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Abstract
In this paper, dependent and independent variable transformations are introduced to solve the
sine–Gordon (SG) equation by using the knowledge of elliptic equation and Jacobian elliptic
functions. It is shown that different kinds of solutions can be obtained for the (SG) equation,
including breather solutions and breather lattice solutions.

PACS number: 03.65.Ge

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

Sine–Gordon (SG)-type equations, including the (SG)
equation [1, 2]

uxt = sinu, (1)

the double SG (DSG) equation

uxt = αsinu +βsin2u, (2)

and the triple SG (TSG) equation

uxt = αsinu +βsin2u +γ sin3u, (3)

are widely applied in physics and engineering. For example,
the DSG equation is a frequent object of study in
numerous physical applications, such as Josephson arrays,
ferromagnetic materials, charge density waves and smec-
tic liquid crystal dynamics [3–7]. Actually, SG and DSG
equations also arise in nonlinear optics3He spin waves and
other fields. For example, in the context of differential geom-
etry, the SG equation’s solutions correspond to surfaces of
constant negative curvature [8], and these solutions are spa-
tially periodic, they can be a soliton lattice and a breather
lattice. Usually, breathers can directly affect electronic,
optical, and transport properties of a material [9–12]
due to the breather’s spatial localization and temporally
periodic characteristics. Specifically, they can enhance optical

nonlinearities in polyenes and related low-dimensional elec-
tronic materials [9, 10]. In a resonant five-fold degenerate
medium, the propagation and creation of ultra-short optical
pulses, the SG and DSG models are usually used. However, in
some cases, one has to consider other SG equations. For in-
stance, the TSG equation is used to describe the propagation
of strictly resonant sharp line optical pulses [13].

Due to the wide applications of SG-type equations,
many solutions to them, such as tan−1coths, tan−1tanhs,
tan−1sechs, tan−1sns and so on, have been obtained in
different functional forms by different methods [1, 2, 14–23].
Besides these solutions, there is a particularly interesting type
of solution called the breather solution and the breather lattice
solution. Typically analytical expressions for these breather-
type solutions are unavailable and such solutions have to be
traced by means of a numerical method [12, 24, 25]. In this
paper, based on the introduced transformations, we will show
systematical results about these breather-type solutions for the
SG equation (1) by using the knowledge of elliptic equation
and Jacobian elliptic functions [26–30].

2. The breather solution and breather lattice
solutions to the SG equation

In order to solve the SG-type equations, certain dependent or
independent variable transformations must be introduced. For
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example, the dependent variable transformation

u = 4tan−1v or v = tan
u

4
, (4)

has been introduced in [1, 2, 14] to solve the SG equation and
the DSG equation.

So, in order to derive the breather solution and breather
lattice solutions to the SG equation (1), first of all, we
introduce independent variable transformation

s = ax + bt + s0, r = cx + dt + r0, (5)

wheres0 andr0 are two constants.
Considering the transformation (5), equation (1) can be

rewritten as

abuss+ (ad+ bc)usr + cdurr = sinu. (6)

Compared to the transformation given in [1, 2],
transformation (5) has less constraints, of course, this will
let us have more different types of solutions to the SG
equation (1).

Next, we choose dependent variable transformation

u = 4tan−1

[
U (s)

V(r )

]
, (7)

just as given in [1, 2].
Substituting (7) into (6) yields

ab

[
(U2 + V2)

Uss

U
− 2U2

s

]
+ (ad+ bc)

[
(U2

− V2)
UsVr

U V

]
− cd

[
(U2 + V2)

Vrr

V
− 2V2

r

]
= V2

−U2. (8)

Successive differentiation of this result with respect to
boths andr results in

2abV Vr

(
Uss

U

)
s

− 2cdUUs

(
Vrr

V

)
r

+ (ad+ bc)

[
2U2

s

(
Vr

V

)
r

+ (U2
− V2)

(
Us

U

)
s

(
Vr

V

)
r

− 2V2
r

(
Us

U

)
s

]
= 0. (9)

In order to separate variables,a, b, c andd must satisfy the
condition

ad+ bc= 0. (10)

Thus we have

1

UUs

(
Uss

U

)
s

−
cd

ab

1

V Vr

(
Vrr

V

)
r

= 0. (11)

Here we assume thata2 + b2 + c2 + d2
6= 0, and from (11),

one has

1

UUs

(
Uss

U

)
s

=
cd

ab

1

V Vr

(
Vrr

V

)
r

= −4n2, (12)

i.e.

U2
s = −n2U4 +µ1U

2 + ν1, V2
r = −

ab

cd
n2V4 +µ2V2 + ν2.

(13)

Considering (8), (10) and (13), we have the separated
variable relations

U2
s = −n2U4 +µ1U

2 + ν1, V2
r =

a2

c2
n2V4 +µ2V2 + ν2,

(14)
and corresponding constraints

a2µ1 − c2µ2 =
a

b
, a2ν1 + c2ν2 = 0, d = −

bc

a
. (15)

Obviously, only whena = c, b = −d andb =
1
a , is (15)

the same as given in [1]; actually, we will see below that
this will omit some important solutions. Furthermore, not
all Jacobi elliptic functions satisfying (14) can satisfy the
constraints (15). Only some combinations of these Jacobi
elliptic functions are the solutions that the SG equation (1)
can admit. Next we will show the details.

First of all, let us examine some special cases, where the
solutions can be expressed in terms of elementary functions.
For convenience, we setµ1 = p2, ν1 = q2, then we have

U2
s = − n2U4 + p2U2 + q2,

(16)

V2
r =

a2

c2
n2V4 +

(
a2

c2
p2

−
a

bc2

)
V2

−
a2

c2
q2.

Case 1.n = 0, a2 p2
− a/b > 0, q = 0. Here (16) yields

u1 = 4 tan−1

[
γ exp

(
±ps±

√
a2

c2
p2 −

a

bc2
r

)]
, (17)

whereγ is integration constant, and solution (17) is called the
shelf-shaped solution [1].

Case 2.n = 0, a2 p2
− a/b > 0, q 6= 0. From (16), one has

u2 = ± 4 tan−1

[√
a2bp2 − a

a2bp2

×
sinh(ps+ c1)

cosh(
√

(a2/c2)p2 − a/(bc2)r + c2)

]
, (18)

wherec1 andc2 are constants of integration, and solution (18)
represents the collision of two solitons [1].

Case 3.n 6= 0, q = 0. Here three subcases are of interest.

Case 3a.a2 p2
− a/b > 0. The result is similar to (18). One

has

u3 = ± 4 tan−1

[√
a2bp2

a2bp2 − a

×
sinh(

√
(a2/c2)p2 − a/(bc2)r + c2)

cosh(ps+ c1)

]
, (19)

wherec1 andc2 are constants of integration.

Case 3b.a2 p2
− a/b = 0. The analytical solution is

u4 = ±4 tan−1
[(ap

c
r + c2

)
sech(ps+ c1)

]
, (20)
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wherec1 andc2 are constants of integration.

Case 3c.a2 p2
− a/b < 0. We obtain the breather solution

u5 = ± 4 tan−1

[√
a2bp2

a − a2bp2

×

sin
(√

a/(bc2) − (a2/c2)p2r + c2

)
cosh(ps+ c1)

]
, (21)

wherec1 andc2 are constants of integration.

The solutions above, expressed in terms of elementary
functions have been reported in [1], here we can recover
these solutions by using the above mentioned transformations.
Apart from these solutions, there are still some solutions
expressed in terms of suitable combinations of only some
Jacobi elliptic functions, but not all Jacobi elliptic functions.
Next, we will show these suitable combinations of some
Jacobi elliptic functions to satisfy the SG equation (1); there
are 13 cases which need to be addressed.

Case 1.WhenU = sn(s, k) andV = dn(r, m), where sn(s, k)

and dn(r, m) are the Jacobi sine elliptic function and the
Jacobi elliptic function of the third kind, respectively, andk
and m are their modulus [28–30]. And then from (14), we
have

n2
= −k2, µ1 = −(1 +k2), ν1 = 1,

(22)
a2

c2
n2

= −1, µ2 = 2− m2, ν2 = −(1− m2).

Substituting (22) into the constraints (15), the parameters
can be determined as

k = 1, m = 0, a2
= c2, b = −

1

4a
, d = ±

1

4a
, (23)

then the solution to the SG equation (1) is

u6 = 4 tan−1

[
tanh

(
ax−

1

4a
t + s0

)]
. (24)

Case 2. When U = ns(s, k) =
1

sn(s,k)
and V = nd(r, m) =

1
dn(r,m)

, and then from (14), we have

n2
= −1, µ1 = −(1 +k2), ν1 = k2,

(25)
a2

c2
n2

= −(1− m2), µ2 = 2− m2, ν2 = −1.

Substituting (25) into the constraints (15), the parameters
can be determined as

k = 1, m = 0, a2
= c2, b = −

1

4a
, d = ±

1

4a
, (26)

then the solution to the SG equation (1) is

u7 = 4tan−1

[
coth

(
ax−

1

4a
t + s0

)]
. (27)

The above two solutions,u6 andu7 are still two solutions
expressed in terms of elementary functions where the special
functions can only take their limiting forms.

Case 3.WhenU = sn(s, k) and V = nd(r, m) =
1

dn(r,m)
, and

then from (14), we have

n2
= −k2, µ1 = −(1 +k2), ν1 = 1,

(28)
a2

c2
n2

= −(1− m2), µ2 = 2− m2, ν2 = −1.

Substituting (28) into the constraints (15), the parameters
can be determined as

k2
= 1− m2, a2

= c2, b = −
1

2(2− m2)a
,

(29)
d = ±

1

2(2− m2)a
,

then the solution to the SG equation (1) is

u8 = 4 tan−1[sn(s, k)dn(r, m)]. (30)

This is the periodic breather lattice solution given and
analysed by [8, 12], when k → 0, i.e. m → 1, sn(s, k) →

sin(s), dn(r, m) → sech(r ), the breather lattice solution (30)
turns out to be a breather solution

u9 = 4tan−1

[
sin(s)

cosh(r )

]
. (31)

Figures1 and2 describe the space-time evolution of the
periodic solution of equations (30) and (31), for different
values of m and k, their behaviours are quite different.
Figure 1 shows the evolution of the breather lattice solution
with the periodic characteristics in both spatial and temporal
directions, while figure 2 is just the normal breather solution
which has the periodic characteristics just in a specific
direction.

Besides the above breather lattice solution, which has
been reported elsewhere before, there are still some which
have not been reported, and these solutions will be addressed
below.

Case 4. When U = cd(s, k) =
cn(s,k)

dn(s,k)
and V = nd(r, m) =

1
dn(r,m)

, where cn(s, k) is the Jacobi cosine elliptic func-
tion [28–30]. And then from (14) and the constraints (15), the
parameters can be determined as

k2
= 1− m2, a2

= c2, b = −
1

2(2− m2)a
,

(32)
d = ±

1

2(2− m2)a
,

then the solution to the SG equation (1) is

u10 = 4 tan−1[cd(s, k)dn(r, m)], (33)

when k → 0, i.e. m → 1, cd(s, k) → cos(s), the breather
lattice solution (33) turns to be another breather solution

u11 = 4 tan−1

[
cos(s)

cosh(r )

]
. (34)
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Figure 1. The upper panel shows the space-time evolution of the
breather lattice solution of equations (29) and (30), where the
parameters are chosen asa = 1, c = 1, m =

1
2 , s0 = r0 = 0, from

which the other parameters can be determined asb = −
2
7 , d =

2
7 ,

k =

√
3

2 . The middle panel shows the spatial profile att = 0 and the
bottom panel att = 10.

Case 5.WhenU = cn(s, k) and V = nc(r, m) =
1

cn(r,m)
, and

then from (14), we have

n2
= k2, µ1 = 2k2

− 1, ν1 = 1− k2,

a2

c2
n2

= 1− m2, µ2 = 2m2
− 1, ν2 = −m2. (35)

Figure 2. The upper panel shows the space-time evolution of the
breather solution of equations (29) and (31), where the parameters
are chosen asa = 1, c = 1, m = 1, s0 = r0 = 0, from which the
other parameters can be determined asb = −

1
2, d =

1
2, k = 0.

The bottom panel shows the spatial profile att = 10.

Substituting (35) into the constraints (15), the parameters can
be determined as

k2
= 1− m2, a2

= c2, b =
1

2(1− 2m2)a
,

(36)
d = ±

1

2(1− 2m2)a
,

then the solution to the SG equation (1) is

u12 = 4 tan−1[cn(s, k)cn(r, m)]. (37)

Case 6.WhenU = cn(s, k) and V = ds(r, m) =
dn(r,m)

sn(r,m)
, and

then from (14), we have

n2
= k2, µ1 = 2k2

− 1, ν1 = 1− k2,
(38)

a2

c2
n2

= 1, µ2 = 2m2
− 1, ν2 = −m2(1− m2).

Substituting (38) into the constraints (15), the parameters
can be determined as

1− k2
= k2m2(1− m2), k2a2

= c2,
(39)

b =
1

(3k2 − 2k2m2 − 1)a
, d = −

bc

a
,

then the solution to the SG equation (1) is

u13 = 4tan−1[cn(s, k)sd(r, m)]. (40)
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Case 7. When U = sd(s, k) and V = nc(r, m), and then
from (14), we have

n2
= k2(1− k2), µ1 = 2k2

− 1, ν1 = 1,
(41)

a2

c2
n2

= 1− m2, µ2 = 2m2
− 1, ν2 = −m2.

Substituting (41) into the constraints (15), the parameters
can be determined as

1− m2
= m2k2(1− k2), a2

= m2c2,
(42)

b =
m2

(2m2k2 − 3m2 + 1)a
, d = −

bc

a
,

then the solution to the SG equation (1) is

u14 = 4 tan−1[sd(s, k)cn(r, m)]. (43)

If the independent variable transformation given in [1] is
adopted, the breather lattice solutionsu13 and u14 can only
take their limiting form (i.e. breather solution)

u15 = 4 tan−1

[
sin(r )

cosh(s)

]
, (44)

where k = 1 and m = 0 is chosen in the breather
lattice solutionu13, k = 0 andm = 1 in the breather lattice
solutionu14.

Case 8. When U = ns(s, k) and V = dn(r, m), and then
from (14), we have

n2
= − 1, µ1 = −(1 +k2), ν1 = k2,

(45)
a2

c2
n2

= − 1, µ2 = 2− m2, ν2 = −(1− m2).

Substituting (45) into the constraints (15), the parameters
can be determined as

k2
= 1− m2, a2

= c2,
(46)

b = −
1

2(2− m2)a
, d = ±

1

2(2− m2)a
,

then the solution to the SG equation (1) is

u16 = 4 tan−1[ns(s, k)nd(r, m)], (47)

when k → 0, i.e. m → 1, the breather lattice solution (47)
turns out to be another kind of breather solution

u17 = 4 tan−1

[
cosh(r )

sin(s)

]
. (48)

Figure 3 describes the space-time evolution of another
breather solution of equations (46) and (48), where its
behaviour is quite different from that shown in figure2.

Case 9. When U = dc(s, k) and V = dn(r, m), and then
from (14), we have the same parameters determined as (46)
and then the solution to the SG equation (1) is

u18 = 4 tan−1[dc(s, k)nd(r, m)]. (49)

Figure 3. The upper panel shows the space-time evolution of the
breather solution of equations (46) and (48), where the parameters
are chosen asa = 1, c = 1, m = 1, s0 = r0 = 0, from which the
other parameters can be determined asb = −

1
2 , d =

1
2, k = 0. The

bottom panel shows the spatial profile att = 10.

Case 10.When U = nc(s, k) and V = cn(r, m), and then
from (14), we have

n2
= −(1− k2), µ1 = 2k2

− 1, ν1 = −k2,
(50)

a2

c2
n2

= −m2, µ2 = 2m2
− 1, ν2 = 1− m2.

Substituting (50) into the constraints (15), the parameters
can be determined as

k2
= 1− m2, a2

= c2, b =
1

2(1− 2m2)a
,

(51)
d = ±

1

2(1− 2m2)a
,

then the solution to the SG equation (1) is

u19 = 4 tan−1[nc(s, k)nc(r, m)], (52)

when k → 0, i.e. m → 1, the breather lattice solution (52)
turns out to be another kind of breather solution

u20 = 4 tan−1

[
cosh(r )

cos(s)

]
. (53)
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Case 11.When U = nc(s, k) and V = sd(r, m), and then
from (14), we have

n2
= −(1− k2), µ1 = 2k2

− 1, ν1 = −k2,
(54)

a2

c2
n2

= −m2(1− m2), µ2 = 2m2
− 1, ν2 = 1.

Substituting (54) into the constraints (15), the parameters
can be determined as

1− k2
= k2m2(1− m2), k2a2

= c2,
(55)

b =
1

(3k2 − 2k2m2 − 1)a
, d = −

bc

a
,

then the solution to the SG equation (1) is

u21 = 4 tan−1[nc(s, k)ds(r, m)]. (56)

Case 12.When U = ds(s, k) and V = cn(r, m), and then
from (14), we have

n2
= −1, µ1 = 2k2

− 1, ν1 = −k2(1− k2),
(57)

a2

c2
n2

= −m2, µ2 = 2m2
− 1, ν2 = 1− m2.

Substituting (57) into the constraints (15), the parameters
can be determined as

1− m2
= m2k2(1− k2), a2

= m2c2,
(58)

b =
m2

(2m2k2 − 3m2 + 1)a
, d = −

bc

a
,

then the solution to the SG equation (1) is

u22 = 4tan−1[ds(s, k)nc(r, m)]. (59)

Case 13.When U = nd(s, k) and V = nc(r, m), and then
from (14), we have

n2
= 1− k2, µ1 = 2− k2, ν1 = 1,

(60)
a2

c2
n2

= 1− m2, µ2 = 2m2
− 1, ν2 = −m2.

Substituting (60) into the constraints (15), the parameters
can be determined as

k2
= 2−

1

m2
, a2

= m2c2,

(61)

b =
m2

2(1− m2)a
, d = −

bc

a
,

then the solution to the SG equation (1) is

u23 = 4 tan−1[nd(s, k)cn(r, m)]. (62)

Similarly, if the independent variable transformation
given in [1] is adopted, the breather lattice solutionsu21, u22,
andu23 can also only take their limiting forms.

Figure 4 describes the space-time evolution of the
breather lattice solution of equations (61) and (62), whose
behaviour is different from what is shown in figure1. Actually,
all graphical presentations given in this paper are different,
small or large. When the modulusm or k is set as different
values, the breather lattice solutions given in this paper are
also different.

Figure 4. The upper panel shows the space-time evolution of the
breather lattice solution of equations (61) and (62), where the
parameters are chosen asa = 0.8, c = 1, m = 0.8, s0 = r0 = 0, from
which the other parameters can be determined asb = 0.889,
d = −1.111,k = 0.66. The bottom panel shows the spatial profile at
t = 10.

3. Conclusion

In this paper, dependent and independent variable transfor-
mations are introduced to solve the SG equation by using
the knowledge of elliptic equation and Jacobian elliptic
functions. It is shown that different kinds of solutions, such
as the breather solution and the breather lattice solution, can
be obtained to the SG equation. We can see that besides the
solutions expressed in terms of elementary functions, there
are still solutions expressed in terms of the different combi-
nations of Jacobi elliptic functions. However, not all the com-
binations of Jacobi elliptic functions are solutions to the SG
equation (1), only those that can satisfy the constraints (15)
can be solutions to the SG equation (1). Furthermore, when
different independent variable transformations are adopted,
there will be different results. For example, when we choose
the independent variable transformation

s = ax +
1

a
t + s0, r = ax−

1

a
t + r0, (63)

which is given in [1], some breather lattice solutions such
as u13, u14, u21, u22 and u33 expressed in terms of Jacobi
elliptic functions will be omitted. Under the independent
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variable transformation (5), all solutions can be expressed in
terms of the 13 basic Jacobi elliptic functions listed in this
paper, though there are only 11 combinations of Jacobi elliptic
functions that can satisfy the constraints (15).

The objective of this paper is to obtain more kinds
of breather lattice solutions, so we do not touch on the
stability of those solutions which are nonsingular in the whole
domain. Although we do not show the stability analysis to
our solutions, from the results for the SG equation given
by Kevrekidiset al [12] and for the (modified Korteweg-de
Vries) mKdV the equation given by Kevrekidiset al
[24, 25], we know that the solutions shown in this paper
are usually unstable, but not all solutions are unstable. Even
though the solutions are unstable, they can be stabilized by ac
driving or damping, this has been reported by Kevrekidiset al
[12, 24, 25].

Due to the wide applications of the SG equation, the
analytical solutions given in this paper will be helpful in
related research.
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