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Periodic Solutions to KdV Burgers Kuramoto Equation∗
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Abstract In this paper, a new special ansatz solution, where elliptic equation satisfied by elliptic functions is taken as
an intermediate transformation, is applied to solve the KdV-Burgers-Kuramoto equation, and many more new periodic
solutions are obtained, including solutions expressed in terms of Jacobi elliptic functions, solution expressed in terms of
Weierstrass elliptic function.
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1 Introduction
Many phenomena are simultaneously involved in non-

linearity, dissipation, dispersion and instability. As
Kuramoto[1] suggested, KdV-Burgers-Kuramoto equa-
tion[2−4]

∂u

∂t
+ u

∂u

∂x
+ α

∂2u

∂x2
+ β

∂3u

∂x3
+ γ

∂4u

∂x4
= 0 (1)

is an appropriate model to describe these phenomena,
especially at the description of turbulence processes,[2,4]

where α, β, and γ are constants. Equation (1) is also
known as the Kuramoto–Sivashinsky equation[2,3,5] or
Benney equation.[4]

In order to well understand various nonlinear phe-
nomena, many methods for obtaining analytical solu-
tions of nonlinear evolution equations have been pro-
posed, among which are the homogeneous balance
method,[6] the hyperbolic function expansion method,[7,8]

the Jacobi elliptic function expansion method,[9,10] the
trial function method,[4,11] the nonlinear transformation
method,[5,12−14] the inverse scattering method,[12] trun-
cated expansion method,[15] and so on.

The solutions of KdV-Burgers-Kuramoto equation
possess their actual physical application, which is
the reason why so many methods, such as trial-
function method,[4] Weiss–Tabor–Carnevale transforma-
tion method,[5], homogeneous balance method,[6] tanh-
function method,[7] and so on, have been applied to obtain
the solutions to KdV-Burgers-Kuramoto equation.[15,16]

But no method is both convenient and able to be used to
get as many solutions as possible. Weiss–Tabor–Carnevale
transformation method, tanh-function method, and ho-
mogeneous balance method are complex in deducing the
solution to KdV-Burgers-Kuramoto equation. No explicit

solution and parameter constraint were given in Ref. [7],
and only one special case was considered in Ref. [6], so
only a special solution was given. Trial-function method
is a simple one, some solutions can be easily obtained,
too. However, all solutions to KdV-Burgers-Kuramoto
equation given in the literature are expressed in terms
of hyperbolic functions, exponential function or other el-
ementary functions. To our knowledge, no solutions in
terms of special functions have been reported. Generally,
there is no solution in terms of special functions to non-
linear equations where odd-order derivative term(s) and
even-order derivative term(s) coexist.[10] For example, we
cannot obtain solution in terms of Jacobi elliptic func-
tion or Weierstrass elliptic function to Burgers equation
or KdV-Burgers equation.[17] But, for some of this kind
of nonlinear evolution equations, just like KdV-Burgers-
Kuramoto equation, under certain conditions, there can
exist solutions in terms of special functions, such as Ja-
cobi elliptic function and Weierstrass elliptic function.

Actually, elliptic equation can be taken as an interme-
diate transformation to solve nonlinear wave equations,[18]

and to derive many periodic solutions and solitary wave
solutions. In this paper, we will revisit elliptic equation
method and apply it to obtain periodic solutions in terms
of Jacobi elliptic function and Weierstrass elliptic function
to KdV-Burgers-Kuramoto equation and compare them
with solutions given in Refs. [4] ∼ [7], [15], and [16].

2 Jacobi Elliptic Function Solutions to
KdV-Burgers-Kuramoto Equation
In order to solve Eq. (1), the following transformation

u = u(ξ) , ξ = k(x− c0t) (2)
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is needed, where k is called wave number and c0 is wave
speed.

Substituting Eq. (2) into Eq. (1) yields

−c0
du

dξ
+ u

du

dξ
+ αk

d2u

dξ2
+ βk2 d3u

dξ3
+ γk3 d4u

dξ4
= 0 . (3)

Integrating Eq. (3) once leads to

−c0u +
1
2
u2 + αk

du

dξ
+ βk2 d2u

dξ2
+ γk3 d3u

dξ3
+ c1 = 0 , (4)

where c1 is an integration constant.
We suppose that equation (1) takes the following

ansatz solution,

u(ξ) = A0 + A1y + A2y
′ , (5)

where y satisfies elliptic equation.[19]

Remark 1 Contrary to the general function basis ex-
pansion methods, which only take expansion of different

powers of the basis function as ansatz solution, here we
take into the derivatives of basis function in the ansatz
expansion solution. Doing so is due to the special form
of the KdV-Burgers-Kuramoto equation, where odd-order
derivative term(s) and even-order derivative term(s) coex-
ist.

First we consider the following case,

y′2 = ay + by2 + cy3 , (6)

then

y′′ =
a

2
+ by +

3
2
cy2 , (7a)

y′′′ = (b + 3cy)y′ , (7b)
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1
2
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(
b2 +

9
2
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)
y +

15
2

bcy2 +
15
2

c2y3 . (7c)

Combining Eqs. (6) and (7) with Eq. (5) leads to

u′ =
(1

2
aA2 + A1y

′
)

+ bA2y +
3
2
cA2y

2 , (8)
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2)y + (A2
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2)y
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2y
3 , (9)

u′′ =
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2
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′
)

+ (bA1 + 3cA2y
′)y +

3
2
cA1y

2 , (10)

u′′′ =
(
bA1 +

1
2
abA2

)
+

[
3cA1y

′ +
(
b2 +

9
2
ac

)
A2

]
y +

15
2

bcA2y
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15
2

c2A2y
3 . (11)

Substituting Eqs. (5) and (8) ∼ (11) into Eq. (4) results in
1
2
cA2

2 +
15
2

γk3c2A2 = 0 , (12a)

1
2
(A2

1 + bA2
2) +

3
2
cαkA2 +

3
2
cβk2A1 +

15
2

bcγk3A2 = 0 , (12b)

−c0A1 +
1
2
(2A0A1 + 2A1A2y

′ + aA2
2) + bαkA2 + βk2(bA1 + 3cA2y

′) + γk3
[
3cA1y

′ +
(
b2 +

9
2
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)
A2
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= 0 , (12c)

c1 − c0A0 − c0A2y
′ +

1
2
(A2

0 + 2A0A2y
′) + αk

(1
2
aA2 + A1y

′
)

+ βk2
(1

2
aA1 + A2y

′
)

+ γk3
(
bA1 +

1
2
abA2

)
= 0 , (12d)

from which one has

A2 = −15cγk3 , A1 = −15
4

cβk2 ,

A0 = c0 − βk2 − αβ

4γ
(13)

with k satisfying

(b− 3ac)k4 + 4(5b− 4)
α

γ
k2 − 4

α2

γ2
= 0 (14)

under the constraint

β2 = 16αγ . (15)

Actually, we know that the solutions to the elliptic
equation (6) are[19−21]

y = sn2(ξ,m) (16)

with

a = 4 , b = −4(1 + m2) , c = 4m2 , (17)

where 0 ≤ m ≤ 1 is called modulus of Jacobi elliptic func-
tions and sn(ξ, m) is Jacobi elliptic sine function;

y = cn2(ξ,m) (18)

with

a = 4(1−m2) , b = 4(2m2 − 1) , c = −4m2 (19)

where cn(ξ, m) is Jacobi elliptic cosine function; and

y = dn2(ξ, m) (20)

with

a = −4(1−m2) , b = 4(2−m2) , c = −4 , (21)

where dn(ξ,m) is Jacobi elliptic function of the third kind.
For these three basic Jacobi elliptic functions, there

are the following relations

sn′(ξ, m) = cn(ξ, m) dn(ξ, m) ,

cn′(ξ, m) = −sn(ξ, m) dn(ξ, m) ,
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dn′(ξ, m) = −m2 sn(ξ, m)cn(ξ,m) . (22)

So when a = 4, b = −4(1 + m2), c = 4m2, the solution to
Eq. (1) is

u1 = c0 − βk2 − αβ

4γ
− 15

4
cβk2 sn2(ξ, m)

− 30cγk3 sn(ξ, m)cn(ξ,m)dn(ξ, m) (23)

with k satisfying Eq. (14).
When a = 4(1−m2), b = 4(2m2 − 1), c = −4m2, the

solution to Eq. (1) is

u2 = c0 − βk2 − αβ

4γ
− 15

4
cβk2 cn2(ξ, m)

+ 30cγk3 sn(ξ, m)cn(ξ,m)dn(ξ, m) (24)

with k satisfying Eq. (14).
When a = −4(1 − m2), b = 4(2 − m2), c = −4, the

solution to Eq. (1) is

u3 = c0 − βk2 − αβ

4γ
− 15

4
cβk2 dn2(ξ, m)

+ 30cγk3m2 sn(ξ,m)cn(ξ, m)dn(ξ,m) (25)

with k satisfying Eq. (14).
Moreover, it is known that when m → 1, one has

sn(ξ,m) → tanh ξ, cn(ξ, m) → sech ξ, dn(ξ,m) → sech ξ

and when m → 0, one has sn(ξ,m) → sin ξ, cn(ξ, m) →
cos ξ. So we also can derive more kinds of solutions ex-
pressed in terms of hyperbolic functions and trigonometric
functions.

3 Weierstrass Elliptic Function Solutions to
KdV-Burgers-Kuramoto Equation
Secondly, we consider y in ansatz solution (5) satisfy-

ing the following case,

y′2 = 4y3 − g2y − g3 , (26)

then

y′′ = −1
2
g2 + 6y2 , (27a)

y′′′ = 12y′y , (27b)

y(4) = −12g3 − 18g2y + 120y3 . (27c)

Combining Eqs. (26) and (27) with Eq. (5) leads to

u′ =
(
−1

2
g2A2 + A1y

′
)

+ 6A2y
2 , (28)

u2 = (A2
0 + 2A0A2y

′ − g3A
2
2)

+ (2A0A1 + 2A1A2y
′ − g2A

2
2)y

+ A2
1y

2 + 4A2
2y

3 , (29)

u′′ = − 1
2
g2A1 + 12A2y

′y + 6A1y
2 , (30)

u′′′ = − 12g3A2 + (12A1y
′ − 18g2A2)y

+ 120A2y
3 . (31)

Substituting Eqs. (5) and (28) ∼ (31) into Eq. (4) re-
sults in

2A2
2 + 120γk3A2 = 0 , (32a)

1
2
A2

1 + 6αkA2 + 6βk2A1 = 0 , (32b)

− c0A1 +
1
2
(2A0A1 + 2A1A2y

′ − g2A
2
2) + 12βk2A2y

′

+ γk3(12A1y
′ − 18g2A2) = 0 , (32c)

c1 − c0A0 − c0A2y
′ +

1
2
(A2

0 + 2A0A2y
′ − g3A

2
2)

+ αk(−1
2
g2A2 + A1y

′)− 1
2
βk2g2A1

− 12γk3g3A2 = 0 , (32d)

from which one has

A2 = −60γk3 , A1 = −15βk2 , A0 = c0 −
48γ2k4g2

β
,

k = ±

√
α

2γ

√
1

3g2
(33)

under the constraint

β2 = 16αγ . (34)

So the solution to Eq. (1) is

u4 = A0 + A1y + A2y
′ = c0 −

48γ2k4g2

β

− 15βk2℘(ξ, g2, g3)− 60γk3℘′(ξ, g2, g3) , (35)

where ℘(ξ, g2, g3) is Weierstrass elliptic function, which
satisfies Eq. (26), see Refs. [19] ∼ [21].

Remark 2 To our knowledge, these periodic solutions
from u1 to u4 have not been reported in the literature.

4 Conclusion and Discussion
If we set

δ ≡ β2

αγ
, (36)

then
δ = 16 . (37)

Similar constraint was given in Refs. [4] and [5], where
they obtained solutions to Eq. (1) expressed in terms of
hyperbolic functions.[4−7,15,16] In this paper, under the
constraint (37), we derive more new periodic solutions
expressed in terms of Jacobi elliptic functions or Weier-
strass elliptic function, whose limiting solutions are those
expressed in terms of hyperbolic functions or trigonomet-
ric functions. To our knowledge, these solutions have not
been reported in the literature. Of course, there are more
constraints (see Refs. [4] and [5]), so solutions expressed
in terms of Jacobi elliptic functions or Weierstrass elliptic
function under these constraints deserve further studies.



818 JIANG Lei, CHEN Xi, FU Zun-Tao, LIU Shi-Kuo, and LIU Shi-Da Vol. 45

References

[1] Y. Kuramoto, Prog. Theor. Phys. 55 (1967) 356.

[2] T. Kawahara, Phys. Rev. Lett. 51 (1983) 381.

[3] R. Conte and M. Mussete, J. Phys. A: Math Gen 22
(1989) 169.

[4] S.D. Liu, S.K. Liu, Z.H. Huang, and Q. Zhao, Progress in
Natural Science 9 (1999) 912.

[5] N.A. Kudryashov, Phys. Lett. A 147 (1990) 287.

[6] L. Yang and K.Q. Yang, J. Lanzhou Univ. 34 (1998) 53.

[7] H. Lan and K. Wang, J. Phys. A: Math. Gen. 23 (1990)
3923.

[8] E.J. Parkes and B.R. Duffy, Phys. Lett. A. 229 (1997)
217.

[9] Z.T. Fu, S.K. Liu, S.D. Liu, and Q. Zhao, Phys. Lett. A
290 (2001) 72.

[10] Z.T. Fu, S.K. Liu, S.D. Liu, and Q. Zhao, Commun. in
Nonlinear Sci. and Numerical Simulation 8(2) (2003) 67.

[11] M. Otwinowski, R. Paul, and W.G. Laidlaw, Phys. Lett.
A 128 (1988) 483.

[12] P.G. Drain and R.S. Johnson, Solitons: an Introduction,
Cambridge University Press, New York (1989).

[13] Z.T. Fu, S.K. Liu, and S.D. Liu, Phys. Lett. A 299 (2002)
507.

[14] R. Hirota, J. Math. Phys. 14 (1973) 810.

[15] Z.T. Fu, S.D. Liu, and S.K. Liu, Chaos, Solitons and Frac-
tals 23 (2005) 609.

[16] Z.T. Fu, S.D. Liu, and S.K. Liu, Commun. Theor. Phys.
(Beijing, China) 41 (2004) 527.

[17] Z.T. Fu, L. Zhang, S.D. Liu, and S.K. Liu, Commun.
Theor. Phys. (Beijing, China) 41 (2004) 845.

[18] Z.T. Fu, S.D. Liu, and S.K. Liu, Commun. Theor. Phys.
(Beijing, China) 39 (2003) 531.

[19] S.K. Liu and S.D. Liu, Nonlinear Equations in Physics,
Peking University Press, Beijing (2000).

[20] V. Prasolov and Y. Solovyev, Elliptic Functions and Ellip-
tic Integrals, American Mathematical Society, Providence
(1997).

[21] Z.X. Wang and D.R. Guo, Special Functions, World Sci-

etific, Singapore (1989).


