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can be weakened to extend a wider scaling range with 
fewer uncertainties.
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1  Introduction

It has been recognized that climate system usually exhib-
its memory or persistence related to different regimes. For 
instance weather is short-range persistent and typically 
breaks on 1  week, a time period that corresponds to the 
average duration of “general weather regimes” (Eichner 
et  al. 2003). Moreover, on monthly or longer time scales, 
the presence of memory is believed to be originated from 
the slow response to external forcing such as solar irradi-
ance and sea surface temperature. Long-term memory 
(LTM) in climate system will severely affect the estimates 
of climate statistics, such as the significance of estimated 
trends (Franzke 2012, 2013), confidence interval of time 
averages (Massah and Kantz 2016) and can help distin-
guish whether changes of climate statistics are the results 
of internal variability or external forcing (Lennartz and 
Bunde 2009; Bunde et  al. 2014; Ludescher et  al. 2016). 
Therefore understanding climate memory is of great impor-
tance for the analysis of the whole climate system. Since 
the behaviors on longer time scales are governed by com-
plex coupled processes in nature, LTM in climate process is 
hard to estimate. In recent years, the detrended fluctuation 
analysis (DFA) method has been established (Peng et  al. 
1994) as an essential tool for the quantification of LTM. By 
using DFA, researches on various meteorological records 
ranging from air temperature (Koscielny-Bunde et al. 1996, 

Abstract  Previous studies in the literature show that the 
annual cycle of surface air temperature (SAT) is chang-
ing in both amplitude and phase, and the SAT departures 
from the annual cycle are long-term correlated. However, 
the classical definition of temperature anomalies is based 
on the assumption that the annual cycle is constant, which 
contradicts the fact of changing annual cycle. How to quan-
tify the impact of the changing annual cycle on the long-
term correlation of temperature anomaly variability still 
remains open. In this paper, a recently developed data 
adaptive analysis tool, the nonlinear mode decomposition 
(NMD), is used to extract and remove time-varying annual 
cycle to reach the new defined temperature anomalies in 
which time-dependent amplitude of annual cycle has been 
considered. By means of detrended fluctuation analysis, the 
impact induced by inter-annual variability from the time-
dependent amplitude of annual cycle has been quantified 
on the estimation of long-term correlation of long histori-
cal temperature anomalies in Europe. The results show that 
the classical climatology annual cycle is supposed to lack 
inter-annual fluctuation which will lead to a maximum arti-
ficial deviation centering around 600 days. This maximum 
artificial deviation is crucial to defining the scaling range 
and estimating the long-term persistence exponent accu-
rately. Selecting different scaling range could lead to an 
overestimation or underestimation of the long-term persis-
tence exponent. By using NMD method to extract the inter-
annual fluctuations of annual cycle, this artificial crossover 
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1998; Talkner and Weber 2000; Monetti et al. 2003; Eich-
ner et al. 2003; Kurnaz 2004a, b; Yuan et al. 2010; Fran-
zke 2010), relative humidity (Chen et  al. 2007; Lin et  al. 
2007) to wind field (Govindan and Kantz 2004; Li et  al. 
2014), total ozone anomalies (Varotsos and Kirk-Davidoff 
2006; Vyushin et al. 2007), etc., indicate that the presence 
of LTM is ubiquitous in climate.

Compared with traditional auto-correlation analysis 
or the power spectrum density analysis, DFA method can 
better quantify the scaling behavior of time series by sys-
tematically removing trend effect (Kantelhardt et al. 2001; 
Hu et al. 2001). Trends contain low-frequency changes, for 
example, linear trend generated by the global warming and 
the oscillations induced by annual cycle. These trends may 
bring out spurious correlation so that even uncorrelated 
data appears correlated. Although the DFA method can 
remove part of the trend effect, it cannot remove the influ-
ences of slowly changing oscillations spontaneously (Kan-
telhardt et  al. 2001; Hu et  al. 2001). Therefore, to calcu-
late the long-term correlation, the most prominent climate 
oscillation—annual cycle (AC) should be removed first by 
other ways.

Traditionally, we subtract the annual cycle by T
i
− ⟨T

i
⟩, 

where T
i
 is original records and ⟨T

i
⟩ is a long-time climato-

logical average for each calendar day of every year, which is 
called climatology annual cycle (CAC). CAC has been taken 
to eliminate the slowly changing oscillation impact nearly in 
all related long-term correlation quantification (Koscielny-
Bunde et  al. 1996, 1998; Talkner and Weber 2000; Mon-
etti et  al. 2003; Eichner et  al. 2003; Govindan and Kantz 
2004; Kurnaz 2004a, b; Varotsos and Kirk-Davidoff 2006; 
Chen et al. 2007; Lin et al. 2007; Vyushin et al. 2007; Yuan 
et al. 2010, 2015; Yuan and Fu 2014; Li et al. 2014). Actu-
ally, annual cycle defined through this way heavily rely on 
an implicit assumption that annual cycle is an exact repeat 
of itself year after year. However, despite the external solar 
forcing, which is almost constant at decadal scale, there is 
no guarantee that the annual cycle has to be same every year 
under a changing climate. Ever since last century, changes 
in annual cycle have been reported in many studies (Thom-
son 1995; Wallace and Osborn 2002; Jones et al. 2003; Bar-
bosa 2009; Stine et  al. 2009; Vecchio and Carbone 2010; 
Qian et al. 2011a, b; Qian and Zhang 2015; Bye et al. 2013). 
Fluctuations in amplitude and phase of annual cycle may be 
caused by the nonlinear response to external forcing such 
as sea ice boundary (Eliseev and Mokhov 2003), increased 
CO2 (Mann and Park 1996; Thomson 1997), earth’s preces-
sion (Thomson 1995; Vecchio et al. 2010) and anthropogenic 
influences (Qian and Zhang 2015). In addition, internal vari-
ability like atmospheric circulation (Stine and Huybers 2012) 
can also explain some changes of annual cycle. The fact of 
changing annual cycle contradicts the assumption applied 
in CAC definition and has been challenged in recent studies 

suggesting redefinition of climate anomalies (Wu et al. 2008; 
Qian et al. 2011a, b). Changes in the amplitude of the annual 
cycle can affect the estimation of climate trends and vari-
ability (Qian et al. 2011a), for example, the classification of 
El Niño/La Niña years (Qian et  al. 2011b). Will this cause 
serious problem in estimating the long-range correlation by 
means of DFA? How can this changing annual cycle affect 
the quantification of long-range correlation of large-scale 
anomaly variability? If CAC indeed results in problem in 
correctly estimating the long-range correlation of large-scale 
anomaly variability, can we weaken or totally eliminate this 
impact? These questions will be answered in this paper.

Since the annual cycle is changing, when applying DFA 
to calculate LTM, only subtracting the constant CAC can 
bias the correct estimation of LTM, how to extract the 
changing annual cycle is crucial to a correct estimation of 
LTM. Owing to the lack of a unique and precise definition 
of annual cycle, the extraction of a time-varying annual 
cycle from a climate time series suffers big challenges. Pre-
vious studies have used Fourier analysis (Mokhov 1985), 
sinusoidal model fitting and complex demodulation (Paluš 
et al. 2005), autoregressive process (Barbosa 2009), empir-
ical mode decomposition (EMD, Vecchio et al. 2010; Cap-
parelli et  al. 2011) and ensemble empirical mode decom-
position (EEMD, Wu et al. 2008; Qian et al. 2011a, b) to 
analysis the time-varying annual cycle. In this paper, we 
applied a new developed statistic method named nonlinear 
mode decomposition (NMD, Iatsenko et al. 2015) to extract 
the changing annual cycle of daily mean temperature from 
seven stations in Europe with a long period and analyzed 
their LTM using DFA. The DFA results for temperature 
anomalies defined through CAC and NMD will be com-
pared. The changing annual cycle can be easily found in the 
monthly mean air temperature series, see Fig. 1, where the 
time-dependent amplitude of annual cycle is dominated. 
This indicates that the inter-annual variability induced from 
changing amplitude of annual cycle is not a negligible issue 
in the estimation of LTM. For simplicity, the analysis in 
this paper will focus on the changing amplitude of annual 
cycle only.

The paper is organized as follows. A short introduction 
to the data sets used in this paper and the analysis methods 
will be given in Sect. 2. The results are presented in Sect. 3. 
In Sect. 4, a summary with further discussion is made.

2 � Data and method

2.1 � Data

The seven daily long historical SAT records are down-
loaded from the Royal Netherlands Meteorological Institute 
(KNMI) Climate Explorer (http://climexp.knmi.nl/), the 

http://climexp.knmi.nl/
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detailed information related to these seven records is shown 
in Table  1. We choose these records for they are among 
the longest ones (longer than 150  years) with few miss-
ing points. Only the records from Milan have few missing 
points during the period 2001–2007 and they are completed 
by nearest interpolation. In order to eliminate the effect of 
short-term memory from weather regimes, after remov-
ing annual cycle, we average the daily anomaly data over 
2-week non-overlapping windows to reach bi-weekly mean 
anomaly series.

2.2 � Method

2.2.1 � Definition of temperature annual cycle 
and anomalies

We use a new data adaptive decomposition tool named 
Nonlinear Mode Decomposition (NMD) to extract chang-
ing annual cycle of daily mean SAT. It decomposes a given 
signal into a set of physically meaningful oscillations with 
any wave form in the frequency space, based on the combi-
nation of time–frequency analysis techniques and surrogate 
data tests (Schreiber and Schmitz 2000), and simultane-
ously removes the noise. We will give a short description 

about its procedure, the details can be found in Iatsenko 
and his coauthors’ works (Iatsenko et al. 2015):

(a)	 Extract the fundamental harmonic of a Nonlinear 
Mode (NM) accurately from the signal’s time–fre-
quency representation.

(b)	 Find candidates for all its possible harmonics, based 
on its properties.

(c)	 Identify the true harmonics among them using surro-
gate data sets’ tests.

(d)	 Reconstruct the full NM by summing together all the 
true harmonics; subtract it from the signal, and iterate 
the procedure on the residual until a preset stopping 
criterion is met.

When applying NMD to daily temperature records, at 
least one NM will be extracted. The first/fundamental har-
monic of NM has a period of 365 days (12 months), and 
the NM may contain multiplier harmonics with periods of 
6, 4, 3, and 2.4 months. Whether those harmonics will be 
extracted or not is determined by the surrogate test. That 
NM is considered to be the “annual cycle”. The NMs based 
on other fundamental frequency would not be included 
whether they have been extracted or not. Subtracting NM 
annual cycle (NMAC), the residual is defined as anomaly. 
An example of the NMD of daily mean temperature is pre-
sented in Fig. 2. Since the NMD method can remove mean 
value and linear trend of the data automatically, the mean 
value and linear trend have been removed from the obser-
vation records first before we carry out CAC and com-
parison analysis in this paper. As we can see from Fig. 2a, 
the NMAC fits observations quite well. Besides, the time 
evolution of each harmonics in NMAC (Fig. 2b) and their 
frequency, amplitude and phase can be obtained through 
NMD.

2.2.2 � Analysis of long‑term correlation of SAT anomalies

To measure the LTM of SAT records, detrended fluctua-
tion analysis (DFA) is applied to the two kinds of anomaly 
T
i
(s) (i = 1, 2, 3, ...,N) which are the deviations from its 

annual cycle, CAC and NMAC, respectively. DFA method, 
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Fig. 1   Changing annual cycles exemplified by a segment of monthly 
mean SAT series at Stockholm

Table 1   Details of the SAT 
data used in this paper

Station Country Location Time span Length (year)

Bologna (B) Italy 44.5N, 11.35E 1814–2011 198
Hohenpeissenburg (H) Germany 47.8N, 11.01E 1814–2011 198
Milan (M) Italy 45.47N, 9.19E 1763–2007 245
Prague (P) Czech Republic 50.09N, 14.41E 1775–2004 230
Stockholm (S) Sweden 59.31N, 18.07E 1756–2011 256
Vienna (V) Austria 48.23 N, 16.35E 1856–2011 156
Zagreb (Z) Croatia 45.82N, 15.98E 1862–2011 150
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first developed by Peng et al. (1994), is efficient to distinguish 
trends from long-range fluctuations which are intrinsic. The 
algorithm is as follows.

For anomaly T
i
, we first calculate the profile of the time 

series as

where N is the length of the record. Then the profile series 
is divided into N

s
 non-overlapping segments of equal length s 

with N
s
= [N∕S]. Since the length of the series is not always 

exactly a multiple of s, a short part of data will remain at the 
end of series. The same procedure is repeated for the reverse 
record to include the remaining part. Therefore we get 2N

s
 

segments. In each segment, the local trend calculated by a 
polynomial fit is subtracted and the variance of it refers to the 
corresponding square fluctuation F2

s
(k). Then the root-mean-

square fluctuations F(s) is obtained by averaging over all seg-
ments of size s,

For the case of long-range power law correlations, F(s) 
will increase as a power law

with 0 < 𝛼 < 1. Note that the power-law auto-correlation 
function

the exponent � and � are connected as (see Talkner and 
Weber 2000)

Y
k
=

k∑

i=1

T
i
(k = 1, 2, 3,… ,N)

F(s) =

√√√√ 1

2N
s

2Ns∑

k−1

F2
s
(k)

F(s) ∼ s
�

C(n) ∼ n
−�

� = 2(1 − �).

For uncorrelated data, � = 0.5, while long-term mem-
ory processes are characterized by 1 > 𝛼 > 0.5, 𝛼 < 0.5 
indicates anti-persistence. It is worth noting that there are 
different orders of DFA corresponding to the orders of pol-
ynomial fit. DFAn can eliminate trends of order n in the 
profile and n-1 in the original time series (Kantelhardt et al. 
2001). In this article we applied DFA2.

3 � Results

3.1 � The inter‑annual variation of annual cycle

Take Bologna as an example, we compare the annual 
cycle extracted by NMD which is so called NMAC to the 
detrended temperature records and its climatological annual 
cycle (CAC) in Figs. 3 and 4. It is well known that CAC is 
calculated by averaging each calendar day of the year in a 
long time span so that it actually only presents the mean 
state of the annual cycle. Following this way we calculated 
the mean state of NMAC and compared it to CAC (Fig. 3). 
They nearly overlap together and show little differences 
which means NMAC is reliable in the aspect of depicting 
mean state of annual cycle.

Furthermore, the details of changing NMAC (red line) 
in different time periods are given in Fig. 4 comparing with 
the observation (black line) and CAC (blue line). Limited 
by the length of the data, we only show some pieces from 
the whole series. Since the scale of coordinates has been 
unified, it is clear that the amplitude in the top subfigure 
is larger than the bottom one. The NMAC capture these 
features successfully whereas CAC cannot reflect the dif-
ferences between year and year. The CAC underestimate 
the true annual cycle on the top subfigure (Fig.  4a), but 
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Fig. 2   Piece of NMD series at Bologna: a the comparison of 
detrended SAT records and its NMAC; b three extracted physically 
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overestimate the true annual cycle on the bottom subfig-
ure (Fig. 4b). Over this region, the changing annual cycle 
mainly results from the changing amplitude not from 
changing phase. This is the reason why we only consider 
the changing amplitude of annual cycle in this paper. The 
changing amplitude of annual cycle extracted by NMD will 
lead to the inter-annual change of annual cycle, which will 
alter the estimation for LTM of SAT anomaly variability.

The NMD method is further applied to other 6 stations 
to extracts their NMACs. Since the NMAC varies con-
tinuously with time, we calculate its amplitude each year 
through (maximum-minimum)/2. Almost all the stations 
exhibit consistency in their amplitude variation (Fig.  5). 
To be more precise, they all descend to their lowest around 
1920s and then climb to the peak around 1945s. The ampli-
tudes reach another lower value around 1975s, which is 
coincident with the climatic regime shift of the mid-1970s. 
It should be pointed out that the evolution amplitude of 
annual cycle over Milan (much close to Mediterranean Sea) 
and Stockholm (located close to higher latitude, 59.31N see 
Table 1) still take some detailed distinctive changing pat-
terns. This is because the temperature of Milan is domi-
nated by the Mediterranean Sea climate and Stockholm is 
affected by its high latitude location.

Through the above results, the amplitudes of annual 
cycle are indeed changing with time and show some 
regional consistence, confirming the results in Qian and 
Zhang (2015). NMAC is proved to be efficient and reliable 
in representing this time-varying amplitude of annual cycle 
while CAC not. When considering the inter-annual vari-
ability of annual cycle, what changes will occur in the esti-
mation of long-term memory is demonstrated in the next 
part.

3.2 � Long‑term correlation of temperature anomalies

The DFA method is employed to SAT anomalies obtained 
through CAC and NMAC. Since the properties of LTM in 
this region have been discussed in previous studies (see 
Capparelli et  al. 2011; Yuan and Fu 2014), we will focus 
on the differences induced by differently defined AC and 
anomalies. According to the power law  F(s) ~ sα, usu-
ally we take the logarithm and make a linear fit to calcu-
late the exponent �. Due to the edge effect caused by the 
method in small scales and the length of records, we fit-
ted the scaling law in the range from 200 days to 20 years. 
Within this range, the changes in DFA exponent �is not sig-
nificant under 95% confidence level (see Table 2). However 
the R-squared presents a slight increase in NMD compared 
to CAC for all the stations, at the same time all standard 
errors in NMD are smaller than those in CAC. As we fixed 
the fitting range, R-squared and standard error can reflect 
the goodness of fit to a certain extent. From this point of 
view, the results from NMD perform scaling law a little bit 
better.

Besides, the differences in the DFA curves also sug-
gest that results from NMD are much closer to the straight 
lines (Fig.  6). Except for Hohenpeissenburg, the DFA 
curves from two methods showed separation around the 
600-day scale (inter-annual scale) in all the stations. Due 
to the compressing effect caused by double-log coordi-
nates, those differences between two curves seem not clear 
enough. To further amplify the differences, we rescale the 
dependent variable F(s) to F(s)∕s� so that the slope should 
be zero within the scaling range. Through this way we can 
better find the optimal scaling range for the scaling behav-
ior. Since the exponent �does not change significantly (all 
exponents from NMD are slightly larger than those from 
CAC in the range from 200 days to 20 years), we simply 
adopt the �from NMD method in the transformation (see 
Fig. 7).

Except for Hohenpeissenburg in which both methods 
show nearly the same behavior, all results over other sta-
tions exhibit marked separation between two methods with 
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all lines from NMD presented straight lines and lines from 
CAC deviated from the straight lines (see Figs.  6 and 7). 
These separations span nearly over the whole scaling range 
used to estimate the exponent �. In this scaling range, the 
result of CAC appears a crossover with a maximum arti-
ficial deviation centering around 600  days (inter-annual 
scale). The crossover is generally thought to be caused 
by the short-range correlation or the drawback from DFA 
method (Peng et  al. 1994; Kantelhardt et  al. 2001). How-
ever in our analysis, the influences of short-range correla-
tion have already been removed by averaging the daily data 
over 2-week-long windows. Since all crossover points with 
a maximum artificial deviation centering around 600 days 

are only found in the CAC related results, they are possi-
bly induced artificially by CAC not correctly removing the 
annual cycle. It is obvious that there is no inter-annual vari-
ability in CAC. This lack may lead to a weak 1-year period 
oscillation left in anomalies which affects the estimation of 
LTM. For instance, if the smaller scaling range before this 
maximum artificial deviation point (e.g. from 1 month to 
600 days) is chosen, the slope fitted in this range is actually 
overestimated. Similarly, if the larger scaling range after 
this maximum artificial deviation point (e.g. from 600 days 
to 20  years) is chosen, the exponent would be underes-
timated. Since the scaling range we selected exactly con-
tains this point, the exponents do not change significantly 
(Table 2). For a majority of meteorological stations in the 
world, their records do not last such long as the stations we 
studied. Thus the scaling range generally was chosen at the 
early part around 600 days, which will lead to an overrated 
DFA exponent. To verify our supposal, detailed results 
from artificially generated time series will be demonstrated 
next.

3.3 � Results from idealized artificially generated time 
series

Analysis from the observational records suggests a great 
difference in the estimation of LTM when eliminating dif-
ferent annual cycle. When applying CAC, a crossover in the 
DFA curves with a maximum artificial deviation around 
600 days was observed. Does the crossover really exist or 
the NMD method underrates the long-term correlation? To 
answer this question, we carry out an idealized experiment 
by generating series with known long-term correlation. 

Table 2   DFA exponents and the fitting parameters

Station Method DFA exponents p Standard error

Bologna CAC 0.6117 0.9981 0.0070
NMD 0.6166 0.9996 0.0034

Hohenpeissen-
burg

CAC 0.5720 0.9997 0.0025

NMD 0.5732 0.9998 0.0021
Milan CAC 0.6184 0.9986 0.0059

NMD 0.6262 0.9998 0.0024
Prague CAC 0.6431 0.9996 0.0035

NMD 0.6453 0.9999 0.0020
Stockholm CAC 0.6913 0.9983 0.0074

NMD 0.7008 0.9997 0.0032
Vienna CAC 0.6187 0.9992 0.0046

NMD 0.6256 1 0.0010
Zagreb CAC 0.6130 0.9987 0.0057

NMD 0.6176 0.9998 0.0023
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We first generate a changing annual cycle by modulating 
the sinusoidal waves following the real series. Taking the 
changing annual cycle of Bologna as the reference, the first 
harmonic dominates the annual cycle and its amplitude 
exhibits a prominent decrease. Therefore we construct a 
linear declining amplitude in annual cycle with the rate at 
0.046 °C/10 years (same as Bologna) and a constant semi-
annual cycle. As for temperature anomalies, a simple Fou-
rier-filtering technique (see Schreiber and Schmitz 2000) 
is used to generate linear long-term correlated records 
with known LTM exponent. We set � = 0.6 (Table  2) to 
simulate the temperature anomalies of Bologna. The noise 
intensity is equal to the standard deviation of anomalies 
and the length of data is 198 years. The artificial tempera-
ture series is generated by summing the modulated annual 
and semi-annual cycles with a long-term correlated series. 
The experiment is repeated for 100 times and the results 
will be presented through mean value of them (see Fig. 8).

As expected, the experiments of artificially gener-
ated series reproduce almost the same results found in 
the observational records. The line from NMD is nearly 
straight and the line from CAC is deviated from the 
straight line (Fig.  8a). The separation in DFA curves 
is observed in a long time range and the result of CAC 
appears a crossover with a maximum artificial deviation 
centering around 600 days (Fig. 8a). The blue line from 
generated correlated series without annual cycle is con-
sidered to be theoretical and referential. In order to find 
the discrepancies from the referential one, the rescaled 
fluctuations vs. scale is presented (Fig.  8b), the separa-
tion at maximum artificial deviation centering around 
600 days is even more remarkable. Actually results from 

both two methods exhibit maximum departure from the 
theoretical line around 600  days. Result from CAC has 
a convex crest while result from NMD has a concave 
trough, but NMD performs much better and weakens this 
departure greatly since the maximum departure in CAC is 
nearly four times of this found in NMD.

The relative DFA exponent errors (� − �0)∕�0 × 100%

, where �0 denotes the DFA exponent of referential gen-
erated series, over the range from the lower limit of 100 
days to the different upper limits are calculated. With 
the gradually increased upper limit, the errors of NMD 
remain always lower than CAC. The biggest deviation 
with 9.69% from CAC and 2.36% from NMD is observed 
around 600 days (Table  3). And the significant error 
around 600 days is spread to wider ranges. From 392 days 
to 1008 days, the errors from CAC are all larger than 5%. 
However, the NMD errors are no more than 3%. On even 
larger scales (greater than 2000 days) the error caused by 
crossover around 600 days decreases. In the fitting range 
from 200 days to 20 years there is a non-significant dif-
ference of DFA exponents (Table  2) from two methods. 
Therefore we have reasons to believe that the missed 
inter-annual variability with changing AC amplitude 
would truly introduce an artificial bump and may cause 
an overestimation or underestimation of the long-term 
correlation in different scaling ranges. Since we only take 
the changing amplitude of annual cycle into account, the 
minor imperfect overcorrection from NMD is acceptable 
(actually, we can not see the difference between the result 
from NMD and the referential one from log-plot of F(s)
vs.s).
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Fig. 8   The DFA results of artificially generated temperature series a, 
b, for clarity, blue line has been vertically shifted, where black solid 
dots for results from CAC filtering, hollow circles for results from 

NMAC filtering, blue line and solid dots for results from idealized 
series without annual cycles and red dash line for eye-guided scaling 
range
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4 � Summary and discussion

In this paper, we have studied the impacts from inter-annual 
variability of climate annual cycle with changing ampli-
tude on the estimation for long-term correlation. By com-
paring the observation, climatological annual cycle (CAC) 
and NMAC extracted by NMD method, the weakness of 
classical CAC is easy to outline. Sharing the same mean 
state of annual cycle with NMAC, CAC cannot reflect the 
inter-annual changes found in NMAC. If the inter-annual 
variability is not detected in annual cycle, the variation of 
this part may bias the anomaly’s definition. In other words, 
variability of the annual cycle will be taken as variability 
of anomaly mistakenly. And this will result in an artifi-
cial bump around 600 days in line of log-plot of F(s)vs. s. 
Because of this artificial bump, the estimation would devi-
ate from the true value when different fitting scaling range 
is determined.

To verify the assumption above, an idealized experiment 
from generated series with known long-term correlation is 
conducted. We create an artificial temperature series with 
changing amplitude of annual cycle and a long-term cor-
related anomaly series with �=0.6. The results show that 
CAC cannot capture the feature of changing annual cycle 
and leads to a same bump in the DFA curve. Although 
NMD method is also not perfect to overcome this draw-
back, it performs much better than CAC on the whole.

Why does this bump occur and how can we remove it? 
Since the inter-annual variability with changing AC ampli-
tude has not been extracted by CAC, the anomaly part 
includes superfluous information so that the annual period 
component is not totally removed. Taking Bologna as an 
example, the Fast Fourier Transform (FFT) analysis indi-
cates that original temperature records contain two domi-
nated periods with two peaks for annual and semi-annual 
cycles (Fig.  9). It is supposed that no peak will be found 
after subtracting annual cycle (CAC or NMAC). However, 
the first period corresponding to 1-year cycle still remains 
in the FFT analysis of anomalies obtained by CAC. Despite 
the low magnitude it has, this period would definitely influ-
ence the calculation of LTM. Furthermore, presenting the 
FFT results in logarithmic coordinates (Fig. 10), dips in the 

multiplier frequencies of 1 year emerge clearly. These dips 
destroyed the structure of original records so that they can 
also influence the characteristics of the data.

CAC will leave out a part of periodical signal in the 
anomaly series due to the changing amplitude of annual 
cycle, so that anomaly series may still exhibit seasonal 
behavior of a different kind (Qian et  al. 2011b, see their 
Fig.  4e; Graves 2013). Recently some new methods have 
been proposed to estimate the seasonal LTM (Graves 2013; 
Graves et al. 2017). In this work, the original records still 
have been decomposed into annual cycle and anomaly tra-
ditionally. The NMD method works fairly well in extract-
ing the characteristics of time-varying annual cycle with 
changing amplitude (some other methods, such as EEMD 
can also serve this purpose, see Fig. 4 in Qian et al. 2011b) 
and can overcome the drawback from CAC quite well. 
Although it seems a little overcorrected (less than 3%) in 
the calculation of LTM, the results indeed indicate that 
the inter-annual variability of the time-varying AC plays 
an important role in the estimation of LTM. Since the 
annual cycle actually suffers from both amplitude and 
phase changes which may be caused by various reasons 
as reviewed in the introduction, taking the changing phase 

Table 3   DFA exponent error in different fitting ranges with lower limit of 100 days

Upper limit (day) 210 294 392 532 630 700 840 924

 CAC 1.33% 3.34% 6.24% 9.07% 9.69% 9.42% 8.32% 7.67%
 NMD 1.11% 1.45% 1.84% 2.30% 2.36% 2.26% 1.94% 1.75%

1008 1932 3052 4032 4844 5824 7014 8428

 CAC 7.04% 3.11% 1.33% 0.62% 0.25% 0.05% 0.29% 0.49%
 NMD 1.58% 0.55% 0.12% 0.05% 0.13% 0.20% 0.25% 0.29%

0.000 0.002 0.004 0.006 0.008 0.010
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Fig. 9   Fast Fourier Transform analysis of the temperature records 
and anomalies at Bologna
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into consideration could eliminate the left overcorrection 
possibly. This will be answered in the future works.
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