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ABSTRACT

Using a high-resolution convection-allowing numerical weather prediction model, this study seeks to ex-

plore the intrinsic predictability of the severe tornadic thunderstorm event on 20May 2013 inOklahoma from

its preinitiation environment to initiation, upscale organization, and interaction with other convective storms.

This is accomplished through ensemble forecasts perturbed with minute initial condition uncertainties that

were beyond detection capabilities of any current observational platforms. It was found that these small

perturbations, too small to modify the initial mesoscale environmental instability and moisture fields, will be

propagated and evolved via turbulence within the PBL and rapidly amplified in moist convective processes

through positive feedbacks associated with updrafts, phase transitions of water species, and cold pools, thus

greatly affecting the appearance, organization, and development of thunderstorms. The forecast errors re-

main nearly unchanged even when the initial perturbations (errors) were reduced by as much as 90%, which

strongly suggests an inherently limited predictability for this thunderstorm event for lead times as short as 3–

6 h. Further scale decomposition reveals rapid error growth and saturation in meso-g scales (regardless of the

magnitude of initial errors) and subsequent upscale growth into meso-b scales.

1. Introduction

Severe convective thunderstorms, with their wind

gusts, lightning strikes, torrential rain, hail, and some-

times tornadoes, have been recognized as one of the

most dangerous weather hazards threatening human

lives and property. For the past 70 years, the National

Weather Service (NWS) of the United States issued

hazardous weather warnings through a paradigm of

‘‘warn-on-detection,’’ which was primarily based on the

detection of certain weather phenomena, including ra-

dar observations, environmental conditions, and spot-

ters’ reports (e.g., Coleman et al. 2011; Brotzge and

Donner 2013). Owing to the deployment of a nationwide

Doppler weather radar network, warning lead time has

increased due to both increasing probability of detection

(POD) and decreasing false alarm ratio (FAR). For

example, the lead time for tornado warnings has in-

creased from 3min in 1978 to 14min in 2011 (Stensrud

et al. 2009, 2013).

Further extending tornado warning lead time beyond

approximately 17min using the current paradigm may

be difficult (Stensrud et al. 2013). However, observa-

tion platforms, numerical weather prediction (NWP)

models, data assimilation algorithms, and computa-

tional resources have progressed considerably in recent
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years. Since Snyder and Zhang (2003) incorporated ra-

dar observations in NWP models using an ensemble

Kalman filter (EnKF) approach, convection-allowing

(horizontal grid spacing of ;1 km) ensemble forecasts

with initial conditions (IC) combining high-resolution

in situ observations via ensemble-based data assimila-

tion techniques (e.g., EnKF) have proven to be helpful

in providing warning guidance (Roebber et al. 2004;

Stensrud et al. 2009, 2013). For example, the annual

‘‘Spring Experiment’’ of NOAA’s Hazardous Weather

Testbed (HWT) has focused upon applying state-of-the-

art convection-allowing ensemble predictions to severe

weather forecasts in recent years (e.g., Coniglio et al.

2010; Johnson et al. 2011a,b, 2014; Clark et al. 2012;

Johnson and Wang 2013; Karstens et al. 2015). Numer-

ous case studies have also proven the reliability of high-

resolution short-range ensemble forecasts for predicting

convective storms (Hawblitzel et al. 2007; Stensrud and

Gao 2010; Dawson et al. 2012; Snook et al. 2012;

Wheatley et al. 2014; Yussouf et al. 2013, 2015). A

transition from warn-on-detection to ‘‘warn-on-forecast’’

is believed to be one potential future for severe weather

warning (Stensrud et al. 2009, 2013). An important

question to ask is how far warning lead times can be ex-

tended in this paradigm.

This question is brought forward as some studies

pointed out that the positive impact of data assimila-

tion might be lost within a short time. For example,

Aksoy et al. (2010) using EnKF assimilation of radar

radial velocity and reflectivity found that equitable

threat score (ETS) decreased by more than 50% within

20min of the ensemble forecast for all three cases

studied. A similar finding was obtained by Gasperoni

et al. (2013) using a 3DVar assimilation of synthetic

radar refractivity observations under an observing

system simulation experiment (OSSE) framework,

who concluded that for an imperfect model the fore-

cast errors might overwhelm the positive impact of

data assimilation in 30–60min. These results highlight

the limited intrinsic predictability of some convective

storms.

Atmospheric predictability, first proposed in Lorenz

(1963), can be broadly divided into two types (Lorenz

1996; Melhauser and Zhang 2012). One is practical

predictability, or the predictability given current ca-

pability, which is primarily limited by realistic errors in

forecast models and initial conditions (Lorenz 1982,

1996). The other aspect, intrinsic predictability, is the

longest possible forecast extent given nearly perfect

atmosphere estimations and forecast models (Lorenz

1969). The examination of intrinsic predictability was

often performed using an ‘‘identical twin experi-

ments’’ method in which two (or more) simulations

employed an identical numerical model but slightly,

observationally indistinguishable, different ICs. Based

on the examination of upscale error growth within

idealizedmoist baroclinic waves and complimentary to

earlier studies on the forecast error growth of a winter

snowstorm in Zhang et al. (2002, 2003), a generalized

conceptual model of how mesoscale intrinsic pre-

dictability becomes limited was presented in Zhang

et al. (2007). In this model, initial errors that were very

small in amplitude grew and saturated at convective

scales and rapidly spread throughout the integration

domain, then the upscale transfer of errors into me-

soscale and synoptic scale would limit the pre-

dictability of these scales. This conceptual model was

proved by Hohenegger and Schär (2007b) and recently

reexamined by Selz and Craig (2015) using a

convection-allowing model. Differentiated underlying

dynamics in limiting intrinsic versus practical pre-

dictabilities were also proved by Leoncini et al. (2010)

that examined growth of initial errors that spans two

orders of magnitudes.

The nonlinear upscale growth of small initial errors

through moist convection were observed in several

warm-season case studies (e.g., Zhang et al. 2006; Bei

and Zhang 2007; Hohenegger and Schär 2007a,b).

Melhauser and Zhang (2012) revealed that a reduction

of initial perturbations might not bring a correspond-

ing linear decrease of forecast errors in bow echoes,

while a more linear relationship was obtained in the

squall-line study of Wu et al. (2013). In Van Sang et al.

(2008), random perturbations of 60.5 g kg21 in mois-

ture resulted in different structures of an idealized

tropical cyclone (TC). The TC predictability was found

to be more limited with larger vertical wind shear

(Zhang and Tao 2013), and small changes in IC may

suppress a Gulf low from intensifying into a tropical

storm (Zhang and Sippel 2009). The large impact of

moisture on mesoscale gravity waves was also shown

by Wei and Zhang (2014). An independent relation-

ship between error growth and the complexity of mi-

crophysical parameterization schemes was found by

Wang et al. (2012), suggesting the intrinsically non-

linear nature of error growth in moist dynamics. Other

studies indicate that growth of perturbations in large

scales and the downscale transition might be dominant

under certain synoptic phenomena (e.g., Durran et al.

2013; Durran and Gingrich 2014; Johnson et al. 2014),

furthering the difficulty in estimating intrinsic pre-

dictability limitations.

Much of the work on intrinsic predictability has been

focused on meso-a or meso-b systems such as winter

storms, MCSs, or TCs, while studies of local severe

convective thunderstorms on the meso-g scale [2–20km
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(Orlanski 1975), e.g., single cell and supercell storms]

have focused more on practical rather than intrinsic

predictability. Cintineo and Stensrud (2013) found

that with current analysis uncertainty, supercell loca-

tion was predictable out to 2 h, while mesocyclone lo-

cation was only predictable out to 40 min. Using

datasets from the Spring Experiment, Surcel et al.

(2014, 2015) concluded that none of the examined

prediction systems showed any practical predictability

in meso-b- and meso-g-scale precipitation beyond

2–3h. Our recent study (Zhang et al. 2015, hereafter

Z15) explored the practical predictability of the tornadic

thunderstorm event on 20 May 2013 in Oklahoma that

spawned one of the most disastrous tornadoes in re-

cent years. We found that the initiation, develop-

ment, and organization of convection on that day

were strongly modulated by PBL evolution during the

diurnal cycle, and that topography could also have dy-

namical impacts beyond simply altering the environ-

mental conditions.

Understanding the intrinsic predictability of severe

convective storms is essential in exploring the appro-

priate time scale for which the warn-on-forecast para-

digm is applicable and reliable. As a follow up of Z15,

this paper examines how tiny initial uncertainties affect

the initiation and development of severe thunderstorms

in an ensemble frameworkutilizing a convection-allowing

NWP model applied to the same severe weather event.

The model configuration and method of generating

initial perturbations are presented in section 2. Sections

3 analyzes the control ensemble forecast, and section 4

explores the sensitivity of the ensemble forecasts to the

magnitude and structure of initial uncertainties. A de-

tailed analysis of two specific ensemble members is

presented in section 5, and a summary is provided in

section 6.

2. Experiment design

a. Model description

The numerical model used is version 3.5 of the fully

compressible nonhydrostatic WRF Model (Skamarock

et al. 2008), the same as in Z15, with four domains

of 201 3 121, 256 3 175, 316 3 244, and 400 3 301

horizontal grid points of 27-, 9-, 3-, and 1-km

grid spacing, respectively, with 61 terrain-following

hydrostatic-pressure vertical levels in all domains and

18 levels in the lowest 1 km AGL. The largest domain

covered the entire United States, while the innermost

domain covered most of Oklahoma (Fig. 1). In Z15,

four domains were initialized at 1200 UTC 19 May,

1200 UTC 20 May, 1200 UTC 20 May, and 1500 UTC

20 May, respectively, and integrated separately to

0000 UTC 21 May. The IC and LBCs were provided

by 1200 UTC 19 May GFS analysis and subsequent

forecast for the outermost domain and their re-

spective parent domains for each inner domains with

no feedback (i.e., one-way nesting). Physical param-

eterization schemes applied included Thompson mi-

crophysics (Thompson et al. 2008); Grell 3D

ensemble cumulus (Grell and Dévényi 2002), which
was only applied in the 27-km domain; MM5 simi-

larity surface layer (Zhang and Anthes 1982); RUC

land surface (Benjamin et al. 2004); Mellor–Yamada–

Nakanishi–Niino (MYNN) level-2.5 PBL (Nakanishi

and Niino 2009); RRTM longwave radiation (Mlawer

et al. 1997); and Goddard shortwave radiation

schemes (Chou and Suarez 1994). Simulated radar

reflectivity was calculated using the built-in module

of the Thompson microphysics scheme with conden-

sates of cloud water, rainwater, cloud ice, snow, and

graupel.

b. Ensemble generation

To generate tiny initial ensemble perturbations in a

flow-dependent manner, an additional domain with

horizontal grid spacing of 250m was implemented. This

domain covered nearly the entire 1-km domain, within

10-km distance (i.e., 10 1-km grid points) from each

boundary. Because the grid spacing of this domain was

finer than 1km, the PBL parameterization scheme was

turned off,1 diffusion was used for vertical mixing, and a

FIG. 1. Model domain configuration with the entire figure being

the geographical coverage of D01 and inner solid rectangles rep-

resenting D02, D03, and D04.

1 This experiment falls into the range of large-eddy-permitting

(LEP) simulations as termed byGreen andZhang (2015) given that

the resolution is still too coarse to be classified as a true large-eddy

simulation (LES).
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prognostic 1.5-order turbulent kinetic energy (TKE)

closure was applied for a three-dimensional turbulence

parameterization. After the initialization of the 1-km

domain at 1500 UTC 20 May, the extra 250-m domain

was added at 1700 UTC (when there was no simulated

radar reflectivity) with two-way nesting and integrated

for 6 h, with output files created every 2.5min together

with those from its parent 1-km domain. Then, for a

given output time, several realizations were gener-

ated by replacing variable values on all the 1-km grids

by those randomly selected values from the surround-

ing 250-m grid points within a certain radius from the

1-km grid point (here the radius was set to 1 km). For

each set of realizations that was generated from one

pair of 250-m and 1-km output files, their mean values

were subtracted from each of them and the remaining

‘‘perturbations’’ were added back to the 1700 UTC

1-km output as initial conditions for ensemble forecast.

Five variables were ‘‘perturbed,’’ including the three

components of wind, potential temperature, and

water vapor mixing ratio. A total of 60 ensemble mem-

bers using 15 (total) 250-m outputs from 1712:30 to

1747:30 UTC were produced following these proce-

dures, and they were integrated for 6h to 2300 UTC.

It should be noted that the choice of a 1-km grid

spacing for the ensemble forecasts of this study is a

compromise between the available computing re-

sources and the ability of the model in representing

essential physical processes that are most relevant to

the prediction of this event, including midlevel meso-

cyclones and interactions between cold pools and ver-

tical wind shear, albeit a much higher grid spacing is

necessary to properly resolve physical properties of

convective flows as shown in Bryan et al. (2003) and

Lane and Knievel (2005). The above-described en-

semble forecast was denoted as EF_PERT and is the

primary focus of this study. A 1-km deterministic

forecast was integrated from the 1700 UTC output,

which was also the ensemble mean of EF_PERT ICs, to

establish a reference simulation in a perfect model

scenario without model errors, and this deterministic

forecast was referred to as ‘‘CNTL_17Z.’’ An addi-

tional ensemble (EF_TINY) that was initialized from

much smaller initial errors generated by multiplying

the original perturbations of EF_PERT by a factor of

0.1 was carried out in order to examine the sensitivity of

ensemble performance to the reduction of errors. To

explore the sensitivity of ensemble forecast to ICs that

were perturbed at different times with corresponding

flow-dependent uncertainties, two experiments ofEF_1900

and EF_2000 were conducted. The ICs of EF_1900

(EF_2000) were generated following the same manner

of EF_PERT but performed at 1900 (2000) UTC by

recentering at 1900 (2000) UTC outputs of CNTL_17Z,

and only 4 outputs within 65min of 1900 (2000) UTC

were used instead of 15 for EF_PERT to exclude the

influence of fast-evolving convection-active environment

as much as possible. The reference perfect model de-

terministic forecast, denoted as CNTL_19Z (CNTL_

20Z), was initialized at 1900 (2000) UTC using 1900

(2000) UTC output of CNTL_17Z to construct the

perfect model scenario. Differences between CNTL_

19Z (CNTL_20Z) and CNTL_17Z resulted from this

interruption of the continuous CNTL_17Z simulation at

1900 (2000) UTC.

Note that because of the adjustment to unbalances in

ensemble ICs, the magnitude of initial perturbations

changed after model initialization. The statistics of the

four ensembles 15min after initialization (the first

output time) for temperature, water vapormixing ratio,

and two components of horizontal wind are shown in

Table 1. For the two ensembles initialized at 1700 UTC,

only maximum deviations from ensemble mean in

EF_PERT were comparable to current observational

TABLE 1. Statistics of the EF_PERT, EF_TINY, EF_1900, and EF_2000 ensembles and initial difference between members 13 and 17 of

EF_PERT.

T (K) Qy (g kg
21) U (m s21) V (m s21)

EF_PERT Std dev 0.066 0.11 0.19 0.20

(1715 UTC) Max dev 3.2 7.5 5.9 6.9

EF_TINY Std dev 0.0082 0.014 0.024 0.025

(1715 UTC) Max dev 0.98 3.5 2.1 1.7

EF_1900 Std dev 0.037 0.065 0.14 0.13

(1915 UTC) Max dev 8.6 11 17 12

EF_2000 Std dev 0.049 0.071 0.18 0.18

(2015 UTC) Max dev 18 10 31 27

EF_PERT RMS difference 0.039 0.090 0.085 0.087

Members 13 and 17 (1705 UTC) Max difference 1.48 5.3 5.2 3.0
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errors and all other statistical parameters had smaller

magnitudes, meaning that differences between ICs of

ensemble members in EF_PERT were unobserv-

able using current systems, and for EF_TINY those

differences were beyond the detection capability of any

observational platforms in the foreseeable future. For

the EF_1900 and EF_2000 ensembles, the ensemble

spreads (standard deviations) were slightly smaller

than those of EF_PERT (Table 1), which was due to

their perturbations being generated using four outputs.

However, the maximum deviations from ensemble

mean of these two ensembles were considerably larger

than those of EF_PERT (Table 1), which inevitably

influenced the performance of the ensemble forecast as

shown in section 4.

3. Uncertainties in the simulated storm of the
EF_PERT ensemble

a. Radar reflectivity, precipitation, and RMDTE

Figure 2 shows composite reflectivity of 3 out of the

60 ensemble members of EF_PERT at two different

times representing early initiation and nearly mature

stages, respectively. All ensemble members shared a

similar convective organization, a quasi-contiguous

line of severe convective storms, and the overall de-

velopment and morphology were similar to the de-

terministic forecast of Z15 (their Fig. 4). However,

although the convective lines in different members

were similar to each other at 2000 UTC, there were

differences in the strength and location of single con-

vective cores. The differences in the appearance, de-

velopment, and organization of each thunderstorm

became more apparent during their mature stage at

2130 UTC; for example, member 50 clearly produced

three separate convective cells, whereas members 36

had only two cells, and storms in member 15 were much

less organized.

Figures 3 and 4 show the ensemble probability of

40-dBZ composite reflectivity values (representing deep

convection) during initiation and development, re-

spectively. Convection was first initiated near the

Oklahoma–Texas border in several ensemble members

at 1900 UTC (Fig. 3a). More cells were triggered later

with large differences in location among ensemble

members, producing low probabilities that spread out

gradually (Figs. 3b,c). The southern segment extended

northward with reflectivity probabilities exceeding 50%

during early development at 2000 UTC (Fig. 3c),

FIG. 2. Composite reflectivity of three randomly selected EF_PERTmembers at (top) 2000 and (bottom) 2130 UTC.

Note that panel regions are different for the two plotted times.
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indicating the collocation of strong convective storms in

the ensemble members. After reaching its strongest

linearity around 2100UTC (Fig. 4a), convection became

more discrete and produced lower probabilities con-

nected to areas of higher probabilities (Fig. 4b). The

storm in the central region of the convective line dissi-

pated at 2300 UTC (Fig. 4c).

To quantify the degree of storm dislocation among

ensemble members, horizontal fractional coverage with

respect to ensemble probability (hereafter referred to as

‘‘coverage curve’’) were examined. This metric calcu-

lates the horizontal fraction of ensemble probability of a

certain variable (e.g., 40-dBZ composite reflectivity) at

chosen thresholds. A value of 0 means that at least one

ensemble member predicts composite reflectivity larger

than 40dBZ, while a value of 1 means that composite

reflectivity exceeds 40 dBZ in all ensemble members.

Thus, the slope of the coverage curve when the thresh-

old ranges from 0 to 1 represents the magnitude of di-

vergence between ensemble members; for example, an

ensemble with identical members will produce a flat

curve since all thresholds produce the same value. In

Figs. 5a–c, it is apparent that the coverage curve of the

40-dBZ ensemble probability of EF_PERT became

steeper during the forecast, indicating that storms be-

came increasingly dislocated, which is consistent with

the development of the ensemble probabilities in Figs. 3

and 4.

Midlevel (2–5 km) updraft helicity (UH) was used to

identify convective storms withmesocyclones. Although

the 15-min output interval is somewhat coarse, meso-

cyclone tracks represented by UH values exceeding

180m2 s22 [a threshold that performed best in identify-

ing supercells in a 1-kmNWPmodel according toNaylor

et al. (2012)] were calculated and were closely collo-

cated with the UH tracks of CNTL_17Z (Fig. 6a).

However, there remained large uncertainties in the

specific storm locations indicated by the width of UH

swaths. Since UH is much smaller in scale compared

with radar reflectivity, its coverage curve dropped dra-

matically between thresholds 0 and 0.1 (Figs. 5d–f). It

also shows a decreasing trend at threshold 0 between

2130 and 2230 UTC (Figs. 5e,f) that resulted from storm

dissipation (Figs. 4b,c).

FIG. 3. Ensemble probability of 40-dBZ composite reflectivity (shaded) for (a)–(c) EF_PERT and (d)–(f)

EF_TINY at (a),(d) 1900; (b),(e) 1930; and (c),(f) 2000 UTC. Black lines are 40-dBZ composite reflectivity

isolines of CNTL_17Z.

1278 MONTHLY WEATHER REV IEW VOLUME 144



FIG. 4. Ensemble probability of 40-dBZ composite reflectivity (shaded) for (a)–(c) EF_PERT, (d)–(f) EF_TINY,

(g)–(i) EF_1900, and (j)–(l) EF_2000 at (left) 2100, (middle) 2200, and (right) 2300 UTC. Black lines are 40-dBZ

composite reflectivity isolines of (a)–(f) CNTL_17Z, (g)–(i) CNTL_19Z, and (j)–(l) CNTL_20Z.
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To quantify the deviation of ensemble members from

CNTL_17Z, difference total energy (DTE) following

Zhang et al. (2003) was calculated as DTE5 (1/2)[u02 1
y02 1 (cp/Tr)T

02], where cp 5 1004.9 J kg21K21 is the

heat capacity at constant pressure, Tr 5 270K is a ref-

erence temperature for calculation, and u0, y0, and T 0

were differences between an ensemble member and

CNTL_17Z for the two horizontal wind components

and temperature at each grid point, respectively. The

root-mean difference total energy (RMDTE) was

calculated by taking the square root of DTE after it

was averaged through a horizontal level, a vertical

column, the whole model domain or all the ensemble

members. The domain-averaged RMDTE of all

members is shown in Fig. 7a; for a reference of

RMDTE magnitude, commonly used observational

errors of 2m s21 for horizontal wind components and

2K for temperature would result in a RMDTE value of

approximately 3.4m s21. Although convection initi-

ated around 1900 UTC, a rapid increase of RMDTE

appeared only after approximately 2000 UTC when

convection began to grow upscale, reached amaximum

at 2215 UTC and then decreased as convection began

to dissipate.

Based on reflectivity and RMDTE features, the en-

semble forecast was divided into several stages: pre-CI

[(convection initiation) 1700–1900 UTC], CI (1900–

2000 UTC), storm development (2000–2215 UTC), and

storm dissipation (2215–2300 UTC). Ensemble charac-

teristics during the CI and development stages are ex-

amined next.

b. Environmental conditions for convection initiation

Convection initiation has long been one of the pri-

mary foci of studies on deep moist convection (Schaefer

1986; Johns and Doswell 1992; Weckwerth et al. 2004;

Weckwerth and Parsons 2006;Wilson andRoberts 2006)

and has proven to be essential to the organization and

development of convective storms (Z15). However, ac-

curate prediction of CI remains a challenging problem

(Markowski and Richardson 2010; Kain et al. 2013;

Burghardt et al. 2014). Here we primarily focus on

moisture and instability, two of the basic ingredients for

deep moist convection (Johns and Doswell 1992;

Doswell et al. 1996), and examine the impact of initial

perturbations on these environmental conditions and

the potential influence on CI in an ensemble forecast

perspective rather than being viewed from the physical

processes that trigger convection.

Abundant northward moisture transport on this day

originated from the Gulf of Mexico (refer to Z15 for a

more detailed description of the synoptic conditions)

and helped produce a strong southwest–northeast-

oriented dryline across the middle of the domain. The

strength of the dryline was indicated by the hori-

zontal gradient in mass-weighted average dewpoint

FIG. 5. Coverage curve (see text for explanations) for ensemble probability of (a)–(c) 40-dBZ composite reflectivity and

(d)–(f) 180m2 s22 updraft helicity (UH) at (a),(d) 2030; (b),(e) 2130; and (c),(f) 2230 UTC for EF_PERT (solid), EF_TINY (dashed),

EF_1900 (dotted), and EF_2000 (dotted–dashed).
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FIG. 6. Ensemble probability of 180m2 s22 UH (shaded) throughout the entire forecast for (a) EF_PERT,

(b) EF_TINY, (c) EF_1900, and (d) EF_2000, and 180 m2 s22 UH isolines of (e) members 13 and 17, and

(f) members 51 and 53 of EF_PERT. Black lines in (a)–(d) are 180 m2 s22 UH isolines of (a),(b) CNTL_17Z;

(c) CNTL_19Z; and (d) CNTL_20Z.
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temperature (Td) in the lowest 1 km AGL, which

changed nearly 108C in less than 100 km (Fig. 8a) prior to

CI. The isodrosotherms of the ensemblemean coincided

well with those of CNTL_17Z. Larger values of en-

semble spread of Td were mostly located in the north-

west region where Td was lower than 138C, while in the

moist region, especially where 0–1-km Td exceeded 208C,
differences in dewpoint temperatures among ensemble

members were much smaller (ensemble spread , 0.58C).
Small differences between ensemble members and

CNTL_17Z in the moist side of the dryline were revealed

by both collocated isodrosotherms and small ensemble

spread, implying that the ensemble perturbations had a

minor impact on low-level moisture in this region prior

to CI.

Similar results occurred for the fields of environ-

mental instability and convective inhibition. Extreme

values of most-unstable CAPE (MUCAPE) exceeding

4000 J kg21 appeared in both CNTL_17Z and ensem-

ble members, although there were larger ensemble

spread values concentrated in more stable regions with

MUCAPE below 4000 J kg21 (Fig. 8b). Values of most-

unstable convective inhibition (MUCIN) were below

0.5 J kg21 in the high-instability, high-moisture region,

while differences of MUCIN among ensemble members

increased in the drier region (Fig. 8c). At the same time,

LFC heights lowered to around 1000m AGL in loca-

tions where convection first initiated, with few differ-

ences seen between ensemble members and CNTL_17Z

(Fig. 8d).

These results suggest that to the east of the dryline

where environmental conditions were favorable for

CI, the impact of the initial errors on the environ-

mental convective conditions was small. Thus, dif-

ferent ensemble members were equally favorable for

CI and locations of the resultant convective storms

were primarily determined by local maxima of up-

draft. Since these triggering mechanisms were turbu-

lent and less predictable, they resulted in seemingly

randomly distributed early convection in the ensem-

ble members (see e.g., locations of strong convec-

tion to the north of the Oklahoma–Texas boarder at

2000 UTC from different ensemble members in

Fig. 2). This difficulty in accurate prediction of CI is

also discussed in section 5.

c. Development stage of storms

It is known that the propagation and organization of

isolated convective storms are influenced by various

dynamic and thermodynamic factors ranging from

external environmental influences to internal storm

structure (e.g., Rotunno and Klemp 1982; Weisman

and Klemp 1982, 1984; Klemp 1987; Davies-Jones

FIG. 7. (a) Ensemble-averaged RMDTE of EF_PERT (solid),

EF_TINY (dashed), EF_1900 (dotted), and EF_2000 (dotted-

dashed). (b) Domain-averaged RMDTE between members 13 and

17 (black solid), mem 13 and CNTL_17Z (red solid), member 17

and CNTL_17Z (blue solid), members 51 and 53 (black dashed),

member 51 and CNTL_17Z (red dashed), and member 53 and

CNTL_17Z (blue dashed). (c) Scale decomposition of DTE-T and

DKE between members 13 and 17 with magnitude of DTE-T on

the left y axis and DKE on the right y axis. Color bands along the

x axis of each panel marked different stages during the simulation

as indicated in (a).
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2002; Zeitler and Bunkers 2005; Kirkpatrick et al.

2007; Markowski and Richardson 2010). The general

characteristics of storm translation were examined for

the whole ensemble; examining the impact of each

factor on the development of the simulated storms in a

member-by-member sense is impractical and beyond

the scope of this study. Equivalent potential temper-

ature (ue) at 2-m above ground level was used to

represent the cold pools generated by evaporative

cooling of convection-induced precipitation. The ex-

tent and temperature drop of the cold pools were re-

lated to the location and strength of the convective

storms.

At 2000UTC (Fig. 9a), the 2-mensemblemean ue lacked

any signature of cold pool existence, partly due to the

smoothing effect of the ensemble mean and partly due to

the precipitation just reaching the ground. However, there

were small regionswhere the ensemble spread of ue exceeds

5K, indicating that precipitation in some members had

already produced strong cold pools. One hour later at

2100 UTC (Fig. 9b), cold pools were apparent even in

the ensemble mean, with 5-K ensemble spread covering

the entire central cold pool, and a larger spread of 10K

at the northern tips of the cold pools, indicating large

uncertainty in either strength or extent of the cold pools

in ensemble members.

At 2200 UTC (Fig. 9c), regions of 5-K ue ensemble

spread had already formed into a contiguous band to

the east of the convective storms. This band broad-

ened at the end of the ensemble forecast (Fig. 9d),

while the ensemble mean cold pool was much weaker

than before (i.e., ue became higher) indicating an

overall weakening of convective outflow. Another

thin line of larger ue spread formed along the western

edge of the cold pools at the end of the forecast

(Fig. 9d), resulting from the sharp gradient of mois-

ture between the dry air to the west and the westward

expanding cold pools.

In summary, after CI, differences in the strength

and location of convection led to differences in the

extent and temperature deficit of the accompanying

cold pools, and the interactions between the cold

pools and environment as well as impact from the

cold pool itself resulted in different translations and

organizational characteristics of the accompanying

cold pools. This chain reaction, which magnified the

small differences found in the convective cells dur-

ing CI and subsequently influenced the behavior of

thunderstorms in different ensemble members, is

also widely acknowledged within the operational

community. A detailed analysis of these processes is

provided in section 5.

FIG. 8. Environmental convective conditions of (a) 138 and 208C 0–1-km mass-weighted av-

erage isodrosotherms; (b) 2000 and 4000 J kg21 MUCAPE; (c) 0.5 and 100 J kg21 MUCIN; and

(d) 1000-, 2000-, and 3000-m LFC height AGL valid at 1900 UTC with red isolines representing

CNTL_17Z and blue isolines representing ensemble mean of EF_PERT with nine-point

smoothing. Also plotted with shading are ensemble spreads of the respective conditions.
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4. Sensitivity of ensemble forecast to themagnitude
and structure of initial perturbations

a. Uncertainties in the simulated storm of the
EF_TINY ensemble

1) COMPARISON OF STORM FORECAST BETWEEN

EF_TINY AND EF_PERT

One characteristic of limited intrinsic predictability

is that no matter how much the initial errors are re-

duced, large uncertainty still occurs in the subsequent

forecast (e.g., Zhang et al. 2003; Zhang and Sippel 2009;

Melhauser and Zhang 2012). The EF_TINY ensemble

was performed to examine the performance of en-

semble forecast under reduced errors (statistics shown

in Table 1). With ensemble spread narrowed by about

one order of magnitude, the locations of earliest con-

vection initiation were more concentrated in EF_

TINY, with probabilities of 40-dBZ composite re-

flectivity collected into smaller areas and with higher

values compared to EF_PERT (Figs. 3d,e); this in-

dicates more confidence (less uncertainty) in the pre-

diction of CI locations. This feature can also be seen at

2030 UTC when the coverage curve of EF_TINY was

slightly flatter than EF_PERT (Fig. 5a). However, the

probability areas rapidly spread out as convection de-

veloped. At 2100 and 2200 UTC, there were only minor

differences between EF_TINY (Figs. 4d,e) and EF_

PERT (Figs. 4a,b), and at 2300 UTC EF_TINY

(Fig. 4f) became almost identical to EF_PERT

(Fig. 4c). The 2130 and 2230 UTC coverage curve of

EF_PERT and EF_TINY (Figs. 5b,c), as expected

from visual comparison of ensemble probabilities, be-

came very close to each other, although the fractional

coverage of EF_TINY at threshold 0 was slightly

smaller than EF_PERT. The similarity of the UH

tracks and associated uncertainty between EF_PERT

and EF_TINY (Figs. 6a,b) and their coverage curves of

180m2 s22 UH probability except for the slightly

smaller value of EF_TINY at threshold 0 (Figs. 5d–f)

confirmed their comparable lack of sufficient accuracy

in predicting mesocyclone locations.

Owing to its much smaller initial errors, the differ-

ences between CNTL_17Z and the EF_TINY ensemble

mean for moisture and instability fields prior to CI were

even smaller than those between CNTL_17Z and the

EF_PERT ensemble mean, as well as the ensemble

spread of EF_TINY throughout the entire model

domain (not shown). Similar to the characteristics in

40-dBZ composite reflectivity probability, the smaller

ensemble spread and smaller temperature deficits of

ensemble mean cold pool during CI and early devel-

opment in EF_TINY quickly enlarged and EF_TINY

became almost identical to EF_PERT in terms of

both ensemble mean and ensemble spread of surface

ue (not shown), indicating that the forecast divergence

for thermodynamic fields, and associated convective

storm characteristics, was almost indistinguishable

FIG. 9. Surface 2-m equivalent potential temperature (ue; shaded in K) and its ensemble spread

(contoured every 5K) for EF_PERT at (a) 2000, (b) 2100, (c) 2200, and (d) 2300 UTC.
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between the EF_PERT and EF_TINY. This loss of

forecast accuracy in EF_TINY was also revealed in its

RMDTE. At forecast initialization the RMDTE of

EF_TINY was one order of magnitude smaller than

EF_PERT (Fig. 7a), owing to the ensemble perturba-

tion method. However, a more rapid increase than in

EF_PERT occurred during CI (1900–2000 UTC), and

shortly after CI RMDTE of EF_PERT and EF_TINY

were almost identical. How ensemble errors evolved in

different scales is examined in the following scale

analyses.

2) ERROR GROWTH IN DIFFERENT SCALES WITH

RESPECT TO INITIAL ERROR

The temperature component of DTE (DTE-T) and

the wind component, difference kinetic energy (DKE),

were further decomposed into meso-b and meso-g

scales according to Orlanski (1975). Figure 10 shows

the changes of RMDTE-T and RMDKE at differ-

ent scales with respect to integration times. For EF_

PERT, it is interesting that only DKE in the meso-g

(Fig. 10d) scale experienced a persistent increase be-

fore 2000 UTC, whereas all other components of DTE

at different scales remained almost unchanged dur-

ing this 3-h period. After 2000 UTC, energy norms

experienced a rapid increase at meso-b and meso-g

scales. However, both energy norms of temperature

and winds for the meso-g scale (Figs. 10b,d) stopped

increasing after around 2100 UTC, while for the meso-b

scale they increased until 2215 UTC (Figs. 10a,c) when

the total RMDTE reached its maximum (Fig. 7a). This

phenomenon suggests that errors in the meso-g scale

were saturated2 and unable to further increase after

about 2100 UTC.

For EF_TINY, both DTE-T and DKE in the meso-g

scale showed a persistent increase even before 2000 UTC

(Figs. 10b,d). They also increased in the meso-b scale

(Figs. 10a,c), although these increases started after

1800 UTC, which was later than the increases of their

corresponding meso-g-scale counterparts that started at

the beginning of the simulations. This delay might be

attributed to the upscale growth of errors. Considering

FIG. 10. Scale decomposition of (a),(b) DTE-T and (c),(d) DKE into (a),(c) meso-b and

(b),(d) meso-g scales of EF_PERT (solid), EF_TINY (dashed), EF_1900 (dotted), and

EF_2000 (dotted–dashed). Color bands along the x axis of each panel marked different

stages during the simulation as indicated in (a). Meso-a scale is omitted because the model

domain is unable to resolve much wave lengths in that scale.

2 Error saturation refers to when the difference energy (error

or noise) at a given scale among ensemble members (or between

truth and ensemble) reaches a magnitude that is comparable to

the reference energy (truth or signal), after which the error at

this scale ceases to grow any further since all the signal has

been lost.
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that there was no convection at this time, convection

was not necessary for the upscale growth of errors. The

different error growth rates before and after 2000

UTC confirmed the different error growth mechanisms

with and without deep moist convection as found by

Zhang et al. (2007), Hohenegger and Schär (2007a, b),
and Selz and Craig (2015). After 2100 UTC, DTE-T

and DKE of EF_TINY in the meso-g scales reached

almost identical values as those in EF_PERT, while in

the meso-b scales they kept increasing until reaching

their maxima at 2215 UTC. The same values of DTE-T

and DKE in the meso-g scale of both EF_PERT and

EF_TINY after 2100 UTC confirmed that the errors

were saturated in this scale at that time for this case.

This phenomenon of error saturation at similar values

regardless of themagnitude of initial errors was already

presented in various studies (Hohenegger and Schär
2007a, b; Bei and Zhang 2007; Melhauser and Zhang

2012; Selz and Craig 2015). Furthermore, in a sensi-

tivity ‘‘fake dry’’ experiment that excluded latent

heat release associated with microphysics schemes,

increases of DTE-T and DKE at all scales almost

completely stagnated (not shown), suggesting the

crucial role of moist processes in storm-scale rapid

error growth.

b. Influence of perturbing initial conditions at
different times

Ensemble spreads of EF_1900 and EF_2000 were

a little smaller than those of EF_PERT at initializa-

tion (Table 1). However, the maximum deviations of

perturbations of EF_1900 and EF_2000 from their

respective ensemble mean were several times larger

than in EF_PERT (Table 1), which was associated with

sampling of the ongoing convection at the perturbed

times. Because of these large uncertainties, the di-

vergence of simulated storms developed rapidly. In

just 2 h after initialization [i.e., 2100 UTC for EF_1900

(Fig. 4g) and 2200 UTC for EF_2000 UTC (Fig. 4k)],

the probability of 40-dBZ reflectivity of these two

ensembles became similar to EF_PERT.

Coverage curves further showed the similarity be-

tween EF_1900, EF_2000, and EF_PERT.At 2030UTC

(Fig. 5a), coverage curve of EF_2000 was quite flat

since it has only integrated for 30min, while coverage

curve of EF_1900 was already almost identical to the

EF_PERT curve and so were their curves 1 h later at

2130 UTC (Fig. 5b). The slope of EF_2000 curve at 2130

UTC, similar to the EF_TINY curve, was slightly flatter

than EF_1900 and EF_PERT curves, indicating slightly

less divergent storm locations. The similarity in coverage

curves continued throughout the integration (Fig. 5c),

with EF_1900 and EF_2000 showing slightly smaller

values at lower thresholds and comparable values at

higher thresholds. Coverage curves of 180m2 s22 UH

showed similar characteristics: except for threshold 0,

curves of EF_PERT, EF_1900, and EF_2000 were al-

most identical (Figs. 5d–f). At threshold 0, the value of

the UH coverage curve of EF_1900 and EF_2000 was

slightly larger than value of EF_PERT, indicating the

slightly larger spread in UH tracks for these two en-

sembles as shown in Figs. 6c and 6d.

Although generally similar to EF_PERT and EF_

TINY, the RMDTE evolution of EF_1900 and EF_

2000 had some unique characteristics. One of the most

distinct features was that rapid RMDTE increase

occurred immediately after ensemble initialization

(Fig. 7a). This was especially apparent in EF_1900

during CI stage that RMDTE increased rapidly, al-

most comparable to subsequent error growth during

development of the thunderstorms after 2000 UTC,

and its RMDTE was the largest among all four en-

sembles (Fig. 7a). When RMDTE of EF_1900 and EF_

2000 were decomposed into different scales, DTE-T

and DKE of all ensembles in meso-g scales almost

coincided with each other with an apparent saturation

after 2100 UTC (Figs. 10b,d). On the other hand, the

faster initial increase before 2000 UTC and resulting

larger RMDTE of EF_1900 were primarily contrib-

uted by error growth in comparably larger scales

(Figs. 10a,c).

Unlike other ensembles in which higher ensemble

probabilities were generally collocated with their

respective reference deterministic forecast, the EF_

1900 was unique in that its ensemble probabilities

drifted away. This disagreement was revealed in both

40-dBZ composite reflectivity, especially at longer

forecast lead times (Figs. 4h,i) and 180m2 s22 UH

(Fig. 6c). Furthermore, in the UH probability tracks

(Fig. 6c), the higher probability of UH not only

occurred more than 0.58 to the south of UH track

predicted by CNTL_19Z, but also formed into a less-

clear track between the track originated around 358N
and the southernmost track, which was not produced

in any other ensembles. This mismatch between the

probabilistic forecast and the deterministic forecast

in EF_1900 confirmed the large uncertainties asso-

ciated with CI processes and explained the reason

that severe weather forecast paradigms such as

‘‘warn-on-forecast’’ focus on prediction of thunder-

storms after they form. It also indicates that

the performance and forecast accuracy of ensemble

prediction systems might be sensitive to the initial

perturbations.
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5. Uncertainties in the simulated storm between
two specific members

To examine how tiny initial differences affected con-

vective storms in different ensemble members, RMDTE

between all pairs of EF_PERTmembers was calculated,

then the two members with the largest RMDTE in-

crease between 1715 and 2215 UTC, members 13 and 17

(0.105 to 2.62m s21), were selected for closer evalua-

tion. Another two members, 51 and 53, were used

as additional representations of ensemble divergence.

RMDTE between members 51 and 53 at 1900 UTC was

0.524ms21, which was close to the largest RMDTE at

that time (0.526ms21), while RMDTE between mem-

bers 13 and 17 at that time was 0.199ms21, close to the

smallest RMDTE of 0.182ms21. Members 13 and 17

were rerun to obtain a higher temporal resolution of

5min, and their statistics at 1705 UTC are shown in

Table 1.

Figure 11 shows the composite reflectivity of these

four simulations. At 2000 UTC, there were only minor

differences in members 13 and 17 (Figs. 11a1 and 11b1),

while apparent differences occurred between member

51 and 53 (Figs. 11c1 and 11d1) as a consequence of their

larger RMDTE at 1900 UTC. Differences between

members 13 and 17 became clear at 2100 UTC where in

member 13 the storms were still splitting (Fig. 11a2) and

in member 17 the splitting was almost finished and in-

dividual storms could be easily identified (Fig. 11b2). On

the other hand, a huge mismatch in storm location oc-

curred between members 51 and 53 (Figs. 11c2 and

11d2). Stormmerging occurred in the following hour. At

2200 UTC, the merger in member 17 almost totally

dissipated (Fig. 11b3) in contrast with the storm in

member 13 that was still strong (Fig. 11a3). The longer

and slightly northernUH tracks inmember 13 compared

with member 17 were associated with this storm

(Fig. 6e), confirming the longer duration of this storm in

member 13 along with location separation from its

counterpart in member 17. Member 51 experienced a

similar dissipated merger storm as happened in member

17, while the merger in member 53 maintained for a

longer time (Figs. 11c3 and 11d3). The UH tracks also

highlighted corresponding differences in thunderstorm

maintenance (Fig. 6f).

a. Scale, altitude, and time evolution of RMDTE
between ensemble members

RMDTE between members 13/17 and CNTL_17Z

(red and blue solid lines, respectively, in Fig. 7b) were

almost identical to each other throughout the simula-

tion, and were also close to RMDTE between these two

members (black solid lines). This close resemblance also

occurred between members 51/53 and CNTL_17Z

(dashed lines). It should be noted that, although

RMDTE between members 51 and 53 were much larger

than betweenmembers 13 and 17 (0.563 vs 0.105ms21 at

1715 UTC), their error growth rates during storm de-

velopment (2000–2100 UTC) were comparable and

eventually reached similar maximum values (3.06 vs

2.62m s21 at 2215 UTC), a characteristic observed pre-

viously among different ensemble forecasts.

During the pre-CI stage, DTE-T and DKE in all

scales showed small but persistent increases, and the

greatest increase came from DKE in the meso-g scale

(Fig. 7c). Their vertical distributions indicate that before

1800 UTC, error growth in meso-g scale were almost

completely concentrated in the lowest 3 km AGL (i.e.,

the PBL; Figs. 12a,c). Although errors in the meso-b

scale showed increase throughout all vertical levels

(Figs. 12b,d), their influence on error growth were lim-

ited because of their smallermagnitude.After 1800UTC,

error growth in the meso-g scale started to spread

throughout the entire troposphere, especially DKE in

the midtroposphere at times close to CI (Figs. 12a,c),

which might have resulted from developing midlevel

mesocyclones.

After 1900 UTC, DKE showed much greater increase

than DTE-T, especially within the troposphere

(Figs. 12e–h). Although domain-averaged DKE were

generally twice the values of DTE-T (Fig. 7c), this ratio

would become larger if only troposphere were consid-

ered (cf. Fig. 12e vs Fig. 12g, or Fig. 12f vs Fig. 12h),

further suggesting the mesocyclone-driven nature of the

thunderstorms. Besides, scale-decomposed DKE also

contained scale-dependent structure. In the meso-g

scale, DKE increased almost homogeneously through-

out the entire troposphere except for levels near surface

resulting from midlevel mesocyclones (Fig. 12g), while

in the meso-b scale, two apparent peaks occurred

around tropopause and near surface, respectively, with

smaller values in the midtroposphere (Fig. 12h), which

was similar to the RMDTE evolution in the bow echo

event of Melhauser and Zhang (2012, their Fig. 10).

b. Physical processes lead to forecast bifurcation

Since error growth before CI might be associated with

the turbulent nature of this event, Fig. 13 shows TKE,

bulk Richardson number (BRN), and the relative in-

crease of DKE normalized by its values at 1705 UTC of

member 13. Apparent increase in TKE occurred during

the 2 hours before CI; larger TKE primarily concen-

trated in regions extending from 348N, 998W to 358N,

988W (Fig. 13a) where environmental conditions were

most favorable for CI (Fig. 8) and later CI occurred.

Low values of BRN (indicating larger vertical wind
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FIG. 11. Composite reflectivity ofmember (a) 13, (b) 17, (c) 51, and (d) 53 of EF_PERT at (left) 2000, (middle) 2100, and (right) 2200UTC.
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FIG. 12. Scale-decomposed time evolution of DTE-T and DKE between members 13 and 17.

(a)–(d) Pre-CI stage before 1900 UTC [time of each color presented in (b)], and (e)–(h) are

post-CI stage after 1900 UTC [time presented in (f)]. The first and third rows are DTE-T, and

the second and fourth rows are DKE; (left) meso-g scale and (right) meso-b scale.
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shear thus higher probability for turbulent rather than

laminar flow) were located within and to the west of this

high-TKE region (Fig. 13b). At the same time, increases

of DKE were primarily concentrated in the PBL before

CI (Fig. 12c) in regions where large TKE and low BRN

occurred (Fig. 13c). This consistency between increases

of DKE before CI and PBL turbulence suggest possible

relationships between them.

When convection occurred, members 13 and 17 bi-

furcated through various processes. At 1925 UTC the

horizontal coverage of their 40-dBZ reflectivity was very

similar (Fig. 14a). A small difference in vertical extent

of the main convective cores appeared 5min later at

1930 UTC (Figs. 15b,e) although in horizontal coverage

they were still indistinguishable (Fig. 14b). Apparent

differences in new cell development were identified at

1935 UTC with member 17 containing more convective

cores (Fig. 14c), which could be roughly regarded as the

time that the two members began to drift apart from

each other (denoted as t0 hereafter). The locations of

FIG. 13. (a) TKE (m2 s22), (b) BRN calculated as BRN5 (g/Ty)[DuyDz/(Du)
2 1 (Dy)2], where g 5 9.81m2 s22 is the gravitational ac-

celeration;Ty is mean absolute virtual temperature across a layer of thicknessDz; andDuy ,Du, andDy are the absolute difference of virtual
potential temperature and two components of horizontal wind across the same layer, respectively. (c) DKE increase normalized by values

at 1705 UTC of member 13 at 1900 UTC. The plotted layer is the 20th level from surface (roughly 1.2 km AGL) for TKE and DKE, and

BRN was calculated across the 19th and the 21st levels.

FIG. 14. Isolines of 40-dBZ composite reflectivity and 340-K surface 2-m ue ofmembers 13 and 17 at (a) 1925, (b) 1930,

(c) 1935, (d) 1945, (e) 2005, and (f) 2035 UTC.
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strong convective cores of the two members at t0 were

collocated with their respective updrafts (Figs. 15c,f),

and these updrafts existed at t0 2 5 when the 40dBZ

reflectivity fields were still almost identical (Figs. 14b

and 15b,e). However, 10min prior to t0 (Figs. 14a and

15a,d), it was hard to determine where and when these

updrafts might occur at 1930 UTC. Given the small

spatial scales and the fast-evolving and turbulent nature

of the dynamic fields, the updrafts were extremely dif-

ficult to predict even 10min in advance.

Subsequent storm evolution and maintenance would

be influenced by the environmental vertical wind shear

(Weisman and Klemp 1982). Because of the pre-CI

remnants of horizontal convective rolls, strong turbu-

lence within the PBL and the surface outflow bound-

aries from nearby storms, there was large horizontal

variability in surface wind fields and, therefore, in

0–6-km wind shear (Fig. 16). This situation led to wind

shear changes as large as 10ms21 within a distance of

several tens of kilometers. Thus, some of the storms dis-

sipated shortly after initiation if they moved into regions

of relatively weak wind shear, as can be observed in the

southernmost convections of Figs. 15c and 15f, typical of

single-cell storms with lifetimes less than 1h. In contrast,

updrafts of some other storms were accelerated through

the interactions between the updraft and accompanying

stronger wind shear (Rotunno and Klemp 1982) as well

as due to the buoyancy generated by latent heat released

from condensation of ascending air parcels. The in-

distinctive differences between the two simulations at t0
(i.e., Fig. 14c) might be enlarged in as short as 10min

(Fig. 14d), resulting in large differences between

FIG. 15. Isosurfaces of 40-dBZ reflectivity (red) and 10m s21 updraft (blue), isolines of composite reflectivity

(40 and 60 dBZ in red) and maximum updraft (every 10m s21 from 10m s21 in blue), and surface 2-m ue (shaded) of

(a)–(c) member 13 and (d)–(f) member 17 at (a),(b) 1925; (c),(d) 1930; and (e),(f) 1935 UTC.
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updrafts even at similar locations (cf. vertical velocity

contours at the surfaces near 348400N, 988120W of

Figs. 17a,d).

Divergence between convective cores was ampli-

fied within 30min after t0 (Fig. 14e) in that the strength

and appearance of the updrafts and associated

reflectivity became different (Figs. 17b,e). When cold

pools formed due to evaporative cooling of convective

precipitation after 2000 UTC (refer to Fig. 9a), they

also played an important role in limiting the intrinsic

predictability since they are closely related with the

organization and development of convective storms.

The differences in location, extent, and strength of

reflectivity lead to corresponding alterations of cold

pools, influencing subsequent development and or-

ganization of convection and further enlarging storm

differences. As a result, in another 30min (i.e., t0 1
60), the differences in cold pools were quite apparent

(Fig. 14f): two cold pools across 358N were found in

member 17 (Fig. 17f) indicating ongoing splitting

process; in contrast, the storm development in mem-

ber 13 had been slower (Fig. 17c), such that its surface

cold pool was still unified. This phenomenon was

consistent with (and faster than) Melhauser and

Zhang (2012) in which the feedbacks associated

with cold pools generated drastic differences within 1

or 2 h.

This accumulated effect of the cold pool feedbacks

became even larger when splitting and merging pro-

cesses occurred. In member 13, after the splitting of the

original two storms, the middle two storms (marked as

‘‘S’’ and ‘‘N’’ in Figs. 18a and 18b) began approaching

each other (Fig. 18a). When the leading edges of

these cold pools (i.e., gust fronts) collided during the

early stage of merging, new updrafts were produced

(Fig. 18b). These updrafts persisted after merging

(Fig. 18c) and the merged storm maintained its strength

for a long time (marked as ‘‘M’’ in Figs. 18c and 18d) as

did its cold pool (Fig. 18d).

Storm evolution in member 17 showed a different

process. Storm interactions occurred 10min earlier

(Fig. 19a) in member 17 due to its faster development

(Figs. 17e,f). Updrafts of the ‘‘S’’ storm in member 17

intruded into the rear side of the cold pool of the ‘‘N’’

storm (Fig. 19b). The updrafts became weak and dis-

organized and failed to maintain their intensity; si-

multaneously, the cold pool moved northwestward

after merging and became dislocated from the updrafts

(Fig. 19d), further disrupting the internal dynamics

needed for the storm maintenance. The different storm

evolutions found in members 13 and 17 revealed a

drastic sensitivity of storm development to small al-

terations in timing, location, strength, and juxtaposi-

tion of individual storms, which agreed well with the

idealized study of Bluestein and Weisman (2000).

Similar processes occurred in member 51 (not shown)

that also experienced a quick dissipation after storm

merging (Fig. 11c3).

Two positive feedbacks located aloft and near the

surface played a crucial rule in the growth of forecast

errors associated with the storms. It should be noted

that these feedbacks could alter the evolution of the

FIG. 16. The 0–6-km vertical wind shear (shaded every 2.5m s21) and isolines of composite reflectivity (red every

20 dBZ from 20 dBZ) and vertical velocity (blue every 10m s21 from 10m s21) of member (a) 13 and (b) 17 at

1935 UTC.
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convective flows and consequently development and

organization of the storms. Even with the initial dif-

ferences between the two EF_PERT members being

one order of magnitude smaller than errors of current

observation instruments and global model analyses,

results indicate that these differences could lead to

failure in thunderstorm prediction. Our analyses of

these two members highlighted the surprisingly large

impact that limited intrinsic predictability might

have on the prediction of severe thunderstorms in

NWP models.

6. Conclusions

The time scale that storm-scale simulations are reli-

able and applicable is essential knowledge for the newly

developed ‘‘warn-on-forecast’’ paradigm for severe

weather warning, whereas how initial errors might grow

in the storm scale is unknown. This work, focusing on the

tornadic thunderstorm event in Oklahoma on 20 May

2013, examined the intrinsic predictability of this event

via ensemble forecasts with the WRF Model in a

convection-allowing horizontal resolution of 1 km, and

explored the mechanisms of how tiny unobserved errors

might influence the entire storm-scale forecast within a

few hours.

Using a set of initial conditions that represent flow-

dependent unobservable uncertainties, the control

ensemble forecast (EF_PERT) showed two intrinsic

predictability characteristics. On one hand, the over-

all quasi-contiguous line of severe convective storms

across Oklahoma was well simulated in all ensemble

members. Analysis of convective conditions shortly be-

fore convection initiation, including moisture, in-

stability, and convective inhibition, confirmed that these

conditions were nearly identical in all ensemblemembers,

FIG. 17. As in Fig, 15, but for (a),(b) 1945; (c),(d) 2005; and (e),(f) 2035 UTC.
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with ensemble mean closely following the reference

CNTL_17Z simulation with small ensemble spreads.

This similarity indicates that the environmental con-

ditions were highly predictable for the spatiotempo-

ral scale examined in the ensemble forecast for

this event.

On the other hand, the location, morphology, and

development of individual storms varied from mem-

ber to member, and the strength and coverage of ac-

cumulated precipitation as well as the probability of

mesocyclones contained large variations, suggesting a

limited intrinsic storm-scale predictability. Further-

more, the uncertainties remained largely unchanged

even when the initial perturbations were reduced by

as much as 90% in the EF_TINY ensemble. Calcu-

lations of DTE confirmed the similar error magni-

tudes of EF_PERT and EF_TINY forecasts. Scale

decompositions of DTE revealed error saturation and

upscale growth, which can be amplified by deep moist

convection. The structure and timing of initial per-

turbations might also influence the reliability of en-

semble forecast in the storm scale as indicated by the

difference between the EF_1900, EF_2000 and EF_

PERT ensembles.

Members 13 and 17 of the EF_PERT ensemble were

selected for detailed analysis of how their simulated

thunderstorms became distinct from each other. Tur-

bulence within the PBL played an important role in

spreading and amplifying errors during the pre-CI stage.

During the CI stage, the location and intensity of up-

drafts were hard to predict accurately; furthermore,

large variability might occur in deep-layer vertical wind

shear, making it hard to predict whether or not initiated

storms will be long lived. For those long-lived thunder-

storms, latent heat release during condensation may

enhance the buoyancy and subsequently feed back to

strengthen the updraft. Thus, randomly shifted updraft

maxima during early convection initiation may lead to

changes in both strength and extent of storm reflectivity

and updrafts.

The development of storms is closely related to their

accompanying cold pools and the interactions between

cold pools, the updrafts, and the environment. More

complex situations occur for storm splitting and merg-

ing: the juxtaposition of two thunderstorms before their

merging is essential for the later development of the

merger storm. In this study, the merged storm in mem-

ber 13 was maintained, while in member 17 when the

updrafts of one storm intruded upon the cold pool of the

other storm from the rear side, the updrafts became

disorganized and dissipated quickly after merging, and

the merger storm dissipated.

FIG. 18. Isosurfaces of 60-dBZ reflectivity (red) and 20m s21 updraft (blue), isolines of composite reflectivity (40

and 60 dBZ in red) and maximum updraft (every 20m s21 from 20m s21 in blue), and surface 2-m ue (shaded) of

member 13 at (a) 2100, (b) 2120, (c) 2140, and (d) 2200 UTC. The S and N in (a),(b) indicate southern and northern

cells that will be merged, respectively; and M in (c),(d) indicate the merger.
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In summary, although the convective phenomena in

larger scales were highly predictable for this event,

severe convective thunderstorms were found to be

intrinsically highly unpredictable for forecast lead

times within 3–6 h. Small alterations in the initial

conditions might trigger updrafts randomly that could

be rapidly magnified via interactions between up-

drafts, precipitation, and cold pools. Since errors

might experience rapid upscale growth with the help

of deep moist convection, a single deterministic

forecast is not able to consider the impact of the un-

certainty associated with the tiny unobserved initial

errors, thus ensemble forecasts are needed for

weather prediction at the storm scale. It should be

noted that these processes and results were based

upon one event and should not be much generalized;

however, the fundamental dynamics and thermody-

namics are likely universal, thus the limited intrinsic

predictability of severe convective thunderstorms

might not be restricted to this event. Furthermore,

this study provides a guide to storm-scale predictions

for how large the errors could be even provid-

ing nearly perfect knowledge of the atmosphere; re-

sults herein would be beneficial to application of

ensemble-based forecast systems and interpretations

of numerical simulations by human forecasters, thus

contributing to the forecast and warning of severe

weather in the future.
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