

全同粒子

粒子的可区分性 ＂凡物莫不相异＂莱布尼资

经典物理的所有物体都是可以区分的。
＊＂空间＂是物理对象＂位置＂的自然沿拓，是由占据它的粒子来定义的。
＊粒子（或质点）具有不可入性，
可根据物理对象的空间位置来区分它们
量子力学中＂轨道＂没有物理意义，
＊波函数要涵盖整个坐标空间
＊多粒子体系，态叠加原理并没有要求两个粒子出现在空间同一点的几率密度为零
两个物体是否可以在同—时刻处于同—状态？

量子化的后果

量子化将导致全同粒子

定义为所有物理属性（质量，电荷，自旋等）完全相同的粒子。

自旋 $(s): 0, \frac{1}{2}, 1, \frac{3}{2}, \cdots$
电荷 $(e): \pm 1, \pm 2, \pm \frac{2}{3}, \pm \frac{1}{3}, \cdots$
宇宙中所有电子的

弱荷 $(I): \pm \frac{1}{2}$质量，自旋和电荷等诸般属性完全相同。

质量 $(M): m_{e}, m_{p}, \cdots$
内禀属性完全相同的粒子是否可以处于相同状态？

全同粒子的不可区分性

结典物理中西条不同的斩迹

全同粒子的不可区分性

两粒子的德布罗意波重叠区域，我们无法区分

全同粒子的不可区分性

两个粒子间距远大于它们各自的德布罗意波长红线代表䉼子的波包所覆盖的范围

全同粒子体系的波逯数量子理论预言的不确定性

例子：一维谐振子势中运动的两个全同粒子

$$
\begin{gathered}
\hat{H}=\hat{h}^{(1)}+\hat{h}^{(2)} \equiv \frac{\hat{p}_{1}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}_{1}^{2}+\frac{\hat{p}_{2}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}_{2}^{2} \\
\hat{h} \phi_{n}(x)=\varepsilon_{n}(x) \phi_{n}(x)=\left(n+\frac{1}{2}\right) \hbar \omega \phi_{n}(x)
\end{gathered}
$$

两粒子都处于基态时 $E_{0}=\hbar \omega$

$$
\Phi_{0}\left(x_{1}, x_{2}\right)=\phi_{0}\left(x_{1}\right) \phi_{0}\left(x_{2}\right)
$$

两粒子体系处于第一激发态时 $E_{1}=2 \hbar \omega$

$$
\phi_{1}\left(x_{1}\right) \phi_{0}\left(x_{2}\right) \text { or } \phi_{0}\left(x_{1}\right) \phi_{1}\left(x_{2}\right) .
$$

全同粒子体系的波逯数量子理论预言的不确定性

例子：一维谐振子势中运动的两个全同粒子

$$
\hat{H}=\hat{h}^{(1)}+\hat{h}^{(2)} \equiv \frac{\hat{p}_{1}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}_{1}^{2}+\frac{\hat{p}_{2}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}_{2}^{2}
$$

态叠加原理

$$
\Phi\left(x_{1}, x_{2}\right)=\lambda \phi_{1}\left(x_{1}\right) \phi_{0}\left(x_{2}\right)+\mu \phi_{0}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)
$$

存在多个态函数对应于同一个物理状态，我们无法确定何种线性组和形式才是描述物理体系的正确形式

全同粒子体系的波逯数量子理论预言的不确定性

在 $\Phi_{1}\left(x_{1}, x_{2}\right)$ 波函数中测量两粒子的坐标位置 $\hat{x}_{1} \otimes \hat{x}_{2}$
$\left\langle\hat{x_{1}} \otimes \hat{x}_{2}\right\rangle$
$=\left\langle\lambda \phi_{1}\left(x_{1}\right) \phi_{0}\left(x_{2}\right)+\mu \phi_{0}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right| \hat{x}_{1} \hat{x}_{2}\left|\lambda \phi_{1}\left(x_{1}\right) \phi_{0}\left(x_{2}\right)+\mu \phi_{0}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right\rangle$
$=\left\langle\lambda \phi_{1}\left(x_{1}\right) \phi_{0}\left(x_{2}\right)\right| \hat{x}_{1} \hat{x}_{2}\left|\lambda \phi_{1}\left(x_{1}\right) \phi_{0}\left(x_{2}\right)\right\rangle+\left\langle\mu \phi_{0}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right| \hat{x}_{1} \hat{x}_{2}\left|\mu \phi_{0}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right\rangle$
$+\left\langle\lambda \phi_{1}\left(x_{1}\right) \phi_{0}\left(x_{2}\right)\right| \hat{x}_{1} \hat{x}_{2}\left|\mu \phi_{0}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right\rangle+\left\langle\mu \phi_{0}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right| \hat{x}_{1} \hat{x}_{2}\left|\lambda \phi_{1}\left(x_{1}\right) \phi_{0}\left(x_{2}\right)\right\rangle$
$=\quad \lambda^{*} \mu\left\langle\phi_{1}\left(x_{1}\right)\right| \hat{x}_{1}\left|\phi_{0}\left(x_{1}\right)\right\rangle\left\langle\phi_{0}\left(x_{2}\right)\right| \hat{x}_{2}\left|\phi_{1}\left(x_{2}\right)\right\rangle$
$+\lambda \mu^{*}\left\langle\phi_{0}\left(x_{1}\right)\right| \hat{x}_{1}\left|\phi_{1}\left(x_{1}\right)\right\rangle\left\langle\phi_{1}\left(x_{2}\right)\right| \hat{x}_{2}\left|\phi_{0}\left(x_{2}\right)\right\rangle$
$\hat{x} \phi_{n}(x)=\sqrt{\frac{\hbar}{2 m \omega}}\left(\sqrt{n} \phi_{n-1}+\sqrt{n+1} \phi_{n+1}\right)$
$\left\langle\hat{x}_{1} \otimes \hat{x}_{2}\right\rangle=\frac{\hbar}{2 m \omega}\left(\lambda^{*} \mu+\lambda \mu^{*}\right)=\frac{\hbar}{m \omega} \Re\left(\lambda^{*} \mu\right)$
λ 和 μ可观测物理量并非任意

全同粒子体系的波逯数量子理论预言的不确定性

在 $\Phi_{1}\left(x_{1}, x_{2}\right)$ 波函数中测量两粒子的坐标位置 $\hat{x}_{1} \otimes \hat{x}_{2}$

$$
\left\langle\hat{x}_{1} \otimes \hat{x}_{2}\right\rangle=\frac{\hbar}{2 m \omega}\left(\lambda^{*} \mu+\lambda \mu^{*}\right)=\frac{\hbar}{m \omega} \Re\left(\lambda^{*} \mu\right)
$$

但量子理论没有提供 λ 和 μ 的任何信息理论具有不确定性或不完备，我们只有在固定 λ 和 μ 后才能做理论预言。

非常幸运地是，自然界仅仅允许 $\lambda= \pm \mu$ ，这里正负号取决于粒子的属性

置换算符

为了描述两粒子体系，即使它们是不可区分的全同粒子，我们仍然需要对粒子进行编号，例如称之为粒子 1 和粒子2。当然这个编号没有任何物理意义，任何可观测物理量都不应该依赖于粒子编号。

定义 $\{|k\rangle\}$ 为 \mathcal{H}_{1} 空间基矢，$\{|n\rangle\}$ 是 \mathcal{H}_{2} 空间基矢，
双粒子体系的希尔伯特空间是 $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$
两粒子波函数是

$$
|\psi\rangle=\sum_{k, n} C_{k, n}|k\rangle \otimes|n\rangle \equiv \sum_{k, n} C_{k, n}|1: k ; 2: n\rangle
$$

置换算符

定义交换算符 \hat{P}_{12} ，它作用在全同粒子体系波函数上

会将粒子编号 1 和 2 交换（ $1 \leftrightarrow 2$ ）$$
\hat{P}_{12}|\xrightarrow{1: k ; 2}: n\rangle=|2: k ; 1: n\rangle
$$

因为任何实验结果都不依赖于具体粒子编号，交换操作后的波函数应该和交换之前波函数等价，最多仅仅差一个相位因子

$$
|2: k ; 1: n\rangle=e^{i \delta}|1: k ; 2: n\rangle
$$

态叠加原理要求这个相位因子和具体波函数无关，对物理体系进行两次连续置换操作后就会回到物理体系原始状态

$$
\begin{gathered}
\hat{P}_{12}^{2}=\hat{I} \quad e^{i \delta}= \pm 1 \\
\hat{P}_{12}|1: k ; 2: n\rangle= \pm|1: k ; 2: n\rangle
\end{gathered}
$$

置换算䇥运动常数

$$
\begin{aligned}
\hat{P}_{12} \hat{H}\left(\vec{r}_{1}, \vec{r}_{2}\right) \psi\left(\vec{r}_{2}, \vec{r}_{2}, t\right) & =\hat{H}\left(\vec{r}_{2}, \vec{r}_{1}, t\right) \psi\left(\vec{r}_{2}, \vec{r}_{2}, t\right) \\
& =\hat{H}\left(\vec{r}_{2}, \vec{r}_{1}, t\right) \hat{P}_{12} \psi\left(\vec{r}_{1}, \vec{r}_{2}, t\right) \\
\rightarrow \hat{P}_{12} \hat{H}\left(\vec{r}_{1}, \vec{r}_{2}, t\right) & =\hat{H}\left(\vec{r}_{2}, \vec{r}_{1}, t\right) \hat{P}_{12}
\end{aligned}
$$

如果

$$
\hat{H}\left(\vec{r}_{1}, \vec{r}_{2}, t\right)=\hat{H}\left(\vec{r}_{2}, \vec{r}_{\mathbf{k}}, t\right) \longrightarrow\left[\hat{P}_{12}, \hat{H}\left(\vec{r}_{1}, \vec{r}_{2}, t\right)\right]=0
$$

在初始时刻全同粒子构成的物理体系处于某个置换对称态，在此后任意时刻，物理体系都将处于此置换对称态中——量子动力学遵从全同原理

对称或反对称的波函数

含有两个全同粒子的系统，当置换两全同粒子时，系统的波函数是对称的或反对称的，

$$
|\psi\rangle=\sum_{k, n} C_{k, n}|1: k ; 2: n\rangle, \quad C_{k, n}= \pm C_{n, k}
$$

对称波函数：

$$
\begin{aligned}
& \left|\psi_{S}\right\rangle \propto \sum_{k, n} C_{k, n}(|1: k ; 2: n\rangle+|2: k ; 1: n\rangle), \\
& \hat{P}_{12}\left|\psi_{S}\right\rangle=\left|\psi_{S}\right\rangle
\end{aligned}
$$

反对称波函数：

$$
\begin{aligned}
& \left|\psi_{A}\right\rangle \propto \sum_{k, n} C_{k, n}(|1: k ; 2: n\rangle-|2: k ; 1: n\rangle), \\
& \hat{P}_{12}\left|\psi_{S}\right\rangle=-\left|\psi_{S}\right\rangle
\end{aligned}
$$

泡利不相容原理

为了解释原子周期结构，泡利提出＂不相容原理＂
（物理学中最简单，最基本的物理规律）
＂没有两个电子可以占据同一个量子态＂。

费米和狄拉克进而给出了更一般的形式：

$$
\begin{aligned}
& \text { 自然界中所有粒子都可以归于如下两类粒子: } \\
& \text { (I) 自旋为整数的玻色子, } \\
& \text { 其波函数在置换操作下是对称的; } \\
& \text { (2) 自旋为半整数的费米子, } \\
& \text { 其波函数在置换操作下是反对称的。 }
\end{aligned}
$$

考虑两个全同粒子构成的量子系统。忽略两者之间的相互作用，则此两粒子系统的哈密顿算符为

$$
\begin{aligned}
& \hat{H}=\hat{h}\left(q_{1}\right)+\hat{h}\left(q_{2}\right) \\
& \quad \hat{h}(q) \phi_{k}(q)=\epsilon_{k} \phi_{k}(q)
\end{aligned}
$$

设一个粒子处于 $\phi_{k_{1}}$ 而另一个粒子处于 $\phi_{k_{2}}$ ，则 $\phi_{k_{1}}\left(q_{1}\right) \phi_{k_{2}}\left(q_{2}\right)$和 $\phi_{k_{1}}\left(q_{2}\right) \phi_{k_{2}}\left(q_{1}\right)$ 两种波函数组会都对应于能量 $\epsilon_{k_{1}}+\epsilon_{k_{2}}$ 。
I）玻色子情况：波函数是对称的
$k_{1} \neq k_{2}$ 时，

$$
\begin{aligned}
& \psi_{k_{1} k_{2}}^{(S)}\left(q_{1}, q_{2}\right)=\frac{1}{\sqrt{2}}\left[\phi_{k_{1}}\left(q_{1}\right) \phi_{k_{2}}\left(q_{2}\right)+\phi_{k_{1}}\left(q_{2}\right) \phi_{k_{2}}\left(q_{1}\right)\right] \\
&=\frac{1}{\sqrt{2}}\left(1+\hat{P}_{12}\right) \phi_{k_{1}}\left(q_{1}\right) \phi_{k_{2}}\left(q_{2}\right) \\
& k_{1}=k_{2}=k \text { 时, } \phi_{k k}^{(S)}\left(q_{1}, q_{2}\right)=\phi_{k}\left(q_{1}\right) \phi_{k}\left(q_{2}\right)
\end{aligned}
$$

考虑两个全同粒子构成的量子系统。忽略两者之间的相互作用，则此两粒子系统的哈密顿算符为

$$
\begin{aligned}
& \hat{H}=\hat{h}\left(q_{1}\right)+\hat{h}\left(q_{2}\right) \\
& \quad \hat{h}(q) \phi_{k}(q)=\epsilon_{k} \phi_{k}(q)
\end{aligned}
$$

设一个粒子处于 $\phi_{k_{1}}$ 而另一个粒子处于 $\phi_{k_{2}}$ ，则 $\phi_{k_{1}}\left(q_{1}\right) \phi_{k_{2}}\left(q_{2}\right)$和 $\phi_{k_{1}}\left(q_{2}\right) \phi_{k_{2}}\left(q_{1}\right)$ 两种波函数组会都对应于能量 $\epsilon_{k_{1}}+\epsilon_{k_{2}}$ 。
2）费米子情况：波函数是反对称的

$$
\begin{aligned}
\psi_{k_{1} k_{2}}^{(A)}\left(q_{1}, q_{2}\right) & =\frac{1}{\sqrt{2}}\left[\phi_{k_{1}}\left(q_{1}\right) \phi_{k_{2}}\left(q_{2}\right)-\phi_{k_{1}}\left(q_{2}\right) \phi_{k_{2}}\left(q_{1}\right)\right] \\
& =\frac{1}{\sqrt{2}}\left|\begin{array}{cc}
\phi_{k_{1}}\left(q_{1}\right) & \phi_{k_{1}}\left(q_{2}\right) \\
\phi_{k_{2}}\left(q_{1}\right) & \phi_{k_{2}}\left(q_{2}\right)
\end{array}\right| \\
& =\frac{1}{\sqrt{2}}\left(1-\hat{P}_{12}\right) \phi_{k_{1}}\left(q_{1}\right) \phi_{k_{2}}\left(q_{2}\right)
\end{aligned}
$$

$k_{1} \neq k_{2}$ 时，

$$
k_{1}=k_{2}=k \text { 时, } \psi_{k k}^{(A)}=0
$$

$$
\begin{aligned}
& \psi_{s}\left(\xi_{1}, \xi_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi\left(\xi_{1}, \xi_{2}\right)+\psi\left(\xi_{2}, \xi_{1}\right)\right] \\
& \psi_{a}\left(\xi_{1}, \xi_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi\left(\xi_{1}, \xi_{2}\right)-\psi\left(\xi_{2}, \xi_{1}\right)\right] \\
& \psi_{s}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=\frac{1}{\sqrt{6}}\left[\psi\left(\xi_{1}, \xi_{2}, \xi_{3}\right)+\psi\left(\xi_{1}, \xi_{3}, \xi_{2}\right)+\psi\left(\xi_{2}, \xi_{3}, \xi_{1}\right)\right. \\
& \left.+\psi\left(\xi_{2}, \xi_{1}, \xi_{3}\right)+\psi\left(\xi_{3}, \xi_{1}, \xi_{2}\right)+\psi\left(\xi_{3}, \xi_{2}, \xi_{1}\right)\right], \\
& \psi_{a}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=\frac{1}{\sqrt{6}}\left[\psi\left(\xi_{1}, \xi_{2}, \xi_{3}\right)-\psi\left(\xi_{1}, \xi_{3}, \xi_{2}\right)+\psi\left(\xi_{2}, \xi_{3}, \xi_{1}\right)\right. \\
& \left.-\psi\left(\xi_{2}, \xi_{1}, \xi_{3}\right)+\psi\left(\xi_{3}, \xi_{1}, \xi_{2}\right)-\psi\left(\xi_{3}, \xi_{2}, \xi_{1}\right)\right] .
\end{aligned}
$$

示例 1

两个全同自由粒子，令其动量分别为 $\hbar \vec{k}_{\alpha}$ 和 $\hbar \vec{k}_{\beta}$下面讨论它们的空间相对位置的几率分布。

$$
\phi_{k}(\vec{r})=\frac{1}{(2 \pi \hbar)^{3 / 2}} e^{i \vec{k} \cdot \vec{r}}
$$

a）没有置换对称性（非全同粒子）
在一个粒子周围，半径在 $(r, r+d r)$ 的球壳内找到另一个粒子的几率为

$$
\begin{array}{r}
r^{2} d r \int\left|\phi_{k}(\vec{r})\right|^{2} d \Omega=\frac{4 \pi r^{2} d r}{(2 \pi \hbar)^{3}}=4 \pi r^{2} P(r) d r \\
\downarrow \\
\text { 常数 }
\end{array}
$$

示例 1

（b）交换反对称：当粒子 $1 \leftrightarrow 2$ 交换时，$\vec{r} \rightarrow-\vec{r}$ ，反对称波函数为

$$
\phi_{k}^{(A)}(\vec{r})=\frac{1}{\sqrt{2}}\left(1-\hat{P}_{12}\right) \frac{1}{(2 \pi \hbar)^{3 / 2}} e^{i \vec{k} \cdot \vec{r}}=\frac{i \sqrt{2}}{(2 \pi \hbar)^{3 / 2}} \sin (\vec{k} \cdot \vec{r})
$$

由此计算可得

$$
\begin{aligned}
4 \pi r^{2} P^{(A)}(r) d r & =r^{2} d r \int\left|\phi_{k}^{(A)}(r)\right|^{2} d \Omega=\frac{2 r^{2} d r}{(2 \pi \hbar)^{3}} \int \sin ^{2}(\vec{k} \cdot \vec{r}) d \Omega \\
& =\frac{2 r^{2} d r}{(2 \pi \hbar)^{3}} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \sin ^{2}(k r \cos \theta) \sin \theta d \theta \\
& =\frac{4 \pi r^{2} d r}{(2 \pi \hbar)^{3}}\left[1-\frac{\sin (2 k r)}{2 k r}\right]
\end{aligned}
$$

即

$$
P^{(A)}(r)=\frac{1}{(2 \pi \hbar)^{3}}\left[1-\frac{\sin (2 k r)}{2 k r}\right] .
$$

示例 1

a）无置换对称性（非全同粒子）

$$
P_{k}(r)=\frac{1}{(2 \pi \hbar)^{3}}
$$

b）置换反对称（全同费米子）

$$
P_{k}^{(A)}(r)=\frac{1}{(2 \pi \hbar)^{3}}\left[1-\frac{\sin (2 k r)}{2 k r}\right]
$$

c）置换对称（全同玻色子）

$$
P_{k}^{(s)}(r)=\frac{1}{(2 \pi \hbar)^{3}}\left[1+\frac{\sin (2 k r)}{2 k r}\right]
$$

当 $r \rightarrow \infty$ 时，三者没有差别。

示例 2

元素周期表

$\begin{array}{\|c} \hline \mathrm{H}^{1} \\ 1 s^{1} \\ { }^{2} S_{1 / 2} \\ \hline \end{array}$																	$\begin{gathered} \hline \mathrm{He}^{2} \\ 1 s^{2} \\ { }^{1} S_{0} \end{gathered}$
$\begin{array}{\|c} \hline \mathrm{Li}^{3} \\ 2 s^{1} \\ { }^{2} S_{1 / 2} \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{Be}^{4} \\ 2 s^{2} \\ { }^{1} S_{0} \end{gathered}$											$\begin{array}{\|c\|} \hline \mathrm{B}^{5} \\ 2 p^{1} \\ { }^{2} P_{1 / 2} \end{array}$	$\begin{gathered} \hline \mathrm{C}^{6} \\ 2 p^{2} \\ { }^{3} P_{0} \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{N}^{7} \\ 2 p^{3} \\ { }^{4} S_{3 / 2} \end{array}$	$\begin{gathered} \mathrm{O}^{8} \\ 2 p^{4} \\ { }^{3} P_{2} \end{gathered}$	$\begin{gathered} \mathrm{F}^{9} \\ 2 p^{5} \\ { }^{2} P_{3 / 2} \end{gathered}$	$\begin{gathered} \hline \hline \mathrm{Ne}^{10} \\ 2 p^{6} \\ { }^{1} S_{0} \end{gathered}$
$\begin{gathered} \hline \hline \mathrm{Na}^{11} \\ 3 s^{1} \\ { }^{2} S_{1 / 2} \end{gathered}$	$\begin{gathered} \hline \hline \mathrm{Mg}^{12} \\ 3 s^{2} \\ { }^{1} S_{0} \end{gathered}$											$\begin{array}{\|c} \hline \mathrm{Al}^{13} \\ 3 p^{1} \\ { }^{2} P_{1 / 2} \end{array}$	$\begin{gathered} \hline \hline \mathrm{Si}^{14} \\ 3 p^{2} \\ { }^{3} P_{0} \end{gathered}$	$\begin{gathered} \hline \mathrm{P}^{15} \\ 3 p^{3} \\ { }^{4} S_{3 / 2} \end{gathered}$	$\begin{aligned} & \hline \hline \mathrm{S}^{16} \\ & 3 p^{4} \\ & { }^{3} P_{2} \end{aligned}$	$\begin{gathered} \hline \mathrm{Cl}^{17} \\ 3 p^{5} \\ { }^{2} P_{3 / 2} \end{gathered}$	$\begin{gathered} \hline \hline \mathrm{Ar}^{18} \\ 3 p^{6} \\ { }^{1} S_{0} \end{gathered}$
$\begin{array}{\|c} \hline \hline \mathrm{K}^{19} \\ 4 s^{1} \\ { }^{2} S_{1 / 2} \\ \hline \end{array}$	$\begin{gathered} \hline \hline \mathrm{Ca}^{20} \\ 4 s^{2} \\ { }^{1} S_{0} \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{Sc}^{21} \\ 3 d^{1} \\ { }^{2} D_{3 / 2} \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{Ti}^{22} \\ 3 d^{2} \\ { }^{3} F_{2} \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{V}^{23} \\ 3 d^{3} \\ { }^{4} F_{3 / 2} \\ \hline \end{array}$	Cr^{24} $4 s^{1} 3 d^{5}$ ${ }^{7} S_{3}$	$\begin{array}{\|c} \hline \mathrm{Mn}^{25} \\ 3 d^{5} \\ { }^{6} S_{5 / 2} \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{Fe}^{26} \\ 3 d^{6} \\ { }^{5} D_{4} \end{gathered}$	$\begin{gathered} \mathrm{Co}^{27} \\ 3 d^{7} \\ { }^{4} F_{9 / 2} \end{gathered}$	$\begin{gathered} \hline \mathrm{Ni}^{28} \\ 3 d^{8} \\ { }^{3} F_{4} \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{Cu}^{29} \\ 4 s^{1} 3 d^{10} \\ 2 S_{1 / 2} \end{gathered}\right.$	$\begin{gathered} \mathrm{Zn}^{30} \\ 3 d^{10} \\ { }^{1} S_{0} \end{gathered}$	$\begin{array}{\|c} \hline \hline \mathrm{Ga}^{31} \\ 4 p^{1} \\ { }^{2} P_{1 / 2} \end{array}$	$\begin{gathered} \hline \hline \mathrm{Ge}^{32} \\ 4 p^{2} \\ { }^{3} P_{0} \end{gathered}$	$\begin{gathered} \hline \hline \mathrm{As}^{33} \\ 4 p^{3} \\ { }^{4} S_{3 / 2} \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline \mathrm{Se}^{34} \\ 4 p^{4} \\ { }^{3} P_{2} \end{gathered}$	$\begin{gathered} \hline \hline \mathrm{Br}^{35} \\ 4 p^{5} \\ { }^{2} P_{3 / 2} \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline \mathrm{Kr}^{36} \\ 4 p^{6} \\ { }^{1} S_{0} \end{gathered}$
$\begin{gathered} \hline \hline \mathrm{Rb}^{37} \\ 5 s^{1} \\ { }^{2} S_{1 / 2} \end{gathered}$	$\begin{gathered} \hline \hline \mathrm{Sr}^{38} \\ 5 s^{2} \\ { }^{1} S_{0} \end{gathered}$	Y^{39} $4 d^{1}$ ${ }^{2} D_{3 / 2}$	Zr^{40} $4 d^{2}$ ${ }^{3} F_{2}$	Nb^{41} $5 s^{1} 4 d^{4}$ ${ }^{6} D_{1 / 2}$	Mo^{42} $5 s^{1} 4 d^{5}$ ${ }^{5} S_{3}$	Tc^{43} $5 s^{1} 4 d^{6}$ ${ }^{6} D_{9 / 2}$	Ru^{44} $5 s^{1} 4 d^{7}$ 5 ${ }^{5} F_{5}$	Rh^{45} $5 s^{1} 4 d^{8}$ ${ }^{4} F_{9 / 2}$	$\begin{array}{\|\|c\|\|} \hline \hline \mathrm{Pd}^{46} \\ 5 s^{0} 4 d^{10} \\ { }^{1} S_{0} \end{array}$	$\begin{gathered} \mathrm{Ag}^{47} \\ 5 s^{1} 4 d^{10} \\ { }^{2} S_{1 / 2} \end{gathered}$	$\begin{gathered} \hline \hline \mathrm{Cd}^{48} \\ 4 d^{10} \\ { }^{1} S_{0} \end{gathered}$	In^{49} $5 p^{1}$ ${ }^{2} P_{1 / 2}$	$\begin{gathered} \hline \hline \mathrm{Sn}^{50} \\ 5 p^{2} \\ { }^{3} P_{0} \end{gathered}$	$\begin{gathered} \hline \hline \mathrm{Sb}{ }^{51} \\ 5 p^{3} \\ { }^{4} S_{3 / 2} \end{gathered}$	$\begin{gathered} \hline \hline \mathrm{Te}^{52} \\ 5 p^{4} \\ { }^{3} P_{2} \end{gathered}$	$\begin{gathered} \hline \hline \mathrm{I}^{53} \\ 5 p^{5} \\ { }^{2} P_{3 / 2} \end{gathered}$	$\begin{gathered} \hline \hline \mathrm{Xe}^{54} \\ 5 p^{6} \\ { }^{1} S_{0} \end{gathered}$

示例 3

一维无限深势阱（长度为 L ）中的多个电子

$$
E_{n}=\frac{\hbar^{2} \pi^{2} n^{2}}{2 m L^{2}}, \quad n=1,2,3, \ldots
$$

$$
E_{\mathrm{tot}}=\left(\frac{\hbar^{2} \pi^{2}}{2 m L^{2}}\right) N_{e} \quad(\text { without exclusion principle })
$$

$$
E_{\mathrm{tot}}=2 \sum_{n=1}^{N_{\max }} E_{n}=\frac{\hbar^{2} \pi^{2}}{m L^{2}} \sum_{n=1}^{N_{\max }} n^{2} \quad N_{\max }=N_{\mathrm{e}} / 2
$$

$$
\sum_{n=1}^{N_{\max }} n^{2}=\frac{N_{\max }\left(N_{\max }+1\right)\left(2 N_{\max }+1\right)}{6} \approx \frac{N_{\max }^{3}}{3}
$$

$$
E_{\mathrm{tot}}=\frac{\hbar^{2} \pi^{2}}{m L^{2}}\left(\frac{N_{\max }^{3}}{3}\right)=\frac{\hbar^{2} \pi^{2}}{24 m L^{2}} N_{\mathrm{e}}^{3} \quad \text { (with exclusion principle) }
$$

示例 3

一维无限深势阱（长度为 L ）中的多个电子

$$
E_{n}=\frac{\hbar^{2} \pi^{2} n^{2}}{2 m L^{2}}, \quad n=1,2,3, \ldots
$$

$$
\begin{aligned}
& E_{\text {tot }}=\left(\frac{\hbar^{2} \pi^{2}}{2 m L^{2}}\right) N_{e} \quad(\text { without exclusion principle }) \\
& E_{\text {tot }}=\frac{\hbar^{2} \pi^{2}}{m L^{2}}\left(\frac{N_{\max }^{3}}{3}\right)=\frac{\hbar^{2} \pi^{2}}{24 m L^{2}} N_{\mathrm{e}}^{3} \quad(\text { with exclusion principle })
\end{aligned}
$$

