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Basic and Fluctuating Periodic Instantons in Quantum Tunneling∗
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Abstract Under condition of four potential fields, equations of motion and fluctuations in imaginary time are utilized
to analytically derive the basic and fluctuating periodic instantons. It is shown that the basic instantons satisfy the elliptic
or simple pendulum equations and their solutions are Jacobi elliptic functions, and fluctuating periodic instantons satisfy
the Lamé equation and their solutions are Lamé functions. These results indicate that there exists the common solution
family for different potential fields which are called the super-symmetry family.
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1 Introduction
The research fruits of quantum physics possess both

important theoretical and experimental senses. Espe-
cially, the quantum tunneling where motion of particle
can tunnel through the potential barrier has become the
baseline of modern natural sciences and new technologies.
In the eighties of the 20th century, the researches of quan-
tum tunneling have been started[1−2] and Chinese scien-
tists Liang et al.[3−12] have also made great progress in
this field. In this paper, the analytical periodic intantons
in quantum tunneling are derived normally.

Assuming that the potential and total energies of a
particle are V and E, respectively. When V < E, there
exists certain orbit for the classical particle. However,
when E ≤ V , the classical particle is unable to tunnel
through the potential fields. For this reason, the imagi-
nary time

τ = it (i =
√−1) (1)

is introduced. Such that the classical particle becomes
the pseudo-particle, which can tunnel through the poten-
tial fields and brings about the quantum tunneling.

Using the imaginary time, the equation of motion per
unit mass is given by

d2φ

dτ2
= V ′(φ) , (2)

and then integrating equation (2) yields

1
2

( dφ

dτ

)2

− V (φ) = −E , (3)

where φ is the displacement or wave function for the par-
ticle.

From Eq. (3), we see that 0 ≤ E ≤ V and then the
potential field of pseudo-particle can be taken as −V . The
solution of Eq. (3) is called the instanton configuration.

Considering that φ and ψ are ground and fluctuating
states for the particle, respectively, then the fluctuating
equation may be written as

1
2

[
− d2

dτ2
+ V ′′(φ)

]
ψ = ω2ψ , (4)

where ω is the circular frequency if fluctuation with ω2 ≥
0. If ω2 < 0, it implies that the ground state is unstable.

2 Basic and Fluctuating Periodic Instanton
in Quantum Tunneling
Below, we will discuss two cases of potential field in

details.

2.1 Double-Well Potential Field

The double-well potential field or φ4 potential field is
given by

V (φ) =
ω2

0

2a2
(φ2 − a2)2 = −ω2

0

(
φ2 − φ4

2a2

)
+ V0 ,

(
V0 =

1
2
ω2

0a2
)

, (5)

which is shown in Fig. 1 and ω0 and a are two positive
constants. Figure 1 shows that the potential field con-
tains one potential barrier and two potential wells.

From Fig. 1, we can see that there are three equilib-
rium states which make V ′(φ) = 0 such that

φ∗0 = 0 , φ∗1 = −a , φ∗2 = a . (6)
Since

V ′(φ) = −2ω2
0

(
φ−φ3

a2

)
, V ′′(φ) = −2ω2

0

(
1−3φ2

a2

)
. (7)

So φ∗0 = 0 is the maximum point which is unstable in
the potential field, the maximum value is V0 = (1/2)ω2

0a2,
which is the top height of potential barrier and taken to be
the potential barrier height. While φ∗1 = −a and φ∗2 = a
are the minimum points, which are stable in the potential
field, the minimum value is zero.
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Fig. 1 Schematic plot of double-well potential field.

(i) Basic Periodic Instanton
Substituting Eq. (5) into Eq. (3), we have

( dφ

dτ

)2

= (−2E + ω2
0a2)− 2ω2

0φ2 +
ω2

0

a2
φ4 . (8)

Notice that one solution to nonlinear elliptic equation[13]

( dy

dx

)2

= k2A2 − (1 + m2)k2y2 +
k2m2

A2
y4

=
k2

A2
(A2 − y2)(A2 −m2y2) , (9)

is given by
y = Asn(k(x− x0),m) , (10)

where sn (k(x− x0),m) is the Jacobi elliptic sine function
with its modulus m (0 ≤ m ≤ 1), and x0 is an arbitrary
constant.

Comparing Eq. (8) with Eq. (9) leads to

k =

√
2

1 + m2
ω0 , A = ±kam

ω0
,

E = b2V0 ,
(
b =

1−m2

1 + m2

)
, (11)

and one solution to Eq. (8) is

φ = ±
√

2
1 + m2

masn
(√

2
1 + m2

ω0(τ − τ0),m
)

, (12)

with an arbitrary constant τ0. Equation (12) is the gen-
eral periodic solution of quantum tunneling in double-well
potential field. When the right hand of Eq. (12) takes the
positive sign, then its figure is shown in Fig. 2 as the thin
solid line. Equation (12) is called as the basic periodic
instanton comparing to fluctuation. Since the period of
sn(x,m) is 4K(m), then the period of basic periodic in-
stanton is given by

T = 4

√
1 + m2

2
K(m)

ω0
, (13)

with the complete elliptic integral of the first kind

K(m) =
∫ π/2

0

1√
1−m2sin2ϕ

dϕ . (14)

The solid thin line in Fig. 2 indicates φ = 0 at√
2/(1 + m2)ω0(τ − τ0) = 0, and τ = τ0 corresponds

to φ∗0. φ = −a at
√

2/(1 + m2)ω0(τ − τ0) = −K(m)
and τ = τ1 corresponds to φ∗1 = −a. φ = a at√

2/(1 + m2)ω0(τ − τ0) = K(m) and τ = τ2 corresponds
to φ∗2 = a. Thus the pseudo-particle starts from τ1 and
tunnels through the potential barrier at τ0, it will come
close to the potential barrier height with increasing m and
reaches the potential barrier height at m = 1, at last it
completes one tunneling at τ2. In fact the pseudo-particle
is reciprocating oscillation between τ1, τ0, and τ2.

Fig. 2 Schematic plot of basic periodic instanton (thin
solid line) and basic instanton (thick solid line ) in double-
well potential field.

Now, we illustrate two marginal cases for m = 0 and
m = 1.

(a) When m = 0, then b = 1 and E = V0, the total
energy reaches the maximum, and the potential barrier
height Eq. (12) is degenerated into

φ = 0 . (15)

This implies that φ is zero solution, and the pseudo-
particle is located to the unstable potential barrier height
where φ = 0 is known as the sphaleron.

(b) When m = 1, then b = 0 and E = 0, the total
energy reaches the minimum and Eq. (12) is degenerated
into

φ = ±atanhω0(τ − τ0) , (16)

which is the kink solution known as topological soliton.
When the right hand of Eq. (16) takes the positive sign,
then its figure is shown in Fig. 2 in thick solid line, where
we can see that τ → −∞, φ → −a; τ → +∞, φ → a.
Since K(m) → +∞ at m = 1, then the topological soliton
is the periodic instanton with infinite period, and it is also
called the basic instanton.

As the physics is concerned, we must give the following
two statements:

(a) Since 0 ≤ E ≤ V , V = 0 at φ∗ = ±a certainly leads
to E = 0 at φ∗ = ±a, which is known as the macroscopic
quantum states. And for basic instanton represented by
Eq. (16), there is E = 0 as well, so there exists degener-
ated states to E = 0.

(b) The topological soliton links up smoothly the two
macroscopic quantum states φ∗1 = −a and φ∗2 = a. Such
that they interfere each other and split up the energy level.
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In mathematics, the topological soliton is called also the
heteroclinic orbit. However, in physics, it is called the
connection of quantum tunneling, which is also called the
tunnel effect.

(ii) Fluctuating Periodic Instanton
In order to solve the fluctuating equation (4), it is con-

venient to introduce the dimensionless variable

θ =

√
2

1 + m2
ω0(τ − τ0) , (17)

which is the phase function. So the basic period instanton
(12) can be rewritten as

φ = ±
√

2
1 + m2

masn(θ, m) , (18)

by means of Eq. (17), the fluctuating equation (4) in
double-well potential field reduces to

1
2

[
− d2

dθ2
+

1 + m2

2ω2
0

V ′′(φ)
]
ψ =

(1 + m2)ω2

ω2
0

ψ . (19)

Substituting V ′′(φ) in Eqs. (7) and (18) into Eq. (19)
yields

d2ψ

dθ2
+ (λ− 6m2sn2θ)ψ = 0 , (20)

with

λ = (1 + m2)
(
1 +

ω2

ω2
0

)
. (21)

Equation (20) is just a Lamé equation[14−16]

d2y

dx2
+ (λ− l(1 + l)sn2x)y = 0 , (22)

for the case of l = 2. According to the theory of Lamé
equation (see Appendix), we find that the modes and peri-
odic solutions known as the fluctuating periodic instantons
of Eq. (20) are given by

(a) λ = 1+m2, i.e. (1+m2)(1+ω2/ω2
0) = 1+m2 and

then

ω2 = 0 , (zero mode) , ψ0 = C0cnθdnθ , (23)

where cnθ and dnθ are the Jacobi elliptic cosine function
and Jacobi elliptic function of the third kind, respectively,
and C0 is an arbitrary constant.

Taking m = 0 and m = 1, then Eq. (23) degenerates
to

ω2 = 0 , ψ0 = C0cosθ , (24)
ω2 = 0 , ψ0 = C0sech2θ . (25)

(b) λ = 1 + 4m2, i.e. (1 + m2)(1 + ω2/ω2
0) = 1 + 4m2

and then

ω2 =
3m2

1 + m2
ω2

0 , (positive and zero modes) ,

ψ1 = C1snθdnθ , (26)

where C1 is an arbitrary constant.
When m = 0 and m = 1, then Eq. (26) degenerates to

ω2 = 0 , ψ1 = C1sinθ , (27)

ω2 =
3
2
ω2

0 , ψ1 = C1tanhθsechθ . (28)

(c) λ = 4+m2, i.e. (1+m2)(1+ω2/ω2
0) = 4+m2 and

then

ω2 =
3

1 + m2
ω2

0 , (positive mode), ψ2 = C2snθcnθ , (29)

where C2 is an arbitrary constant.
When m = 0 and m = 1, then Eq. (29) degenerates to

ω2 = 3ω2
0 , ψ2 = C2cosθsinθ , (m = 0) ,

ω2 =
3
2
ω2

0 , ψ2 = C2tanhθsechθ , (m = 1) . (31)

(d) λ = 2[(1+m2)±√1−m2 + m4], i.e. (1+m2)(1+
ω2/ω2

0) = 2[(1 + m2)±√1−m2 + m4] and then

ω2 = ω2
0

(
1± 2M

1 + m2

)
, (all kinds of modes) ,

ψ3 = C3

[
sn2θ − (1 + m2 ∓M)

3m2

]
, (32)

with M =
√

1−m2 + m4 and where C3 is an arbitrary
constant. When m = 0 and m = 1, then Eq. (32)

ω2 = (1± 2)ω2
0 , ψ3 = C3

(
sin2θ − 1

3

)
, (m = 0) , (33)

ω2 = (1±1)ω2
0 , ψ3 = C3

[
tanh2θ−1

3
(2∓1)

]
, (m = 1).(34)

2.2 Sine-Gordon Potential Field

The sine-Gordon potential field is given by

V (φ) =
ω2

0

µ2
(1 + cosµφ) = V0cos2

µφ

2
,

(
V0 =

2ω2
0

µ2

)
, (35)

which is plotted in Fig. 3, and ω0 and µ are positive con-
stants. Similar to Fig. 1, there are one potential barrier
and two potential wells in −(π + ε) ≤ µφ ≤ (π + ε), (0 <
ε ≤ 1).

Fig. 3 Schematic plot of sine-Gordon potential field.

There are three equilibrium states which make

V ′(φ) = 0 , φ∗0 = 0 , φ∗1 = −π

µ
, φ∗2 =

π

µ
. (36)

Since

V ′(φ) = −ω2
0

µ2
sinµφ , V ′′(φ) = −ω2

0cosµφ , (37)

there φ∗0 = 0 is the maximum point, which is unsta-
ble in the potential field, and the maximum value is
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V0 = 2ω2
0/µ2, which is the top height of potential bar-

rier and is known as the potential barrier height. And
φ∗1 = −π/µ and φ∗2 = π/µ are the minimum points, which
are stable in the potential field, the minimum value is zero.

(i) Basic Periodic Instanton
Substituting Eq. (35) in Eq. (3), we have Substituting

Eq. (5) into Eq. (3), we have
( dφ

dτ

)2

=
4ω2

0

µ2

[(
1− E

V0

)
− sin2 µφ

2

]
, (38)

which is the equation of simple pendulum motion, its nor-
mal form[13] is given by

( dy

dx

)2

= 4k2
[
m2 − sin2 y

2

]
, (39)

one of its solution is

sin
y

2
= ±msn(k(x− x0),m) . (40)

Comparing Eq. (38) with Eq. (39) yields

k =
ω0

µ
, E = (1−m2)V0 , (41)

and then the solution to Eq. (38) is

sin
µφ

2
= ±msn(ω0(τ − τ0),m) , (42)

where τ0 is an arbitrary constant. Equation (42) is the
general periodic solution known as the basic periodic in-
stanton of quantum tunneling in sine-Gordon potential
field. When the right hand of Eq. (42) takes the positive
sign, then its figure is shown in Fig. 4 in thin solid line.
The periodic of basic periodic instanton is given by

T =
4K(m)

ω0
. (43)

Fig. 4 Schematic plot of basic periodic instanton (thin
solid line) and basic instanton (thick solid line).

Similar to the case for double-well potential field there
exist also quantum tunneling and reciprocating oscilla-
tion for the pseudo-particle in sine-Gordon potential field.
Now, we illustrate two marginal cases for m = 0 and
m = 1.

(a) When m = 0 then E = V0, the total energy reaches
the maximum, Eq. (42) is degenerated into

φ = 0 , (−(π + ε) ≤ µφ ≤ (π + ε)) , (44)

which is just the sphaleron.
(b) When m = 1 then E = 0, the total energy reaches

the minimum, Eq. (42) is degenerated into the following
basic instanton

sin
µφ

2
= ±tanhω0(τ − τ0) , (45)

which is just the topological soliton and it links up
smoothly φ∗1 = −π/µ and φ∗2 = π/µ, so it is also called
heteroclinic orbit. When the right hand of Eq. (45) takes
the positive sign, detailed plot can be found in Fig. 4 in
thick solid line.

Similar to the case for double-well potential field there
also exist the degenerated states to E = 0 and the con-
nection of quantum tunneling in the sine-Gordon potential
field.

(ii) Fluctuating Periodic Instanton
In order to solve the fluctuating equation (4), we in-

troduce the following dimensionless variable

θ = ω0(τ − τ0) , (46)

so the basic periodic instanton (42) can be rewritten as

sin
µφ

2
= ±msn(θ, m) . (47)

By means of Eq. (46), the fluctuating equation (4) in
sine-Gordon potential field reduces to

1
2

[
− d2

dθ2
+

1
ω2

0

V ′′(φ)
]
ψ =

ω2

ω2
0

ψ . (48)

Substituting V ′′(φ) in Eqs. (37) and (47) into Eq. (48)
yields

d2ψ

dθ2
+ (λ− 2m2sn2θ)ψ = 0 , (49)

with

λ = 1 +
2ω2

ω2
0

. (50)

Equation (49) is just a Lamé equation (22) for the case
of l = 1. According to the theory of Lamé equation (see
Appendix), we obtain the modes and fluctuating periodic
instanton of Eq. (49) given by

(a) λ = 1 i.e. 1 + 2ω2/ω2
0 = 1 and then

ω2 = 0 , (zero mode) , ψ0 = C0cnθ . (51)

(b) λ = 1 + m2 i.e. 1 + 2ω2/ω2
0 = 1 + m2 and then

ω2 =
m2

2
ω2

0 , (positive and zero modes) ,

ψ1 = C1snθ , (52)

(c) λ = m2 i.e. 1 + 2ω2/ω2
0 = m2 and then

ω2 = −1−m2

2
ω2

0 , (negative and zero modes) ,

ψ2 = C2dnθ . (53)

3 Basic Periodic Bounce and Fluctuating
Periodic Instanton in Quantum Tunneling
In this section, we will discuss still two cases of poten-

tial fields in details.
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3.1 Double-Barrier Potential Field

The double-barrier potential field is also a kind of φ4

potential field, and it is given by

V (φ) =
ω2

0

2a2
[φ4 − (φ2 − a2)2] =

2V0

a2

(
φ2 − 1

2a2
φ4

)
,

(
V0 =

1
2
ω2

0a2
)

, (54)

which is plotted in Fig. 5, and ω0 and a are positive con-
stants. Figure 5 shows that there are two potential barri-
ers and a potential well.

Comparing Fig. 5 with Fig. 1, we can see that Fig. 5
is the transposition of Fig. 1, and V (φ) ≥ 0 requires that
−√2a ≤ φ ≤ √

2a.

Fig. 5 Schematic plot of double-barrier potential field.

From Fig. 5, there are three equilibrium states

φ∗0 = 0 , φ∗1 = −a , φ∗2 = a , (55)

which is identical to Eq. (6) for double-well potential field.
However, since

V ′(φ) = 2ω2
0

(
φ− 1

a2
φ3

)
, V ′′(φ) = 2ω2

0

(
1− 3

a2
φ2

)
, (56)

the sign is different from Eq. (7), so φ∗0 is stable and φ∗1
and φ∗2 are unstable. The maximum and minimum values
are V0 and zero, respectively. Besides, in Fig. 5 there are

φ̂∗1 = −
√

2a , φ̂∗2 =
√

2a , (57)

and their potential energies are zeros, which are known as
the reverser, and its explanation will be presented next.

(i) Basic Periodic Instanton
Substituting Eq. (54) into Eq. (3) yields

( dφ

dτ

)2

= −2E + 2ω2
0φ2 − ω2

0

a2
φ4 , (58)

and notice that one solution of nonlinear elliptic
equation[13]

( dy

dx

)2

= − k2A2n′2 + (1 + n′2)k2y2 − k2

A2
y4

=
k2

A2
(A2 − y2)(A2 − n′2y2) (59)

is given by
y = Adn(k(x− x0), n) . (60)

Comparing Eq. (58) with Eq. (59) leads to

k =

√
2

1 + n′2
ω0 , A = ±ka

ω0
,

E = b2V0 ,
(
b =

1−m2

1 + m2

)
(61)

and one solution to Eq. (58) is

φ = ±
√

2
1 + n′2

adn
(√

2
1 + n′2

ω0(τ − τ0), n
)

, (62)

where τ0 is an arbitrary constant. Equation (62) is the
general periodic solution of quantum tunneling in double-
barrier potential field with modulus n′(n′ =

√
1− n2).

Here n distinguishes from m in double-well potential field,
and their relation is given by

n2 =
4m

(1 + m)2
, n′2 =

(1−m

1 + m

)2

. (63)

Equation (62) is also the basic periodic instanton of
quantum tunneling in double-barrier potential field with
the period

T = 2

√
1 + n′2

2
K(n)
ω0

. (64)

When the right hand of Eq. (62) takes the positive sign,
and then its corresponding figure is plotted in thin solid
line in Fig. 6, from which we can see φ =

√
2/(1 + n′2)a

and φ =
√

2a at φ =
√

2/(1 + n′2)ω0(τ − τ0) = 0 when
n = 1, so τ = τ0 corresponds to φ̂∗2 =

√
2a. φ = 0

at φ =
√

2/(1 + n′2)ω0(τ − τ0) = −K(n), so τ = τ1

corresponds to φ∗0 = 0. Thus the pseudo-particle starts
from τ1 and tunnels through the potential barrier at τ0, it
will come close to φ̂∗2 =

√
2a with increasing n and reach

φ̂∗2 =
√

2a at n = 1, later it returns to beginning point.
So τ0 and φ̂∗2 =

√
2a known as the turning points and

reverser, respectively, while the basic periodic instanton
represented by Eq. (62) is known as the basic periodic
bounce.

Fig. 6 Schematic plot of basic bounce(thin solid line)
and basic bounce (thick solid line) in double-barrier po-
tential field.

So far as the whole double-barrier potential field, the
pseudo-particle begins from one turning point and tunnels
through two potential barriers and finally reaches another
turning point.
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Now, we will illustrate the marginal cases for n = 0
and n = 1.

(a) when n = 0, then n′ = 1 and E = V0, the total
energy reaches its maximum, the potential barrier height
and Eq. (62) is degenerated into

φ = ±a , (65)

which is the sphaleron.
(b) when n = 1, then n′ = 0 and E = 0, the total

energy reaches its minimum and Eq. (62) is degenerated
into

φ = ±
√

2asech
√

2ω0(τ − τ0) , (66)

which is non-topological soliton known as the basic bounce
with infinite period. Its figure is shown in thick solid line
in Fig. 6, when the right hand of Eq. (66) takes the posi-
tive sign.

When physics is concerned, two points must be noted.
(a) Since 0 ≤ E ≤ V , V = 0 at φ̂ = ±√2a must lead to

E = 0 at φ̂ = ±√2a, which may be known as the macro-
scopic quantum states. For basic bounce represented by
Eq. (66), we also have E = 0. So there exist the degener-
ated states to E = 0, which is similar to the conclusion in
the double-well potential field.

(b) For the non-topological soliton Eq. (66) the
pseudo-particle begins from τ = τ0 and tunnels through
the potential barrier and returns to τ = τ0. In mathe-
matics, the non-topological soliton is also called the ho-
moclinic orbit. Notice that in former two potential fields,
the pseudo-particle enters into the potential well after it
tunnels through the potential barrier. However, in the
case of double-barrier potential field the pseudo-particle
is able to enter into the region of V < 0 and it makes the
decay of ground states and energy level take place, it is

called the decay of quantum tunneling, which is different
from the conclusion in double-well potential field.

(ii) Fluctuating Period Instanton
In order to solve the fluctuating equation, it is conve-

nient to introduce the dimensionless variable

θ =

√
2

1 + n′2
ω0(τ − τ0) , (67)

then the basic periodic bounce (62) can be rewritten as

φ = ±
√

2
1 + n′2

adn(θ, n) . (68)

By means of Eq. (67), the fluctuating equation (4) in
double-barrier potential field reduces to

1
2

[
− d2

dθ2
+

1 + n′2

ω2
0

V ′′(φ)
]
ψ =

(1 + n′2)ω2

ω2
0

ψ . (69)

Substituting V ′′(φ) in Eqs. (56) and (62) into Eq. (69)
yields

d2ψ

dθ2
+ (λ− 6n2sn2θ)ψ = 0 , (70)

with

λ = (2− n2)
ω2

ω2
0

+ (4 + n2) . (71)

The form of Lamé equation (70) is the same as Eq. (20)
only is replaced m by n. Thus we obtain the modes and
fluctuating periodic instantons as

(a) λ = 4 + n2, i.e. (2− n2)ω2/ω2
0 + (4 + n2) = 4 + n2

and then

ω2 = 0 , (zero mode) , ψ0 = C0snθcnθ . (72)

(b) λ = 1 + n2, i.e. (2− n2)ω2/ω2
0 + (4 + n2) = 1 + n2

and then

ω2 = − 3
(2− n2)

ω2
0 , (negative mode) , ψ1 = C1cnθdnθ . (73)

(c) λ = 1 + 4n2, i.e. (2− n2)ω2/ω2
0 + (4 + n2) = 1 + 4n2 and then

ω2 = −3(1− n2)
2− n2

ω2
0 , (negative and zero modes) , ψ2 = C2snθdnθ , (74)

where C2 is an arbitrary constant.
(d) λ = 2[(1 + n2)±√1− n2 + n4], i.e. (2− n2)ω2/ω2

0 + (4 + n2) = 2[(1 + n2)±√1− n2 + n4] and then

ω2 = −ω2
0

(
1∓ 2N

2− n2

)
, (all kinds of modes) , ψ3 = C3

[
sn2θ − (1 + n2 ∓N)

3n2

]
, (75)

with N =
√

1− n2 + n4.

3.2 Sub-Stationary State Potential Field

The sub-stationary state potential field or φ3 potential
field is given by

V (φ) =
ω2

0

2
φ2 − β

3
φ3 =

27V0

4a3
φ2(a− φ) ,

(
a =

3ω2
0

2β
, V0 =

ω6
0

6β2

)
, (76)

which is plotted in Fig. 7 and ω0 and β are two positive
constants. V (φ) ≥ 0 requires that −∞ < φ ≤ a. Figure 7

shows there are one potential barrier and one potential
well.

From Fig. 7, we see that the equilibrium states have

φ∗0 = 0 , φ∗1 =
2
3
a . (77)

Since

V ′(φ) = ω2
0φ− βφ2 , V ′′(φ) = ω2

0 − 2βφ , (78)

then φ∗0 is stable and the minimum value is zero and φ∗1 is
unstable and the maximum value is V0. Besides, in Fig. 7,
we have

φ̂ = a , (79)
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which is the reverser with the zero potential energy.

Fig. 7 Schematic plot of sub-stationary state potential
field.

(i) Basic Periodic Instanton

Substituting Eq. (76) into Eq. (3) leads to
( dφ

dτ

)2

= − 2E + ω2
0φ2 − 2β

3
φ3

= − 2β

3

(
φ3 − 3ω2

0

2β
φ2 +

3E

β

)
. (80)

Setting

φ3 − 3ω2
0

2β
φ2 +

3E

β
= 0 , (81)

to take three real roots: φ1, φ2 and φ3 with φ1 ≥ φ2 ≥ φ3

and then we have

φ1 + φ2 + φ3 =
3ω2

0

2β
= a , φ1φ2 + φ2φ3 + φ3φ1 = 0 , φ1φ2φ3 = −3E

β
, (82)

from which we have

φ1 =
ω2

0

2β
+

ω2
0

β
cosα , φ2 =

ω2
0

2β
+

ω2
0

β
cos

(
α +

2π

3

)
, φ3 =

ω2
0

2β
+

ω2
0

β
cos

(
α +

4π

3

)
, (83)

where α satisfies

cos3α = 1− 12β2E

ω6
0

= 1− 2E

V0
. (84)

So Eq. (80) can be rewritten as
( dφ

dτ

)2

= −2β

3
(φ− φ1)(φ− φ2)(φ− φ3) . (85)

Notice that one solution to nonlinear elliptic
equation[13]

( dy

dx

)2

= −B(y − y1)(y − y2)(y − y3) ,

(B > 0, y1 ≥ y2 ≥ y3) (86)

is given by

y = y2 + (y1 − y2)cn2
(√

B(y1 − y3)
4

(x− x0),m
)

,

(
m2 =

y1 − y2

y1 − y3

)
. (87)

Comparing Eq. (85) with Eq. (86) leads to one solution
to Eq. (85)

φ = φ2 + (φ1 − φ2)cn2
(√

β(φ1 − φ3)
6

(τ − τ0),m
)

, (88)

where τ0 is an arbitrary constant, and

m2 =
φ1 − φ2

φ1 − φ3
. (89)

With the help of Eq. (83) and φ1−φ3 = (ω2
0/β)[cosα−

cos(α + 4π/3)], we have
√

β(φ1 − φ3)
6

= ω1 , ω1 =
ω0

2

√
cosα− 1√

3
sinα , (90)

and then

φ1 − φ3 =
6ω2

1

β
= a1 , φ1 − φ2 = m2(φ1 − φ3) = m2a1 ,

a1 = a
(
cosα− 1√

3
sinα

)
, (91)

so Eq. (88) can be written as

φ = φ2 + m2a1cn2(ω1(τ − τ0),m) , (92)

which is the basic periodic bounce in sub-stationary state
potential field with period

T =
2K(m)

ω1
. (93)

Details of Eq. (92) is plotted in thin solid line in Fig. 8,
where we can see that φ = φ1 = a at ω1(τ − τ0) = 0,
so τ = τ0 corresponds to φ̂ = a. φ = φ2 = 0 at
ω1(τ − τ0) = ±K(m), so τ = τ1 corresponds to φ∗0 = 0.
Then τ0 is the turning point, φ̂ = a is the reverser.
Hence, the pseudo-particle starts from τ = τ1 and tun-
nels through the potential barrier at τ = τ0, it is close to
φ̂ = a as increasing of m and reaches φ̂ = a at m = 1,
later it returns to τ = τ1. That is to say, here there also
exists a periodic bounce.

Now, we illustrate two marginal cases of m = 0 and
m = 1.

(a) When m = 0, then φ1 = φ2 from Eq. (89) and by
means of Eqs. (83), (84), (90), and (91) we have

α= −π

3
, cosα =

1
2
, cos3α= −1, ω1 =

ω0

2
, a1 = a, (94)

φ1 = φ2 =
ω2

0

β
=

2
3
a , φ3 = −ω2

0

β
= −2

3
a , E = V0 , (95)

which indicates that the total energy reaches the maxi-
mum, the potential barrier height, in −ε < φ ≤ a (0 <
ε ≤ 1) when m = 0. In this case, Eq. (92) is degenerated
into

φ1 = φ2 = φ3 =
ω2

0

β
=

2
3
a , (96)

which is the sphaleron.
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(b) When m = 1, then φ2 = φ3 from Eq. (89) and by
means of Eqs. (83), (84), (90), and (91) we have

α = 0, cosα = 1, cos3α = 1, ω1 =
ω0

2
, a1 = a, (97)

φ1 =
2ω2

0

3β
= a , φ2 = φ3 = 0 , E = 0 , (98)

which indicates that the total energy reaches the mini-
mum in −∞ < φ ≤ a− ε (0 < ε ≤ 1) when m = 1. In this
case, Eq. (92) is degenerated into

φ = asech2 ω0

2
(τ − τ0) , (99)

which is the basic bounce known also as the non-
topological soliton or homoclinic orbit. Its details are
plotted in thick solid line in Fig. 8.

Fig. 8 Schematic plot of basic periodic bounce (thin
solid line) and basic bounce (thick solid line) in sub-
stationary state potential field.

Similar to the case of double-barrier potential field,
there also exist the degenerated states to E = 0 and the
decay of quantum tunneling in the sub-stationary state
potential field.

(ii) Fluctuating Periodic Instanton
In order to solve the fluctuating equation (4), it is con-

venient to introduce the following dimensionless variable

θ = ω1(τ − τ0) , (100)

and then the periodic bounce (92) can be rewritten as

φ = φ1 −m2a1sn2(θ, m) . (101)

By means of Eq. (100), the fluctuating equation (4) in
sub-stationary state potential field reduces to

1
2

[
− d2

dθ2
+

1
ω2

1

V ′′(φ)
]
ψ =

ω2

ω2
1

ψ . (102)

Substituting V ′′(φ) in Eq. (78) into Eq. (102) yields

d2ψ

dθ2
+ (λ− 12m2sn2θ)ψ = 0 , (103)

with

λ =
2ω2

ω2
1

− ω2
0

ω2
1

+
12
a1

φ1 . (104)

Obviously, φ1 is related to m. Considering that when
m = 0 then φ1 = ω2

0/β = 2a/3, cosα = 1/2; when
m = 1 then φ1 = 2ω2

0/3β = a, cosα = 1, we choose
cosα = (1 + m2)/2. And notice that when both m = 0
and m = 1, there all exists ω1 = ω2

0/2 and a1 = a. Hence

φ1 =
(2 + m2)ω2

0

2β
=

2 + m2

3
a ,

λ =
8ω2

ω2
0

+ 4(1 + m2) . (105)

Equation (103) is just a Lamé equation (22) for the
case of l = 3. According to the theory of Lamé equa-
tion (see Appendix for details), we obtain the modes and
fluctuating periodic instantons of Eq. (103) given by

(a) λ = 4(1 + m2) i.e. 8ω2/ω2
0 + 4(1 + m2) = 4(1 + m2

and then

ω2 = 0 , (zero mode) , ψ0 = C0snθcnθdnθ . (106)

(b) λ = 5(1 + m2) ± 2
√

4− 7m2 + 4m4 i.e. 8ω2/ω2
0 +

4(1 + m2) = 5(1 + m2)± 2
√

4− 7m2 + 4m4 and then

ω2 =
ω2

0

8
[(1 + m2)± 2D1] , (all modes) ,

ψ1 = C1snθ
[
1− 2(1 + m2)±D1

3
sn2θ

]
, (107)

with D1 =
√

4− 7m2 + 4m4.

(c) λ = 2m2 + 5± 2
√

4−m2 + m4 i.e. 8ω2/ω2
0 + 4(1 + m2) = 2m2 + 5± 2

√
4−m2 + m4 and then

ω2 =
ω2

0

8
[(1− 2m2)± 2D2] , (all modes) , ψ2 = C2cnθ[1− (2 + m2 ± 2D2)sn2θ] , (108)

with D2 =
√

4−m2 + m4.
(d) λ = 5m2 + 2± 2

√
1−m2 + 4m4 i.e. 8ω2/ω2

0 + 4(1 + m2) = 5m2 + 2± 2
√

1−m2 + 4m4 and then

ω2 =
ω2

0

8
[(m2 − 2)± 2D3] , (all modes) , ψ3 = C3dnθ[1− (1 + 2m2 ±D3)sn2θ] , (109)

with D3 =
√

1−m2 + 4m4.

4 Conclusion and Discussion
There are many mathematical problems in specific

physics fields, for the quantum tunneling, it is of great
importance to solve analytically the related model under
different potential fields. Here we show that the special

functions are really helpful to reach this aim. The basic in-
stantons satisfy the elliptic or simple pendulum equations
and their solutions are Jacobi elliptic functions, and fluc-
tuating periodic instantons satisfy the Lamé equation and
their solutions are Lamé functions. These results indicate
that there exists the common solution family for different
potential fields, which are called the super-symmetry fam-
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ily. At the same time, these analytical solutions and their
features tell us why and how the quantum tunneling has
happened in specific models.

Appendix
The Lamé equation is defined as

d2y

dx2
+ [λ− l(l + 1)m2sn2x]y = 0 , (A1)

where l is a positive integer, m (0 ≤ m ≤ 1) is the mod-
ulus, λ is the eigenvalue, which satisfies the periodicity
boundary condition, and the corresponding eigenfunction
is known as the Lamé function.

(i) In case of l = 1, Lamé equation Eq. (A1) reduces
to

d2y

dx2
+ (λ− 2m2sn2x)y = 0 , (A2)

with its eigenvalue and eigenfunction given by

y = sn(x,m) , (λ = 1 + m2) ;

y = cn(x,m) , (λ = 1) ; y = dn(x,m), (λ = m2) . (A3)

(ii) In case of l = 2, Lamé equation (A1) reduces to

d2y

dx2
+ (λ− 6m2sn2x)y = 0 , (A4)

with its eigenvalue and eigenfunction given by

y = cn(x,m)dn(x,m), (λ = 1 + m2) , (A5)

y = sn(x,m)dn(x,m), (λ = 1 + 4m2) , (A6)

y = sn(x,m)cn(x,m), (λ = 4 + m2) , (A7)

y = sn2(x,m)− 1 + m2 ∓√1−m2 + m4

3m2
,

(λ = 2[(1 + m2)±
√

1−m2 + m4]) . (A8)

(iii) In case of l = 3, Lameequation (A1) reduces to

d2y

dx2
+ (λ− 12m2sn2x)y = 0 , (A9)

with its eigenvalue and eigenfunction given by

y = sn(x,m)cn(x,m)dn(x,m) , (λ = 4(1 + m2)) , (A10)

y = sn(x,m)
[
1− 2(1 + m2)±√4− 7m2 + 4m4

3
sn2(x,m)

]
, (A11)

with λ = 5(1 + m2)± 2
√

4− 7m2 + 4m4.

y = cn(x,m)[1− (m2 + 2± 2
√

4−m2 + m4)sn2(x,m)] , (λ = 5 + 2m2 ± 2
√

4−m2 + m4) , (A12)

y = dn(x,m)[1− (2m2 + 1±
√

1−m2 + 4m4)sn2(x,m)] , (λ = 5m2 + 2± 2
√

1−m2 + 4m4) . (A13)
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