowledge of elliptic equation and Jacobian elliptic
functions [13-19].

2. The First Kind of Transformation and Solutions
to the DSG Equation

[n order to solve sine-Gordon-type equations, cer-
tain transformations must be introduced. For example,
the transformation

w=2tan"'v or vztang, 4)

has been introduced in [7,9] to solve the DSG equa-
tien.
When the transformation {(4) is considered, we have

2tan# 2y
- z
sinu = = : 5
s 1 -I—tzml% 1+12 (3)
and
2 4v
e (6)

tes = ]—I—uzuu_ (1++2)2

Combining (5) and (6) with (2, the DSG equation
can be rewritten as

(U2 v — 2vvuy — (@4 2By - (- 2B =0, (7)
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which can be solved in the frame

v=v{&).

where £ and ¢ are wave number and wave speed. re-
spectively.
Substituting (8) into (7), we have

E =kix—cr), (8)

div dv
PN ST SR o
(14 )ddjz QL(dé) o v —f (VR )]
with
o+ 2P o -28
I —— Zh —— ]
0= P a0

And then we suppose (9) has the following solution
by #0, y=x(£). (D)

where y satisfies the elliptic equation [ 13- 17,20]

VP =aotayttan’, aa#0. (12)
with y' = gg then
o= ay Zaﬁb\-‘“. (13)

The s in (11) can be determined by the partial bal-
ance between the highest order derivative terms and the
highest degree nonlinear term in (9). Here we know
that the degree of v is

oy} = 0" =n. (14)

and from {12} and (13). one has
o0(%) = 00" =4

Y)Y =001 =13, (15)

and actually one hag

o =141. (16}
So one has
Olv)=n, O )=n+1,
(vi=n. O)=n+l, a7

oWy =n+2, OW')y=n+1.
For the DSG equation (2), we have » = 1, s0 the

ansatz solution of (9) can be rewritten as
v =by+ by,

by #0. (18)

Substituting (18} into (9) results in an algebraic
equation [or v, which can be used to determine expan-
sion coefficients in (18) and some constraints can also
be obtained. Here we have

by =0, (19a)
7 oy

by = 20 {15b)
7 204 .
b,—aﬁ_ﬁl. {19¢)

From (19b) and (19¢), the constraints can be deter-
mined as

2a4

az— f

ay +
2eg

=0, >0, (20

and

(03 — dagas)k*e? +4Barklc — (02 —4B%) =0, (21)

with
48%a3 4 (a3 — dapay) (e —48%) 2 0. (22)
It is worth noting that if ag = 0, then we have
- 2
by=0, bP=_—24_ (23)
a2 — P
with the constraint
2
arto =0, 2 g (24)
ar~ [

Considering the constraints {20) and (22) or (23) and
(24}, the solutions to the elliptic cquation (12) can be
used to derive the final results. Here some cases can be
obtained.

Case L. Ifay=0,a; =1, a4 = —1.then
y=sechf., by=0,
M a+2 +2 (25)
b=y -2t
y o k2
with constraint
o+ 2
—'B<0, (26)

where & is an arbitrary constant. So the solution to the
DSG equation (2) is

seché ).

/
= 2tan"1{i:\(f—a_;2'6 27)
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Case 2, Ifay =0, a3y =1, a4 = 1, then with constraint
y= CSChé by =10, 012' < 4&2' (38)
la+2 o432 (28) ) ) .
b = J_\I 'B L e= 0 P . where £ is an arbitrary constant, So the solution to the
DSG equation {2) 18
with constraint
o428 | {28+ tanhé
2TE2 o0, 29 =2t (i j 7) 39
a (29 us A \/Qﬁ—u]iseché (39)
where £ 15 an arbitrary constant. So the solution to the ) 5 , )
DSG equation (2) is Case 6, If ay :-I -t dr = 2wt — 1, g4 = —m’,
where O =2 s << | 15 called the modulus of Jacobian
2 I lions _ "
2tan_|( \f o+ 'Bn.%ché (30) elliptic functions [21 —23], then
y= cn&, by =0,
Case . Ifan =1, = ---2, a4 == |, then )
Fog - 2B 4 (2m — 1)k2%e
y =lanh&., by =0, b == \
: i v . ! \/ 2l —mikle (40)
28+ o —4f? (31) :
b =+ L e=—— 5 a2 7 _ T2
b szﬁ il RAE oo A =2mhB =y /a? — 1687 (1 - o)
k?
with constraint .
wilh
~ 5
o <487, (32) 2 5
p ot — 1681 w20, 0<m<1, @)

where £ is an arbivary constant, and cng is the Jaco-

where & is an arbitrary constant. So the solution to the
bian elliptic cosine function [20-23]. So the solution

DSG equaiion (2) is
L ,—_
iy Otan | \/ - Lmhg} (33) to the DSG equation (2} is
f 2 W2
Cased. Ifag=1.a» = —2, as = 1. then it = 2tan ](+ 0.+ 2B+ (2m ﬁ L)% cné). 42)
2(1 — m3kte
v=cothf, bHy=0,
“m o —48? (34) Case 7. Ifag — —m", a0 = 2 — 1, a4 = | — i,
b=+ . = — then
\ 28—« 8Bk |
with constraint y=ne§ = e’ bo =0
o < 482, (35) [ a+2B+(2mr— 1)k
b|=j:\/— i (zq ) ; (43)
where & is an arbitrary constant. So the solution to the 2mtkte
DSG equation {2) 1s 2(1 —sz)ﬁ + \/ag— |6ﬁ2m2(] _mz)
a i ‘
_ —1 128 + e ﬂ)
g = 2an (i V 25— hE ) 36 .
et — 16 (1 —m?) >0, O<m<1, (44)

Case 5. Itapg= 3,42 = % iy = % then
. tﬂ"hé 0 where & 15 an arbitrary constant. So the solution to the
1 £sechs’ 0 PSG equation (2) is
128+ o’ — 43 67 /
! L =r _ =20+ {2m>— 1)k
2B ur=2tan l(i v’ B 2»(12L2 “ne ’g’) (45)

h - Vz.ﬁ o
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Case 8. Ifay = |, a3 =- 2m? — 1, ag = [m* — 1)m?
then

y=sdg E%? by =0
I Wile
by = Va"oc-l—?ﬁ +—2;m e (46)
2(] —2m?)B £ S0 —1682m2(1 - m?)
k'ﬂ B
with
o= 168%R (1 —m?) 20, O<m< |, (A7)

where & is an arbitrary constant, and sng is the Jaco-
bian elliptic sine function and dné is the Jacobian ellip-
tic function of the third kind [20-23], So the solution
to the DSG equation {2) is

[or+ 2B+ (2m? —
2k

142

ug = 2tan~ (&

sdg). (48)

Case 9. T ap = (m? -~ i, az =2m* — 1, as = |,

then
dné
:dl = T s —_—
¥ %é sn§ by =1
ll T
_ }‘OC—I—ZB—f— (2m? — 1)ide (49)
”'_iv 3(m? — Lymikec
21 — 208 £ /a2 — 168221 — mi2)
kz
with
16,9" 1—m)>0 O<m=<1, (50)

where k is an arbitrary constant. So the selution 1o the
DSG equation (2) iy

i
7 Ja+28 4 (2m - 1K

=2 ‘('W 5
“s an = v 2{m? — m*k%c

Casel). Ifag=1,ax=

dsf;). (51

—(1+ mz), a4 = m2, then

y=snf, by=0

/’ltx—'-.—Zﬁ — (1 + mHk3c
282 ’ (52)

(1 +am?)B £ /(1 - m22o2 + 1652m?
{1 —m?)2§? ’

by ==
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with

28 .

. <m<l,

> (1 - mh), (53)

where & is an arbitrary constant. So the solution to the
DSG equation (2) is

2
+ m2)k? L
tyg = 2tan )

( \/CH—QB (14

2kic ) (34)

Case 11. [fag =1, 4> = — (1 —|—m'-’), a4 = m?, then

g

=cdé = . =

y=cdg e by =
ftx+2ﬁ — (1 4+ m)i2e

= 44!
bi =y - (55)
2l +m)B+ (1 - m)2ed + 168%m*
¢©= (1— )ka :

with
5;8 (1+m”). 0<m<l, (56)

where k is an arbitrary constant. So the solution t the
DSG equation (2) is

fo+2B— (1 rmiik

2kte

uyy = 2tan I(

cdaj). (57)

Case 12, [fay = m®, a3 ="— (1 + m*). aq = 1, then

1
J, = ﬂhé = E, bi] = 0
[ +28 — (1 + m2¥le
+
by = \/ 2miie (5%)
_ +mf £ /(1 — w220 + 160%m?
(1 Vi :
with
2
kf (I4+m?), 0<m=<1, (5%

where & is an arbitrary constant. So the solution 1o the
DSG equation (2) is

o+28 (1
Zm-r‘c ¢

2);(2L.

ty1 = 2tan '( \(x ns&). {60}
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Case 1. fay =m*, ax = —(1 +m*), ey = | then  with
E 2
yodeb =35 40 ;B+(2 my <0, D<m<l, (68)
- ené’ ' ke
P /oc +28 — (1 +mi3¢ (61 where & is an arbitrary constant. So the solution to the
PEEY IR ‘ ) DSG equation (2} is
21+ + /{1 —mi)al 4+ 16 2m2
(4B ";, p / a4 28+ (2 — m)kec
(1 — 242 wys = 2tan” (+ e r:). (69)
with > 2
Casel6, Ifap = l.ax =2 —m", as = 1 —m*, then
2B 2 .
>(14+m%), Dam<l, (62)
ke y:scézzzé. by =1}
where & is an arbitrary constant, So the solution to the / : —
DSG equation (2) is by O 2B+ (2 —mi)kie (70)
L= \/ 2420 b
2
26 — (1 +m?)k? 2 202 I —m2
) = 2tan~! (i\/‘” f—(1+m?) Cm:@). 3 _ Am —2)B+ /el + (671 — )
2mikie mtke :
Case 14, Itay=—{| —m®h.an =2 -’ as = -1, with
then
2B 2
y=dn&, bo=0, @‘F(IZ*HI))U, O<m< |, (71)

o+20+(2 —mhikc

bl—:t\/—

2l —mBk2e (64)
2(m? — 2P £ Vrto? +1682(1 — m?)
- mAk? ’
with
2
’B+(2 -m?) <0, O<m<l, (65)

where k is an arbitrary constant. So the solution to the
DSG equation (2) is

[ at2B+(2- mik2e

= L T d {66
414 =2tan ( V 2{1 —mY)kc nf'j) (66)
Case 15. fay=—1, a3 =2 —m*, ag = — (1 — ),
then
Cndf= . h=0
y_n —dné* 0=
[ o428+ (2 - w2
= - . 67y
b iv pren : ¢
2m? =) & /o + 16871 - m?)
mk? ’

where kis an arbitrary constant. So the solution to the
DSG equation (2) is

ty5 = 2tan”! (ﬂ:\/a_l— £ ’2}53 T
¢

Nkl

scg). (72)

Case17. Ifag= | —w, ap =2 —m> ag= |, then

cn
y:csﬁzﬁ, by =0,
[+ 28+ (2—mh)k e

= : (713
d i&/ 2(1 - m)kc

. 2(m? 2B+ /mle? 16821 —m? )
€ k2

with
2’6+(2 m* 120, 0<m<1, (74)

where & is an arbitrary canstant, $o the solution to the
DSG equation {2) is

v Je=2B+(2-m)k
17 = 2tan (:\/ 2 —m Nk c

sE). (75)
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llm2
S

Case 18, [fay = =

y= li”fné. by =0,
B Z{tx—t—"ﬁ)——(l bt )k‘
b _L\/ T _
—{]—I—m B+ o+ B2(1 -
m2k2

(76)

I‘)
[

)

with
4B
ke
where & is an arbitrary constant. So the solution to the
DSG equation (2} is

+{1 1m0, 0<m<l, N

! 5
_ 2 +20)+ {1+ mc
— 2tan~! / /

iy = 2tan (iv‘ (0 —mg)k'zc

(78)
cné )
1£snES
Case 19. If ay = — 1]"’1, a; = —1 ‘2"’2~ 4 = #,
then
dng
=2 -0,
YT TEmsE’ bo -0,
If'_Q(a—Qﬁ}—l—{l +lej.{(2€1 (79)
\ (1 —m2}k2c
—(1 4w+ /mra?+ B2l —m )
N m2k? '
with
4 ,
kﬁ H{l+ml) <0, D<m<l, (80}
¢

where & 15 an arbitrary constant, So the solution to the
DSG equation (2) is

k)
’I A Y
28) + (1 +mAke
u|9:2tan_'(i ff—z(a+,ﬁ)+g —;—m) c
\n‘ d § {I—m*)kc (gl)
n
‘ I:I:msng)'
Case 20, If iy = % uy = —2_2’”:, ay = ﬂ_f-ti then
msné
] = N _0
¥ ]id £ b
2 — ke
blziv (U(l ﬁi@k“ m? (: (82)
2= m*)B= /(1 —mByor + fm?
°= {1 — m? )2 ’
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with
4 .
HB > (2 — m*).

where & is an arbitrary constant. So the solution to the
DSG cquation (2) is

0<m=<1,

(83)

[2(a +2B) (2-m2k2e
Hzﬂ:Zlan_'(:l:sz{a} B)gkg\ Ak
msné )
1 LdnE/"
Case 21, If ay = _11 (i = % aq — ;'{ then
sn g
= . by =0,
[+ceng 077
/ 2 1 -2mk2e
b|:iv'2(a+ ALl ame g5
ke
_ 2w = DB P (a? ~ 1)e? +,8~
m2(m? — [)k2
with
m{m* — e’ + B2 >0, 0<m<i, (36

where £ is an arbitrary constant. So the solution to the
DSG equation {2) is

2o+ 28) + (1 —2m?)k2e

wy) = 2tan ! (: V‘!

k¢ (87)
' sné )
l+ené)”
Case 22, Ifap = L ay = — 257 ay =" then
sné
=2 py=0,
T 0 ;
[2{a+28)— 2 —mDke
b=ty (ot ﬁ}sz_ mike (88)
o (2—m?)B ++/(1 —m?)o2 + Bim?
cT (1= m2)k2 ’
with
4 2 .
> 2, 0<m<l, (89)

where £ 1s an arbitrary constant. So the solution to the
DSG equation (2) s

vy = 2tan

_ [2(c+2B) — (2 — mL)k2c
Yy
(i \/ Ke (90)

1 indgng)'
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Remark 1. The solutions iy to 43z in terms of ra-
tional functions of elliptic functions have not been re-
ported in the litcrature, they are new solutions to the
DSG equation (2).

Remark 2. The solutions from ue to ez in terms of
Jucobian elliptic functions have not been givenin [11].

Remark 3. In [10], Peng solved the DSG equation
in form of
= sing | Asin2u. (el)
and obtained some solutions in terms of Jacobian ellip-
tic functions. He pointed out he can obtain solutions to
the DSG equation (2) with « = 1 when A = 0. How-
ever, his conclusion is wrong, for the coefficients of
solutions obtained in terms of sn ((40) in [10]), dn
({46 in [10]), ns (51} in [10]) and de ((52) in [107)
are imaginary, whereas they should be real. For exam-
ple, [rom the constraint (41) in [10]

(1 =m0 — 44 (L + mf ko ~ 442 — 1 =0, (92)

it A =0, then we have

(1—m?)w? -1 =0, (93)
1. &,
ko ==+ i (94)
Substituting {94} into solution (40} in [10]
[ {1+ mP)kew +2A4 +1
e Earuum[:t V’ (1+m Yk +24 +
2k (95)
sn (ks — co:)l,
we can show that the coefficient y % be-
comes
im or i with iiv—l1. (96)

So the solutions given by Peng in terms of sn ({40
in [101), dn ({46) in [10]}, ns ((51}in [10]) and dc ({52)
in [10]) are not real solutions. This is contrary to the
origin of the DSG equation (2).

Remark 4. Bascd on the above results, we can see
that when the auxiliary equation, such as the elliptic
equation (12), 1s applied to solve nonlinear evolution
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cquations, the constraints must be involved, otherwise,
the obtained solutions may be wivial.

3. The Second Kind of Transformation and
Solutions to the DSG Equation

The second transformation under congideration is

1 f H
ge=2tan (=) or —=ranz,
v v

a7
5 (97)

which has been introduced in |7] to solve the DSG
equation.

When the transtformation (97) is considered, there
are

2tan¥ 2v
sing = ——2— = = ) (98)
P+wmn?y 1402
and
4y
by = L (99)

RETRA

Combining (98} and (99) with (2), the DSG equation
can be rewritten as

(1 F 7 Yo — 2ovevg — {(—a 428 v+ (a +2B8 1" = 0.
(100}

We can see that the difference between (7} and (100}
is that the — & in (7) is replaced by o in (100), so the
solutions to (2) under the transformation (97) can be
casily obtained by replacing & by —a and v by % in
solutions from ) 10 23,

Casel. fag=0.4a2= 1,44 - —1, then
y=sech&. by~ 0,
— 101
N e T T B
S P 2
with constraint
— 2
%ﬁ >0, (102)

where & is an arbitrary constant. So the solution to the
DSG equation (2} is

—_—

Hay = 2tan” ! (ﬂ: / cosh ﬁ) .

o
Y (103)
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Case 2. Ifay=0,a: =1, a4 = 1, then

v=ucschg, by=0,
:t/ oH—Zﬁ  —ua=2f (164
y =F
with constraint
—x+2
T+ﬁ<0, (105)

where & is an arbitrary constant. So the solution to the
DSG equation (2} is

thg) (106)

Moy = 21an~" ( \/ -

Case3. Ifay=1,¢:=—2,a4 =1, then

v=tanhé, By=0,
- /mf c——w, (107)
\V2B+a 8Bk?
with constraint
ot < 48?, (108)

where & is an arbitrary constant. So the solution to the
DSG equation (2) recovers #g.

Cased. Hay=1,0:=-2,a4 =1, then
y=cothE, by =0,
28—« o2—apr (109
b == W, c= W
with constraint
o < 487, (110}

where k is an arbitrary constant. So the solution to the
DSG equation (2) recovers us.

Case 5. [fag = % an = —%.a.a; = 1. then
tanhé
= =0,
¥ I£scchE’ 0
i (111
. 2,8 « o —48°
\/2,8+a T 2Pk

Exact Jacobian Elliptic Function Selutions to the Double Sine-Gordon Equation

with constraint
ol < ap?, (112)

where & is an arhitrary constant. So the solution to the
DSG equation (2) is

_ .2,3+(xl:l:se(,h§
= 2tan ](i _____) 13
H25 \/ 2B - e tanhE ¢
Case 6. Ifag =1 - m”, a2 =2m° — 1, ay = —mi?,
then
veoné, =0,
f
—a 28+ (2m? — 1)} e
by ==
! \/ 2(1 — m2He (14)

_ 21 -2mB £ /o — 168%m? (1 — m?)
kz

with
a? l()ﬁzmz(l - mz) =0, O0<m< 1, (115)

where & is an arbitrary constant. So the solution to the
DSG equalion (2) 15

/ 2(1 —m2)k2e
= 2tan! (i )
Hae - \/ -+ 23 + (2»12 - 1)&2 P ¢
(116)
Case 7. fap = —m%, ax = 2m° — 1, ay = 1 — m?,
then
y=nc&, bhy=0,

| —a+2B+(@m— )k

b=y 22K (i
2(1—2m*)B £ /02 - 1682m2 (i — m?)
= kz .
with
a? —1682m* (1 —m*) >0, O<m< 1, (118)

where k is an arbitrary constant. So the solution to the
DSG eguation (2} is

/ 2mikic
27 =2tan~"! (i - : )
w2 an \/ ~0 28 4 (2m? — I):f("’cmg

(119
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Case 8. May =1, ar =2m? — 1, ay = [m* - )2,
then
_\-‘—.‘;dﬁ. b(}zo._
—a+ 2B+ (2md — 1o
b =+

_20- 2mHB £ o —

16322 (1 — m™)
2 ’

with
o’ — 1687

where & is an arbitrary constant. So the solution to the
DSG equation (2} is

mrl—m?) =0, D<m<1, (121)

=2tan ](i e ds&)
= ot 2B+ (2m — 1
(122)
Case 9. Ifap = (m2 - l)mz, ay=2mt -1, a4 =1,
then
y=ds&, By=0,
T
— @+ 28+ (2m? — 1}k
b =% 3
! \/ 2{m? — 1ymke (123
21 =2m5B £ /ot — 1682m (1 — m?)
— 7 ,
with
ol =168 (1 —m?) >0, 0<m< 1, (124)

where & is an arbitrary constant. So the solution to the
DSG equation (2) is

‘sdﬁ).
(125)

/ 2{m? — 1)m2k2c
—tan”! (+ - :
H2o = ~tan \/ et 2Bt (2m? Dk

Case 1 Ifag =1, a3 = — (1 + 7). ag = m", then

}":Sl'lé,

e 2B - (L mPi2e
== e ’

21+ m?)B + (1 —m2)2a2 + 1682m?
(1 —m2)242 :

(126)
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with

Zﬁ

l—l—m} O<m<1, (127)

where k is an arbitrary constant. So the solution to the
DSG equation (2} is

f
! 2k

w=2tan ' (:t __ns )
Hao an \/ —o+28-(1+ mz)kzr:m5
(128}

Case 11 WWauy=1, a3 = —(1 +m?), 2y = m?, then

y=cd, by=0,

—a+28— (1 +m" ¥’
242 : (129)

b = iv/

201 +m)B £ /(1 —m?) 202 4 1682m?
(1 w2 :
with
RZ:S (l—i—m) O<m<1, {130)

where & is an arbitrary constant. So the solution 1o the
D8 equation (2) is

23
_ 1 -
w1 = 2an (i'\/—a+2ﬁ—(1+m2)kzcdbé)'

(1313
Case 12. Ifay = m?, a3 = —(1 +m?), ag = 1, then

y=ns§. by=0,
—a+2f—(1+m?le
by = i\/ SPTER , (132)
2(1+m ,B:i:\/ 1—m2 2oe—+1£>,8—m2
{1-
with
2
kf > (l+m’), O<m< |, (133)

where & is an arbitrary constant. So the selution to the
DSG equation (2) 1s

H3y = 2tan I(i\/

2m2kle sné)
—o 428 — (| +md)ke ’

(134)
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Case 13, Ifag = m?, az = — (| +m?), ay = 1, then

y= dC-.J:. f)() = {),

[—0+2B — (1 +m2k2e

b :iV 2mike (133)
201 +mB L (T —mD)2al + 1682m?
- (1 m’i)QkZ .
with
2 ,,
.—’8>(l+m“), O<m< 1, (136)
kzc.

where £ is an arbitrary constant. So the solution to the
DSG equation (2) is

r

2mPkle
—x+23— (1t mz)kzc('dg)
(137)

uy = 2tan ! (:t V'I‘

Case 14. Ifay= —(1 —m?), a3 =2 —m?, as = —1,
then

y=dng, bp=0,
/ Vi 2,
o [
2w =2 = mPo? + 1687 (1 — m?)
- w2 i
with
28 2 .
m+(2—m}<(l 0<m<1, {139)

where k is an arbitrary constant. So the solution o the
DSG equation (2} 15

2{1 —m?)i?e
|
_ _ dé).
i34 = 2tan (:t\/ —a+2ﬁ+{2—m3)k2cn §)
(1403

Case 15, Ifay = —l,ar =2 —m>, aq - —(1 —m?),
then

y:ndés b(J:{)s

[ —a=2B+(2-m )k
blziv* TP (141)

20m? — 23 £ /mia? + 1682(1 —m?)
i

c=

with

2f8
ke

+(2—m*) <0, D<m<l. (142)
where & is un arbitrary constant. So the solution to the

DSG equation (2) s

oo if | 22 0
5 = 2lan~ (: 5 ’).
a3 an v —0+ 20+ {2 - mk¢ e
(143
Case 16. 1lap ~ |, a2 =2 —m", as = 1 —m?, then
¥y scé. b[} =0,
[0+ 2B+ (2 —m2)kic
By = .
b=y T (144)
2(m? — P+ /me? + 1682(1 —m?)
[ A R
mi ’
with
2 5
R—z'ﬂ—+(2—m~)>0, 0<m= 1, (145)
¥

where £ is an arbitrary constant. So the solution to the
DSG equation (2) is

/ 2k%e @)
i) 8 .
\." —a+2f+(2- mz)kzcc

{146
Case17. Ifay =1 —w?, ar =2 —m%, uq = |, then

3 = 2tzn ! (-:

y=cs&, by =0,

f—a +28+(2 - mHke

et AT e (147
2wt =Bk mio? + 1682(1 —m?)
€= mik? '
with
§£_+(271312)>0, 0<m< |, (148)

where & is an arbitrary constant. So the solution to the
DSG equation (2) is

N f.’r 2{1 —mhk3e
V' ar2B+(2-mie

iy = 2tan™! (

scé).
(149)
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Case 18, Ifag = *
ené
I+sné’
far o IIER
Ja— f2( (x+.2,f3)+j(]?+m % c‘
\/ (1 - mkic
(l—t—m“ i \/m a4 B1 —m?)?
mrk?

g = | —nr

5
I4m-
7

y= by = 0.

(150

with
48
k2
where k is an arbitrary constant. So the solution to the
DSG equation (2) is

+(1+m) >0 0<m<l, {151)

qu=2tan_t(i : (1_ -

l:tsnﬁ)
cnE
Case 19, Ifag = — ]"4”"2 Lty = — '*2’”2, thy = "f’l,
then
dné
=, hy=0,
¥ [ £ msnE’ (i
2,
by L[ 2ai2p) +(lj+m)k (153)
& (1= n)icc
—(1-mHf £ /mla? + Bl —m?)?
mk? ?
with
4
kz'BJr(ler) <0, OD=m<l, {154)

where k is an arbitrary constant., So the solution to the
DSG equation (2) is

2tan”! (:l: Iu"lf_ (1—m?)i?e
p3g = 2t - 5
’ T2 a2+ (i mmbkie (55
B j:msné)
dné ’
Case 20, If ap = %, a = 2’2‘“2. 5"‘1—1 then
- msn‘g’ bo =0,
3 Tané ;
2
/ (—or+283) k’[Q m <156
. (2—mH)B £ /(L -m)e? — pem?
¢ (1— m)i2 ‘

with

48

e D<m=<1,

> (2 —m?). (157)

where £ is an arbitrary constant. So the solution to the
DSG equation {2) is

I

2tdn"'< - ke
Wy = £l =
0 V 2(—a+28)— {2 —nP)ic (158)
_ l:tdn&)
msné /-
Case21. If ug = &, ar = =27 4y = | then
sné
= . ha=0,
lxené’ ¢
I
C2A—et28) {1 - 2mP)i2e
by ::\/f o .59
e (2m* — 1B = mi{m? — Do + B?
N n2(m? — 1)k?
with
mim® — D+ B2 >0, 0am<l, (160

where £ is an arbitrary constant. So the solution to the
DSG equation (2) iy

7] *Zmn_I(A K
e “Va2—a+2B)+ (1 - 2md)ie
licnﬁ)
sné /
(lel}
Case 22, Ifao—fq =—2’2”’2,a4:% then
sné
== by=1.
| £dn& 0=0,
[2(—o+2B) — (2—mDk2e
b=y o , (6
2=mhHp /(0 - mh)at 4 Bt
= (I—m2)k2 ’
with
4
B > (2— m) 0<m<l, (163)
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where & is an arbitrary constanl. So the selution to the
DSG equation (2) is

/ .
! e
wip o 2tan W =/ PIvE
( V 2(—o+28) - (2 w2 (164)
1=dné
. sné )

Remark. Most of the solutions [rom sz Lo ug:
in terms af lacobian elliptic functions have not been
given in the literature.

4. Conclusion

In this paper, two transformations are introduced
to solve the double sine-Gordon equation by using
knowledge of the clliptic cquation and Jacobian ellip-
tic functions. It is shown that ditferent transtormations
can be used to obtain more kinds of solutions to the
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