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Abstract In this paper, dependent and independent variable transformations are introduced to solve the negative

mKdV equation systematically by using the knowledge of elliptic equation and Jacobian elliptic functions. It is shown

that different kinds of solutions can be obtained to the negative mKdV equation, including breather lattice solution and

periodic wave solution.
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1 Introduction

Among the soliton bearing nonlinear equations, the
modified Korteweg-de Vries (mKdV) equation is of spe-
cial interest.[1,2] For it possesses rich solutions, such as
solitary solutions,[1−4] periodic solutions,[3−6] breather
solution,[1,2,7,8] breather lattice solutions.[7,8] A particu-
larly interesting type of solution is the so called breather-
type of solutions, usually this kind of solutions are unavail-
able and such solutions have to be solved numerically.[7] In
some cases, however, the analytical expressions in closed
form can be found, such as the breather lattice solution for
the sine-Gordon equation[9] and for mKdV eqaution.[7,8]

In the Refs. [7–9], Kevrekidis and his coauthors have
applied some ansatzs to obtain the breather lattice solu-
tions to the mKdV equation and the sine-Gordon equa-
tion. The aim of present paper is to present the breather
lattice solutions of the negative mKdV equation in a sys-
tematical way. Based on the introduced transformations,
we will show systematical results about these breather-
type solutions for the negative mKdV equation by using
the knowledge of elliptic equation and Jacobian elliptic
functions.[3,4,10−12]

2 Breather Lattice Solutions to Negative
mKdV Equation

The negative mKdV equation reads[7,8]

ut − 6u2ux + uxxx = 0 . (1)

In order to derive the breather-type solutions to the
negative mKdV equation (1), first of all, we introduce a
dependent variable transformation

u = 2
∂

∂x
tanh−1φ , (2)

and then φ satisfies the equation[7,8]

(1 − φ2)(φt + φxxx) − 6φx(φ2
x − φφxx) = 0 , (3)

which can be taken as another form of the negative mKdV
equation (1).

Next, we introduce independent variable transforma-
tion

ξ = ax + bt + ξ0, η = cx + dt + η0 , (4)

where ξ0 and η0 are two constants.
Considering the transformation (4), Eq. (3) can be

rewritten as

(1 − φ2)[(bφξ + dφη) + (a3φξξξ + 3a2cφξξη + 3ac2φξηη + c3φηηη)]

− 6(aφξ + cφη)[(aφξ + cφη)2 − φ(a2φξξ + 2acφξη + c2φηη)] = 0 . (5)

Compared to the transformation given in Refs. [1,2],

transformation (4) has less constraints, of course, this will

let us have more different types of solutions to the negative

mKdV equation (1).

Inspired by the transformation given in Ref. [2] and

the results in Refs. [7,8], we choose dependent variable

transformation

φ = αU(ξ)V (η) , (6)

where α is a constant amplitude to be determined, U and
V satisfy the following elliptic equation

U2
ξ = −n2U4 + p1U

2 + q1 ,
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V 2
η = −βn2V 4 + p2V

2 + q2 , (7)

where β, n2, p1, p2, q1, and q2 are determined constants.
Here one point must be stressed is that the introduction
of β will let us have more choices to obtain different kinds
of solutions to the negative mKdV equation.

Substituting (6) and (7) into (5) yields the following
algebraic equations

b + p1a
3 + 3p2ac2 = 0 , (8a)

βn2c2 + q1α
2a2 = 0 , (8b)

q2α
2c2 + n2a2 = 0 , (8c)

d + 3p1a
2c + p2c

3 = 0 , (8d)

from which we can determine

α4 =
βn4

q1q2
,

a2

c2
= −

βn2

q1α2
= −

q2α
2

n2
,

b = −a(p1a
2 + 3p2c

2), d = −c(3p1a
2 + p2c

2) . (9)

From (9), it is obvious that the determined constants
in (7) must satisfy the following constraints

β

q1q2
> 0,

q2

n2
< 0,

βn2

q1
< 0 , (10)

this implies that not all combinations of Jacobi elliptic
functions are solutions to the negative mKdV equation
(1) under the above mentioned transformations, only the
combination of a couple of the Jacobi elliptic functions
satisfies the constraint (10), it can be a solution to the
negative mKdV eqaution (1). Actually, there exist only
28 these kinds of combinations, we will address them in
details.

Case 1 When U = dn(ξ, k) and V = dn(η, m), where
dn(ξ, k) and dn(η, m) are the Jacobi elliptic function of the
third kind, and k and m are their modulus.[10−12] Then
from (7), we have

n2 = 1, p1 = 2 − k2, q1 = −(1 − k2) ,

βn2 = 1, p2 = 2 − m2, q2 = −(1 − m2) . (11)

Substituting (11) into (9), the parameters can be de-
termined as

a2

c2
=

√

1 − m2

1 − k2
,

b

a
= −[a2(2 − k2) + 3c2(2 − m2)] ,

d

c
= −[3a2(2 − k2) + c2(2 − m2)] ,

α = ±
[ 1

(1 − k2)(1 − m2)

]1/4

, (12)

then the solution is

φ1 = ±
[ 1

(1 − k2)(1 − m2)

]1/4

[dn(ξ, k)dn(η, m)] , (13)

which is a kind of breather lattice solution given in Ref. [8].
When k → 0 (or m → 0), the breather lattice solution

(13) turns to be a periodic wave solution

φ1′ = ±
( 1

1 − m2

)1/4

[dn(η, m)] . (14)

Case 2 When U = sn(ξ, k) and V = sn(η, m), where

sn(η, m) is the Jacobi sine elliptic function.[10−12] And

then from (7) and (9), the parameters can be determined

as

a2

c2
=

m

k
,

b

a
= [a2(1 + k2) + 3c2(1 + m2)] ,

d

c
= [3a2(1 + k2) + c2(1 + m2)] ,

α = ±
√

km , (15)

then the solution is

φ2 = ±
√

km [sn(ξ, k)sn(η, m)] , (16)

which is another kind of breather lattice solution given in

Ref. [8].

Besides the above two kinds of breather lattice solu-

tions, there still exist 26 kinds of breather lattice solutions

that have not been reported in the literature, next we will

show their details.

Case 3 When U = sn(ξ, k) and V = cd(η, m) =

cn(η, m)/dn(η, m), where cn(η, m) is the Jacobi cosine el-

liptic function.[10−12] And then from (7) and (9), the pa-

rameters can be determined as

a2

c2
=

m

k
,

b

a
= [a2(1 + k2) + 3c2(1 + m2)] ,

d

c
= [3a2(1 + k2) + c2(1 + m2)] ,

α = ±
√

km , (17)

and the breather lattice solution is

φ3 = ±
√

km [sn(ξ, k)cd(η, m)] . (18)

Fig. 1 The space-time evolution of the breather lattice
solution of Eqs. (17) and (18). a = 1, c = 1, m = 0.5,
ξ0 = η0 = 0, from which the other parameters can be
determined as b = 5, d = 5, k = 0.5, and α = 1/2.

Figure 1 shows the evolution of the breather lattice

solution with the periodic characteristics in both spatial

and temporal directions, the profiles in both spatial and

temporal directions are smooth.
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Case 4 When U = cd(ξ, k) and V = cd(η, m), then
from (7) and (9), the parameters can be determined as

a2

c2
=

m

k
,

b

a
= [a2(1 + k2) + 3c2(1 + m2)] ,

d

c
= [3a2(1 + k2) + c2(1 + m2)] ,

α = ±
√

km , (19)

then the breather lattice solution is

φ4 = ±
√

km[cd(ξ, k)cd(η, m)] . (20)

Case 5 When U = ns(ξ, k) = 1/sn(ξ, k) and V =
ns(η, m), then from (7) and (9), the parameters can be
determined as

a2

c2
=

m

k
,

b

a
= [a2(1 + k2) + 3c2(1 + m2)] ,

d

c
= [3a2(1 + k2) + c2(1 + m2)] ,

α = ±
1√
km

, (21)

then the breather lattice solution is

φ5 = ±
1√
km

[ns(ξ, k)ns(η, m)] . (22)

Case 6 When U = ns(ξ, k) and V = dc(η, m) =
dn(η, m)/cn(η, m), then from (7) and (9), the parameters
can be determined as

a2

c2
=

m

k
,

b

a
= [a2(1 + k2) + 3c2(1 + m2)] ,

d

c
= [3a2(1 + k2) + c2(1 + m2)] ,

α = ±
1√
km

, (23)

then the breather lattice solution is

φ6 = ±
1√
km

[ns(ξ, k)dc(η, m)] . (24)

Case 7 When U = dc(ξ, k) and V = dc(η, m), then
from (7) and (9), the parameters can be determined as

a2

c2
=

m

k
,

b

a
= [a2(1 + k2) + 3c2(1 + m2)] ,

d

c
= [3a2(1 + k2) + c2(1 + m2)] ,

α = ±
1√
km

, (25)

then the breather lattice solution is

φ7 = ±
1√
km

[dc(ξ, k)dc(η, m)] . (26)

Case 8 When U = dn(ξ, k) and V = nd(η, m) =
1/dn(η, m), then from (7) and (9), the parameters can
be determined as

a2

c2
=

√

1 − m2

1 − k2
,

b

a
= −[a2(2 − k2) + 3c2(2 − m2)] ,

d

c
= −[3a2(2 − k2) + c2(2 − m2)] ,

α = ±
[1 − m2

1 − k2

]1/4

, (27)

then the breather lattice solution is

φ8 = ±
[1 − m2

1 − k2

]1/4

[dn(ξ, k)nd(η, m)] . (28)

Case 9 When U = nd(ξ, k) and V = nd(η, m), then
from (7) and (9), the parameters can be determined as

a2

c2
=

√

1 − m2

1 − k2
,

b

a
= −[a2(2 − k2) + 3c2(2 − m2)] ,

d

c
= −[3a2(2 − k2) + c2(2 − m2)] ,

α = ±[(1 − m2)(1 − k2)]1/4 , (29)

then the breather lattice solution is

φ9 = ±[(1 − m2)(1 − k2)]1/4[nd(ξ, k)nd(η, m)] . (30)

Fig. 2 The space-time evolution of the breather lattice
solution of Eqs. (29) and (30). a = 1, c = 1, m =

√

3/2,
ξ0 = η0 = 0, from which the other parameters can be
determined as b = −5, d = −5, k =

√

3/2, and α = 1/2.

It is obvious that Fig. 2 describes a different kind of
breather lattice solution from that given in Fig. 1. Com-
pared to Fig. 1, the profiles in Fig. 2 for both spatial and
temporal directions are intermittent. At the same time,
the periodic characteristics of Fig. 2 in the spatial direc-
tion is quite different from that in the temporal direction.

Case 10 When U = sc(ξ, k) = sn(ξ, k)/cn(ξ, k) and
V = sc(η, m), then from (7) and (9), the parameters can
be determined as

a2

c2
=

√

1 − m2

1 − k2
,

b

a
= −[a2(2 − k2) + 3c2(2 − m2)] ,

d

c
= −[3a2(2 − k2) + c2(2 − m2)] ,

α = ±[(1 − m2)(1 − k2)]1/4 , (31)

then the breather lattice solution is

φ10 = ±[(1 − m2)(1 − k2)]1/4[sc(ξ, k)sc(η, m)] . (32)
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Case 11 When U = sc(ξ, k) and V = cs(η, m) =
cn(η, m)/sn(η, m), then from (7) and (9), the parameters
can be determined as

a2

c2
=

√

1 − m2

1 − k2
,

b

a
= −[a2(2 − k2) + 3c2(2 − m2)] ,

d

c
= −[3a2(2 − k2) + c2(2 − m2)] ,

α = ±
[ 1 − k2

1 − m2

]1/4

, (33)

then the breather lattice solution is

φ11 = ±
[ 1 − k2

1 − m2

]1/4

[sc(ξ, k)cs(η, m)] . (34)

Case 12 When U = cs(ξ, k) and V = cs(η, m), then
from (7) and (9), the parameters can be determined as

a2

c2
=

√

1 − m2

1 − k2
,

b

a
= −[a2(2 − k2) + 3c2(2 − m2)] ,

d

c
= −[3a2(2 − k2) + c2(2 − m2)] ,

α = ±
[ 1

(1 − k2)(1 − m2)

]1/4

, (35)

then the breather lattice solution is

φ12 = ±
[ 1

(1 − k2)(1 − m2)

]1/4

[cs(ξ, k)cs(η, m)] . (36)

Case 13 When U = sn(ξ, k) and V = ns(η, m), then
from (7) and (9), the parameters can be determined as

a2

c2
=

m

k
,

b

a
= [a2(1 + k2) + 3c2(1 + m2)] ,

d

c
= [a2(1 + k2) + 3c2(1 + m2)] ,

α = ±
√

k

m
, (37)

then the breather lattice solution is

φ13 = ±
√

k

m
[sn(ξ, k)ns(η, m)] . (38)

Case 14 When U = cd(ξ, k) = cn(ξ, k)/dn(ξ, k) and
V = ns(η, m), then from (7) and (9), the parameters can
be determined as

a2

c2
=

m

k
,

b

a
= [a2(1 + k2) + 3c2(1 + m2)] ,

d

c
= [3a2(1 + k2) + c2(1 + m2)] ,

α = ±
√

k

m
, (39)

then the breather lattice solution is

φ14 = ±
√

k

m
[cd(ξ, k)ns(η, m)] . (40)

Case 15 When U = sn(ξ, k) and V = dc(η, m) =
dn(η, m)/cn(η, m), then from (7) and (9), the parameters
can be determined as

a2

c2
=

m

k
,

b

a
= [a2(1 + k2) + 3c2(1 + m2)] ,

d

c
= [3a2(1 + k2) + c2(1 + m2)] ,

α = ±
√

k

m
, (41)

then the breather lattice solution is

φ15 = ±
√

k

m
[sn(ξ, k)dc(η, m)] . (42)

Fig. 3 The space-time evolution of the breather lattice
solution of Eqs. (41) and (42). a = 1, c = 1, m = 0.5,
ξ0 = η0 = 0, from which the other parameters can be
determined as b = 5, d = 5, k = 0.5, and α = 1.

The periodic characteristics in Fig. 3 is similar to what

we see in Fig. 2, but the specific direction is different. At

the same time, the magnitude of u is asymmetric in the

positive and the negative directions.

Case 16 When U = cd(ξ, k) and V = dc(η, m), then

from (7) and (9), the parameters can be determined as

a2

c2
=

m

k
,

b

a
= [a2(1 + k2) + 3c2(1 + m2)] ,

d

c
= [3a2(1 + k2) + c2(1 + m2)] ,

α = ±
√

k

m
, (43)

then the breather lattice solution is

φ16 = ±
√

k

m
[cd(ξ, k)dc(η, m)] . (44)

Case 17 When U = cn(ξ, k) and V = nc(η, m) =

1/cn(η, m), then from (7) and (9), the parameters can

be determined as

a2

c2
=

m

k

√

1 − m2

1 − k2
,

b

a
= −[a2(2k2 − 1) + 3c2(2m2 − 1)] ,

d

c
= −[3a2(2k2 − 1) + c2(2m2 − 1)] ,

α = ±
[k2(1 − m2)

m2(1 − k2)

]1/4

, (45)
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then the breather lattice solution is

φ17 = ±
[k2(1 − m2)

m2(1 − k2)

]1/4

[cn(ξ, k)nc(η, m)] . (46)

Case 18 When U = sd(ξ, k) = sn(ξ, k)/dn(ξ, k) and
V = ds(η, m) = dn(η, m)/sn(η, m), then from (7) and (9),
the parameters can be determined as

a2

c2
=

m

k

√

1 − m2

1 − k2
,

b

a
= −[a2(2k2 − 1) + 3c2(2m2 − 1)] ,

d

c
= −[3a2(2k2 − 1) + c2(2m2 − 1)] ,

α = ±
[ k2(1 − k2)

m2(1 − m2)

]1/4

, (47)

then the breather lattice solution is

φ18 = ±
[ k2(1 − k2)

m2(1 − m2)

]1/4

[sd(ξ, k)ds(η, m)] . (48)

Case 19 When U = cn(ξ, k) and V = ds(η, m), then
from (7) and (9), the parameters can be determined as

a2

c2
=

m

k

√

1 − m2

1 − k2
,

b

a
= −[a2(2k2 − 1) + 3c2(2m2 − 1)] ,

d

c
= −[3a2(2k2 − 1) + c2(2m2 − 1)] ,

α = ±
[ k2

m2(1 − m2)(1 − k2)

]1/4

, (49)

then the breather lattice solution is

φ19 = ±
[ k2

m2(1 − m2)(1 − k2)

]1/4

[cn(ξ, k)ds(η, m)] . (50)

Case 20 When U = nc(ξ, k) and V = sd(η, m), then
from (7) and (9), the parameters can be determined as

a2

c2
=

m

k

√

1 − m2

1 − k2
,

b

a
= −[a2(2k2 − 1) + 3c2(2m2 − 1)] ,

d

c
= −[3a2(2k2 − 1) + c2(2m2 − 1)] ,

α = ±
[m2(1 − m2)(1 − k2)

k2

]1/4

, (51)

then the breather lattice solution is

φ20 = ±
[m2(1 − m2)(1 − k2)

k2

]1/4

[nc(ξ, k)sd(η, m)] . (52)

Case 21 When U = sn(ξ, k) and V = cs(η, m), then
from (7) and (9), the parameters can be determined as

a2

c2
=

√

1 − m2

k2
,

b

a
= [a2(1 + k2) − 3c2(2 − m2)] ,

d

c
= [3a2(1 + k2) − c2(2 − m2)] ,

α = ±
[ k2

1 − m2

]1/4

, (53)

then the breather lattice solution is

φ21 = ±
[ k2

1 − m2

]1/4

[sn(ξ, k)cs(η, m)] . (54)

When k → 1 and m → 0, the breather lattice solution
(54) turns to be a solution

φ21′ = ±[tanh(ξ)cot(η)] , (55)

with

a2 = c2, b = −
γ

4a
, d = ±

γ

4a
. (56)

Fig. 4 The space-time evolution of the breather lattice
solution of Eqs. (53) and (54). (a) a = 1, c = 1, m = 0.8,
ξ0 = η0 = 0, from which the other parameters can be
determined as b = −2.72, d = 2.72, k = 0.6, and α = 1;
(b) a = 1, c = 1, m = 0, ξ0 = η0 = 0, from which the
other parameters can be determined as b = −4, d = 4,
k = 1, and α = 1.

From Fig. 4, it is obvious that for different values of
m and k, the same breather lattice solution will also show
different characteristics, small or large. Especially, when
m and k take their limiting values, the behavior will be
quite different from what given in Fig. 4. Actually, the
characteristics of the breather lattice solution shown in
the upper panel of Fig. 4 is sporadic, the magnitude of u
has an antisymmetric characteristics along a specific di-
rection. But for the bottom panel of Fig. 4, the profiles in
any directions are smooth.
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Case 22 When U = cd(ξ, k) and V = cs(η, m), then
from (7) and (9), the parameters can be determined as

a2

c2
=

√

1 − m2

k2
,

b

a
= [a2(1 + k2) − 3c2(2 − m2)] ,

d

c
= [3a2(1 + k2) − c2(2 − m2)] ,

α = ±
[ k2

1 − m2

]1/4

, (57)

then the breather lattice solution is

φ22 = ±
[ k2

1 − m2

]1/4

[cd(ξ, k)cs(η, m)] . (58)

Case 23 When U = ns(ξ, k) and V = cs(η, m), then
from (7) and (9), the parameters can be determined as

a2

c2
=

√

1 − m2

k2
,

b

a
= [a2(1 + k2) − 3c2(2 − m2)] ,

d

c
= [3a2(1 + k2) − c2(2 − m2)] ,

α = ±
[ 1

k2(1 − m2)

]1/4

, (59)

then the breather lattice solution is

φ23 = ±
[ 1

k2(1 − m2)

]1/4

[ns(ξ, k)cs(η, m)] . (60)

Case 24 When U = dc(ξ, k) and V = cs(η, m), then
from (7) and (9), the parameters can be determined as

a2

c2
=

√

1 − m2

k2
,

b

a
= [a2(1 + k2) − 3c2(2 − m2)] ,

d

c
= [3a2(1 + k2) − c2(2 − m2)] ,

α = ±
[ 1

k2(1 − m2)

]1/4

, (61)

then the breather lattice solution is

φ24 = ±
[ 1

k2(1 − m2)

]1/4

[dc(ξ, k)cs(η, m)] . (62)

Case 25 When U = dc(ξ, k) and V = sc(η, m), then
from (7) and (9), the parameters can be determined as

a2

c2
=

√

1 − m2

k2
,

b

a
= [a2(1 + k2) − 3c2(2 − m2)] ,

d

c
= [3a2(1 + k2) − c2(2 − m2)] ,

α = ±
[1 − m2

k2

]1/4

, (63)

then the breather lattice solution is

φ25 = ±
[1 − m2

k2

]1/4

[dc(ξ, k)sc(η, m)] . (64)

Case 26 When U = ns(ξ, k) and V = sc(η, m), then
from (7) and (9), the parameters can be determined as

a2

c2
=

√

1 − m2

k2
,

b

a
= [a2(1 + k2) − 3c2(2 − m2)] ,

d

c
= [3a2(1 + k2) − c2(2 − m2)] ,

α = ±
[1 − m2

k2

]1/4

, (65)

then the breather lattice solution is

φ26 = ±
[1 − m2

k2

]1/4

[ns(ξ, k)sc(η, m)] . (66)

Case 27 When U = sn(ξ, k) and V = sc(η, m), then
from (7) and (9), the parameters can be determined as

a2

c2
=

√

1 − m2

k2
,

b

a
= [a2(1 + k2) − 3c2(2 − m2)] ,

d

c
= [3a2(1 + k2) − c2(2 − m2)] ,

α = ±
[

k2(1 − m2)
]1/4

, (67)

then the breather lattice solution is

φ27 = ±[k2(1 − m2)]1/4[sn(ξ, k)sc(η, m)] . (68)

Fig. 5 The space-time evolution of the breather lattice
solution of Eqs. (69) and (70). a = 1, c = 1, m = 0.6,
ξ0 = η0 = 0, from which the other parameters can be
determined as b = −3.28, d = 3.28, k = 0.8, and α = 0.8.

Case 28 When U = cd(ξ, k) and V = sc(η, m), then
from (7) and (9), the parameters can be determined as

a2

c2
=

√

1 − m2

k2
,

b

a
= [a2(1 + k2) − 3c2(2 − m2)] ,

d

c
= [3a2(1 + k2) − c2(2 − m2)] ,
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α = ±[k2(1 − m2)]1/4 , (69)

then the breather lattice solution is

φ28 = ±[k2(1 − m2)]1/4[cd(ξ, k)sc(η, m)] . (70)

Similar to what seen in the upper panel of Fig. 4, Fig. 5
takes a sporadic behavior, only within some specific re-
gions, the magnitude of u is visible.

3 Conclusion

In this paper, dependent and independent variable
transformations are introduced to solve the negative
mKdV equation by using the knowledge of elliptic equa-
tion and Jacobian elliptic functions. It is shown that be-
sides the solutions expressed in terms of the different com-
binations of Jacobi elliptic functions, there are solutions
expressed in terms of elementary functions, which can be
obtained in the above solutions in the limit cases where k
and/or m take the value 0 and/or 1. However, not all the

combinations of Jacobi elliptic functions are the solutions
to the negative mKdV equation (3), only these ones that
can satisfy the constraints (10) can be the solutions to the
negative mKdV equation (1). Furthermore, when different
independent variable transformations are adopted, there
will be different results. For example, when we choose the
independent variable transformation

ξ = ax +
1

a
t + ξ0, η = ax −

1

a
t + η0 , (71)

which is given in Ref. [2], some breather lattice solutions
expressed in terms of Jacobi elliptic functions will be omit-
ted. Under variable transformations mentioned above, all
solutions can be expressed in terms of 12 basic Jacobi el-
liptic functions are listed in this paper, there are only 28
combinations of Jacobi elliptic functions can satisfy the
constraints (10). Due to wide applications of the nega-
tive mKdV equation, the analytical solutions given in this
paper will be helpful in related research.
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