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1. Introduction

The sinh-Gordon (ShG) equation [1 – 8]

uxt = γ sinh u (1)

is widely applied in physics and engineering, for ex-
ample in integrable quantum field theories [1], non-
commutative field theories [2], fluid dynamics [3]. Due
to the wide applications of the sinh-Gordon equation,
many achievements have been obtained in different as-
pects [3 – 9]. For instance, the ShG equation is known
to be completely integrable [4] because it possesses
similarity reductions to the third Painlevé equation [5].

Due to the special form of the sinh-Gordon equa-
tion, it is difficult to solve it directly, so we need
some transformations. In this paper, based on the in-
troduced transformations, we will show systematical
results of the breather lattice solutions [10 – 12] for the
ShG equation (1) by using the knowledge of the elliptic
equation and Jacobian elliptic functions [13 – 15].

2. The Breather Lattice Solutions to the ShG
Equation

In order to obtain the breather-type solutions to the
ShG equation, we introduce the dependent variable
transformation

u

4
= tanh−1 w or w = tanh

u

4
, (2)
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which will let us rewrite the ShG equation (1) as

(1−w2)wxt + 2wwxwt − γw(1 + w2) = 0. (3)

Here one point must be stressed that not all trans-
formations can be applied to solve the ShG equation to
derive the breather-type solutions. In [9], the transfor-
mations

u

2
= sinh−1 w or w = sinh

u

2
(4)

and
u

2
= cosh−1 w or w = cosh

u

2
(5)

have been introduced to derive the periodic wave solu-
tions to the ShG equation, and many different kinds of
the periodic solutions expressed in terms of the Jacobi
elliptic functions have been listed [9]. However, it can
easily be checked that these two transformations can
not let us derive the breather-type solutions to the ShG
equation. Similarly, the transformations

u

2
= tanh−1 w or w = tanh

u

2
(6)

and

u

2
= tanh−1 1

w
or

1
w

= tanh
u

2
(7)

can not be applied to obtain the breather-type solutions
to the ShG equation.
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From the above discussion we know that the suit-
able transformation is really important for us to derive
different kinds of solutions to the ShG equation (1).

Next, we will introduce the independent variable
transformation

r = ax + bt + r0, s = cx + dt + s0, (8)

where r0 and s0 are two constants.
Considering the transformation (8), (3) can be

rewritten as

(1 − w2)[abwrr + (ad + bc)wrs + cdwss]

+ 2w(bwr + dws)(awr + cws) − γw(1 + w2)

= 0.

(9)

Compared to the transformation given in [16, 17],
transformation (8) has less constraints, of course, this
will let us have different types of solutions to the ShG
equation (3).

Inspired by the transformation given in [16] and the
results in [11, 12], we choose the dependent variable
transformation

w = αU(r)V (s), (10)

where α is a constant amplitude to be determined,
U and V satisfy the following elliptic equations:

U2
r = −nU4 + p1U

2 + q1,

V 2
s = −βnV 4 + p2V

2 + q2,
(11)

where β, n, p1, p2, q1 and q2 are determined constants
for the specific choice of U and V . Here one point
which must be stressed is that the introduction of β will
let us have more choices to obtain different kinds of
solutions to the ShG equation, and the specific choice
made in (11) is the result of variable separation; a sim-
ilar result can be found in [16] for the sine-Gordon
equation.

Substituting (10) and (11) into (9) yields the alge-
braic equations

p1a
2 − p2c

2 = γ
a

b
, (12a)

βnc2 + q1α
2a2 = 0, (12b)

q2α
2c2 + na2 = 0, (12c)

ad + bc = 0, (12d)

from which we can determine

α4 =
βn2

q1q2
,

a2

c2
= − βn

q1α2
= −q2α

2

n
,

p1a
2 − p2c

2 = γ
a

b
, d = −bc

a
.

(13)

From (13) it is obvious that the determined constants
in (11) must satisfy the constraints

β

q1q2
> 0,

q2

n
< 0,

βn

q1
< 0. (14)

This implies that not all combinations of Jacobi el-
liptic functions are solutions to the ShG equation (1)
under the above-mentioned transformations. Only the
combination of a couple of the Jacobi elliptic functions
satisfies the constraint (14); it can be a solution to the
ShG equation (1). Actually, there exist only 28 of these
kinds of combinations; we will address them in detail.

Case 1. When U = dn(r, k) and V = dn(s, m),
where dn(r, k) and dn(s, m) are the Jacobi elliptic
function of the third kind, and k and m are their mod-
ulus [18 – 20], then from (11), we have

n = 1, p1 = 2 − k2, q1 = −(1 − k2),

βn = 1, p2 = 2 − m2, q2 = −(1 − m2).
(15)

Substituting (15) into (13), the parameters can be
determined as

a2

c2
=

√
1 − m2

1 − k2
,

a

b
=

1
γ

[a2(2−k2)−c2(2−m2)],

d = −bc

a
, α = ±

[
1

(1 − k2)(1 − m2)

] 1
4

. (16)

Then the solution to the ShG equation (3) is

w1 = ±
[

1
(1 − k2)(1 − m2)

] 1
4

[dn(r, k)dn(s, m)],

(17)

which is a kind of the breather lattice solution.
When k → 0 (or m → 0), the breather lattice solu-

tion (17) turns to be a periodic wave solution

w1′ = ±
[

1
(1 − m2)

] 1
4

[dn(s, m)]. (18)

Case 2. When U = sn(r, k) and V = sn(s, m),
where sn(s, m) is the Jacobi sine elliptic function [18 –
20], then n = −k2, p1 = −(1 + k2), q1 = 1,
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βn = −m2, p2 = −(1 + m2), q2 = 1. From (13)
the parameters can be determined as

a2

c2
=

m

k
,

a

b
= − 1

γ
[a2(1 + k2)− c2(1 + m2)],

d = −bc

a
, α = ±

√
km. (19)

Then the solution to the ShG equation (3) is

w2 = ±
√

km[sn(r, k)sn(s, m)], (20)

which is another kind of the breather lattice solution.

Case 3. When U = sn(r, k) and V = cd(s, m) =
cn(s,m)
dn(s,m) , where cn(s, m) is the Jacobi cosine elliptic
function [18 – 20], then n = −k2, p1 = −(1 + k2),
q1 = 1, βn = −m2, p2 = −(1 + m2), q2 = 1.
From (13) the parameters can be determined as

a2

c2
=

m

k
,

a

b
= − 1

γ
[a2(1 + k2)− c2(1 + m2)],

d = −bc

a
, α = ±

√
km. (21)

Then the breather lattice solution to the ShG equa-
tion (3) is

w3 = ±
√

km[sn(r, k)cd(s, m)]. (22)

Figure 1A shows the space-time evolution of the
breather lattice solution of (21) and (22), where the pa-
rameters are chosen as a = 1, c = 2, m = 1

8 , γ = 1,
s0 = r0 = 0, from which the other parameters can be
determined as b = 32

45 , d = − 64
25 , k = 1

2 , α = 1
4 . Fig-

ures 1B and 1C show the spatial profile at t = 0 and
t = 10, respectively.

Figure 2A shows the space-time evolution of the
periodic solution of (21) and (22), where the param-
eters are chosen as a = 1

2 , c = 1, m = 1
4 , γ = 1,

s0 = r0 = 0, from which the other parameters can
be determined as b = 8

9 , d = − 16
9 , k = 1, α = 1

2 .
Figure 2B shows the spatial profile at t = 10.

Figures 1 and 2 describe the space-time evolution
of the periodic solution of (21) and (22), for different
values of m and k; their behaviours are quite different.
Figure 1 shows the evolution of the breather lattice so-
lution, while Fig. 2 is just the normal periodic solution.

Case 4. When U = cd(r, k) and V = cd(s, m),
then n = −k2, p1 = −(1 + k2), q1 = 1, βn = −m2,

(A)

(B)

(C)

Fig. 1. (A) Space-time evolution of the breather lattice so-
lution of (21) and (22), where the parameters are chosen as
a = 1, c = 2, m = 1/8, γ = 1, s0 = r0 = 0, from
which the other parameters can be determined as b = 32/45,
d = −64/25, k = 1/2, α = 1/4. (B) Spatial profile at
t = 0. (C) Spatial profile at t = 10.
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(A)

(B)

Fig. 2. (A) Space-time evolution of the periodic solution of
equations (21) and (22), where the parameters are chosen as
a = 1/2, c = 1, m = 1/4, γ = 1, s0 = r0 = 0, from
which the other parameters can be determined as b = 8/9,
d = −16/9, k = 1, α = 1/2. (B) Spatial profile at t = 10.

p2 = −(1 + m2), q2 = 1. From (13) the parameters
can be determined as

a2

c2
=

m

k
,

a

b
= − 1

γ
[a2(1 + k2)− c2(1 + m2)],

d = −bc

a
, α = ±

√
km. (23)

Then the breather lattice solution to the ShG equa-
tion (3) is

w4 = ±
√

km[cd(r, k)cd(s, m)]. (24)

Case 5. When U = dn(r, k) and V = nd(s, m) =
1

dn(s,m) , then n = 1, p1 = 2 − k2, q1 = −(1 − k2),
βn = 1 − m2, p2 = 2 − m2, q2 = −1. From (13) the

parameters can be determined as

a2

c2
=

√
1 − m2

1 − k2
,

a

b
=

1
γ

[a2(2 − k2) − c2(2 − m2)],

d = −bc

a
, α = ±

[
1 − m2

1 − k2

] 1
4

.

(25)

Then the breather lattice solution to the ShG equa-
tion (3) is

w5 = ±
[
1 − m2

1 − k2

] 1
4

[dn(r, k)nd(s, m)]. (26)

Case 6. When U = nd(r, k) and V = nd(s, m),
then n = 1−k2, p1 = 2−k2, q1 = −1, βn = 1−m2,
p2 = 2 − m2, q2 = −1. From (13) the parameters can
be determined as

a2

c2
=

√
1 − m2

1 − k2
,

a

b
=

1
γ

[a2(2 − k2) − c2(2 − m2)],

d = −bc

a
, α = ±[(1 − m2)(1 − k2)]

1
4 .

(27)

Then the breather lattice solution to the ShG equa-
tion (3) is

w6 = ±[(1−m2)(1−k2)]
1
4 [nd(r, k)nd(s, m)]. (28)

Apart from the nonsingular solutions given above,
there are still some solutions which satisfy the con-
straint (14) but may blow up for specific values of in-
dependent variables. Although they may be rather un-
physical, for reasons of mathematical tractability, they
can be solutions to the ShG equation (1) in the mathe-
matical form, too. We list them in the following parts.

Case 7. When U = dc(r, k) and V = dc(s, m),
then n = −1, p1 = −(1 + k2), q1 = k2, βn = −1,
p2 = −(1 + m2), q2 = m2. From (13) the parameters
can be determined as

a2

c2
=

m

k
,

a

b
= − 1

γ
[a2(1 + k2) − c2(1 + m2)],

d = −bc

a
, α = ± 1√

km
.

(29)
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Then the breather lattice solution to the ShG equa-
tion (3) is

w7 = ± 1√
km

[dc(r, k)dc(s, m)]. (30)

Case 8. When U = ns(r, k) = 1
sn(r,k) and V =

ns(s, m), then n = −1, p1 = −(1 + k2), q1 = k2,
βn = −1, p2 = −(1 + m2), q2 = m2. From (13) the
parameters can be determined as

a2

c2
=

m

k
,

a

b
= − 1

γ
[a2(1 + k2) − c2(1 + m2)],

d = −bc

a
, α = ± 1√

km
.

(31)

Then the breather lattice solution to the ShG equa-
tion (3) is

w8 = ± 1√
km

[ns(r, k)ns(s, m)]. (32)

Case 9. When U = ns(r, k) and V = dc(s, m) =
dn(s,m)
cn(s,m) , then n = −1, p1 = −(1 + k2), q1 = k2,
βn = −1, p2 = −(1 + m2), q2 = m2. From (13) the
parameters can be determined as

a2

c2
=

m

k
,

a

b
= − 1

γ
[a2(1 + k2) − c2(1 + m2)],

d = −bc

a
, α = ± 1√

km
.

(33)

Then the breather lattice solution to the ShG equa-
tion (3) is

w9 = ± 1√
km

[ns(r, k)dc(s, m)]. (34)

Case 10. When U = sc(r, k) = sn(r,k)
cn(r,k) and V =

sc(s, m), then n = −(1 − k2), p1 = 2 − k2, q1 = 1,
βn = −(1 − m2), p2 = 2 − m2, q2 = 1. From (13)
the parameters can be determined as

a2

c2
=

√
1 − m2

1 − k2
,

a

b
=

1
γ

[a2(2 − k2) − c2(2 − m2)],

d = −bc

a
, α = ±[(1 − m2)(1 − k2)]

1
4 .

(35)

Then the breather lattice solution to the ShG equa-
tion (3) is

w10 = ±[(1−m2)(1−k2)]
1
4 [sc(r, k)sc(s, m)]. (36)

Case 11. When U = sc(r, k) and V = cs(s, m) =
cn(s,m)
sn(s,m) , then n = −(1 − k2), p1 = 2 − k2, q1 = 1,
βn = −1, p2 = 2 − m2, q2 = 1 − m2. From (13) the
parameters can be determined as

a2

c2
=

√
1 − m2

1 − k2
,

a

b
=

1
γ

[a2(2 − k2) − c2(2 − m2)],

d = −bc

a
, α = ±

[
1 − k2

1 − m2

] 1
4

.

(37)

Then the breather lattice solution to the ShG equa-
tion (3) is

w11 = ±
[

1 − k2

1 − m2

] 1
4

[sc(r, k)cs(s, m)]. (38)

Case 12. When U = cs(r, k) and V = cs(s, m),
then n = −1, p1 = 2 − k2, q1 = 1 − k2, βn = −1,
p2 = 2 − m2, q2 = 1 − m2. From (13) the parameters
can be determined as

a2

c2
=

√
1 − m2

1 − k2
,

a

b
=

1
γ

[a2(2 − k2) − c2(2 − m2)],

d = −bc

a
, α = ±

[
1

(1 − k2)(1 − m2)

] 1
4

.

(39)

Then the breather lattice solution to the ShG equa-
tion (3) is

w12 = ±
[

1
(1 − k2)(1 − m2)

] 1
4

[cs(r, k)cs(s, m)].

(40)

Case 13. When U = sn(r, k) and V = ns(s, m),
then n = −k2, p1 = −(1 + k2), q1 = 1, βn = −1,
p2 = −(1 + m2), q2 = m2. From (13) the parameters
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can be determined as

a2

c2
=

m

k
,

a

b
= − 1

γ
[a2(1 + k2) − c2(1 + m2)],

d = −bc

a
, α = ±

√
k

m
.

(41)

Then the breather lattice solution to the ShG equa-
tion (3) is

w13 = ±
√

k

m
[sn(r, k)ns(s, m)]. (42)

Case 14. When U = cd(r, k) = cn(r,k)
dn(r,k) and V =

ns(s, m), then n = −k2, p1 = −(1 + k2), q1 = 1,
βn = −1, p2 = −(1 + m2), q2 = m2. From (13) the
parameters can be determined as

a2

c2
=

m

k
,

a

b
= − 1

γ
[a2(1 + k2) − c2(1 + m2)],

d = −bc

a
, α = ±

√
k

m
.

(43)

Then the breather lattice solution to the ShG equa-
tion (3) is

w14 = ±
√

k

m
[cd(r, k)ns(s, m)]. (44)

Case 15. When U = sn(r, k) and V = dc(s, m) =
dn(s,m)
cn(s,m) , then n = −k2, p1 = −(1 + k2), q1 = 1,
βn = −1, p2 = −(1 + m2), q2 = m2. From (13) the
parameters can be determined as

a2

c2
=

m

k
,

a

b
= − 1

γ
[a2(1 + k2) − c2(1 + m2)],

d = −bc

a
, α = ±

√
k

m
.

(45)

Then the breather lattice solution to the ShG equa-
tion (3) is

w15 = ±
√

k

m
[sn(r, k)dc(s, m)]. (46)

Case 16. When U = cd(r, k) and V = dc(s, m),
then n = −k2, p1 = −(1 + k2), q1 = 1, βn = −1,
p2 = −(1 + m2), q2 = m2. From (13) the parameters
can be determined as

a2

c2
=

m

k
,

a

b
= − 1

γ
[a2(1 + k2) − c2(1 + m2)],

d = −bc

a
, α = ±

√
k

m
.

(47)

Then the breather lattice solution to the ShG equa-
tion (3) is

w16 = ±
√

k

m
[cd(r, k)dc(s, m)]. (48)

Case 17. When U = cn(r, k) and V = nc(s, m) =
1

cn(s,m) , then n = k2, p1 = 2k2−1, q1 = 1−k2, βn =
−(1 − m2), p2 = 2m2 − 1, q2 = −m2. From (13) the
parameters can be determined as

a2

c2
=

m

k

√
1 − m2

1 − k2
,

a

b
=

1
γ

[a2(2k2 − 1) − c2(2m2 − 1)],

d = −bc

a
, α = ±

[
k2(1 − m2)
m2(1 − k2)

] 1
4

.

(49)

Then the breather lattice solution to the ShG equa-
tion (3) is

w17 = ±
[
k2(1 − m2)
m2(1 − k2)

] 1
4

[cn(r, k)nc(s, m)]. (50)

Case 18. When U = sd(r, k) = sn(r,k)
dn(r,k) and V =

ds(s, m) = dn(s,m)
sn(s,m) , then n = k2(1−k2), p1 = 2k2−

1, q1 = 1, βn = −1, p2 = 2m2 − 1, q2 = −m2(1 −
m2). From (13) the parameters can be determined as

a2

c2
=

m

k

√
1 − m2

1 − k2
,

a

b
=

1
γ

[a2(2k2 − 1) − c2(2m2 − 1)],

d = −bc

a
, α = ±

[
k2(1 − k2)
m2(1 − m2)

] 1
4

.

(51)



Z. Fu and S. Liu · The sinh-Gordon Equation 561

Then the breather lattice solution to the ShG equa-
tion (3) is

w18 = ±
[

k2(1 − k2)
m2(1 − m2)

] 1
4

[sd(r, k)ds(s, m)]. (52)

Case 19. When U = cn(r, k) and V = ds(s, m),
then n = k2, p1 = 2k2 − 1, q1 = 1 − k2, βn = −1,
p2 = 2m2 − 1, q2 = −m2(1 − m2). From (13) the
parameters can be determined as

a2

c2
=

m

k

√
1 − m2

1 − k2
,

a

b
=

1
γ

[a2(2k2 − 1) − c2(2m2 − 1)],

d = −bc

a
, α = ±

[
k2

m2(1 − m2)(1 − k2)

] 1
4

.

(53)

Then the breather lattice solution to the ShG equa-
tion (3) is

w19 = ±
[

k2

m2(1 − m2)(1 − k2)

] 1
4

[cn(r, k)ds(s, m)].

(54)

Case 20. When U = nc(r, k) and V = sd(s, m),
then n = −(1 − k2), p1 = 2k2 − 1, q1 = −k2, βn =
m2(1 − m2), p2 = 2m2 − 1, q2 = 1. From (13) the
parameters can be determined as

a2

c2
=

m

k

√
1 − m2

1 − k2
,

a

b
=

1
γ

[a2(2k2 − 1) − c2(2m2 − 1)],

d = −bc

a
, α = ±

[
m2(1 − m2)(1 − k2)

k2

] 1
4

.

(55)

Then the breather lattice solution to the ShG equa-
tion (3) is

w20 = ±
[
m2(1 − m2)(1 − k2)

k2

] 1
4

[nc(r, k)sd(s, m)].

(56)

Case 21. When U = sn(r, k) and V = cs(s, m),
then n = −k2, p1 = −(1 + k2), q1 = 1, βn = −1,
p2 = 2 − m2, q2 = 1 − m2. From (13) the parameters

can be determined as

a2

c2
=

√
1 − m2

k2
,

a

b
= − 1

γ
[a2(1 + k2) + c2(2 − m2)],

d = −bc

a
, α = ±

[
k2

1 − m2

] 1
4

.

(57)

Then the breather lattice solution to the ShG equa-
tion (3) is

w21 = ±
[

k2

1 − m2

] 1
4

[sn(r, k)cs(s, m)]. (58)

When k → 1 and m → 0, the breather lattice solu-
tion (58) turns to the solution

w21′ = ±[tanh (r)cot(s)], (59)

with

a2 = c2, b = − γ

4a
, d = ± γ

4a
. (60)

Case 22. When U = cd(r, k) and V = cs(s, m),
then n = −k2, p1 = −(1 + k2), q1 = 1, βn = −1,
p2 = 2 − m2, q2 = 1 − m2. From (13) the parameters
can be determined as

a2

c2
=

√
1 − m2

k2
,

a

b
= − 1

γ
[a2(1 + k2) + c2(2 − m2)],

d = −bc

a
, α = ±

[
k2

1 − m2

] 1
4

.

(61)

Then the breather lattice solution to the ShG equa-
tion (3) is

w22 = ±
[

k2

1 − m2

] 1
4

[cd(r, k)cs(s, m)]. (62)

Case 23. When U = ns(r, k) and V = cs(s, m),
then n = −1, p1 = −(1 + k2), q1 = k2, βn = −1,
p2 = 2 − m2, q2 = 1 − m2. From (13) the parameters
can be determined as

a2

c2
=

√
1 − m2

k2
,

a

b
= − 1

γ
[a2(1 + k2) + c2(2 − m2)],

d = −bc

a
, α = ±

[
1

k2(1 − m2)

] 1
4

.

(63)
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Then the breather lattice solution to the ShG equa-
tion (3) is

w23 = ±
[

1
k2(1 − m2)

] 1
4

[ns(r, k)cs(s, m)]. (64)

Case 24. When U = dc(r, k) and V = cs(s, m),
then n = −1, p1 = −(1 + k2), q1 = k2, βn = −1,
p2 = 2 − m2, q2 = 1 − m2. From (13) the parameters
can be determined as

a2

c2
=

√
1 − m2

k2
,

a

b
= − 1

γ
[a2(1 + k2) + c2(2 − m2)],

d = −bc

a
, α = ±

[
1

k2(1 − m2)

] 1
4

.

(65)

Then the breather lattice solution to the ShG equa-
tion (3) is

w24 = ±
[

1
k2(1 − m2)

] 1
4

[dc(r, k)cs(s, m)]. (66)

Case 25. When U = dc(r, k) and V = sc(s, m),
then n = −1, p1 = −(1 + k2), q1 = k2, βn = −(1 −
m2), p2 = 2 − m2, q2 = 1. From (13) the parameters
can be determined as

a2

c2
=

√
1 − m2

k2
,

a

b
= − 1

γ
[a2(1 + k2) + c2(2 − m2)],

d = −bc

a
, α = ±

[
1 − m2

k2

] 1
4

.

(67)

Then the breather lattice solution to the ShG equa-
tion (3) is

w25 = ±
[
1 − m2

k2

] 1
4

[dc(r, k)sc(s, m)]. (68)

Case 26. When U = ns(r, k) and V = sc(s, m),
then n = −1, p1 = −(1 + k2), q1 = k2, βn = −(1 −
m2), p2 = 2 − m2, q2 = 1. From (13) the parameters

can be determined as

a2

c2
=

√
1 − m2

k2
,

a

b
= − 1

γ
[a2(1 + k2) + c2(2 − m2)],

d = −bc

a
, α = ±

[
1 − m2

k2

] 1
4

.

(69)

Then the breather lattice solution to the ShG equa-
tion (3) is

w26 = ±
[
1 − m2

k2

] 1
4

[ns(r, k)sc(s, m)]. (70)

Case 27. When U = sn(r, k) and V = sc(s, m),
then n = −k2, p1 = −(1 + k2), q1 = 1, βn = −(1 −
m2), p2 = 2 − m2, q2 = 1. From (13) the parameters
can be determined as

a2

c2
=

√
1 − m2

k2
,

a

b
= − 1

γ
[a2(1 + k2) + c2(2 − m2)],

d = −bc

a
, α = ±[k2(1 − m2)]

1
4 .

(71)

Then the breather lattice solution to the ShG equa-
tion (3) is

w27 = ±[k2(1 − m2)]
1
4 [sn(r, k)sc(s, m)]. (72)

Case 28. When U = cd(r, k) and V = sc(s, m),
then n = −k2, p1 = −(1 + k2), q1 = 1, βn = −(1 −
m2), p2 = 2 − m2, q2 = 1. From (13) the parameters
can be determined as

a2

c2
=

√
1 − m2

k2
,

a

b
= − 1

γ
[a2(1+k2)+c2(2−m2)],

d = −bc

a
, α = ±[k2(1 − m2)]

1
4 . (73)

Then the breather lattice solution to the ShG equa-
tion (3) is

w28 = ±[k2(1 − m2)]
1
4 [cd(r, k)sc(s, m)]. (74)

3. Conclusion

In this paper, the independent variable transforma-
tion and the dependent variable transformation were
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introduced to solve the sinh-Gordon equation by using
the knowledge of the elliptic equation and Jacobian el-
liptic functions. It was shown that suitable transforma-
tions are required in order to obtain the breather-type
solutions to the sinh-Gordon equation. Some solutions
with quite different structures have not been reported
in the literature, including breather lattice solutions.

The aim of this paper was to obtain more kinds of
breather lattice solutions. We did not touch on the sta-
bility of those solutions which are non-singular in the
whole domain. Although we did not give the stabil-
ity analysis to our solutions, from the results given
by Kevrekidis et al. [11, 12], we can say that not all

solutions given in our manuscript are unstable. Even
though the solutions are unstable, they can be stabi-
lized by ac driving and damping; this has been reported
by Kevrekidis et al. [11, 12].

Due to wide applications of the ShG equation, the
analytical solutions given in this paper will be helpful
in related research.
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