2014年秋季学期粒子物理期末考试

总计8道题目(位于第1-3页),第4-8页包含公式

注意: 第3、4、5题中任选一题

姓名:			学号:				
题号		四	Ŧī.	六	七	八	总分
成绩							

- 一. (35分) 简答题
 - 1. 请叙述自然界中的四种基本相互作用,并比较各种相互作用的强弱。(3分)
 - 2. 请在自然单位制中将室温用GeV, sec (秒)和fm (费米)表示。(3分)
 - 3. 在美国费米实验室的Tevatron对撞机上 $p\bar{p} \rightarrow W^+$ 的散射截面是 $\sigma = 10$ nb, 并且实验亮度为 $\mathcal{L} = 10^{31}$ cm⁻²s⁻¹。请问,一年内(~10⁷s)中可以产生多少 个W⁺玻色子? (3分)
 - 4. 请说明光子质量项 $m_{\gamma}^2 A_{\mu} A^{\mu}$ 破坏U(1)规范对称性。(3分)
 - 5. 请说明深度非弹散射过程 $e^-p \rightarrow e^-X$ 中观测到的Bjorken标度不变性,并阐述 如何使用费曼部分子模型解释此标度不变性。(5分)
 - 6. 考虑正负电子对撞机上 $e^+e^- \rightarrow \mu^+\mu^-$ 对产生过程,请在同一图形中画出 $N_{\nu} = 3\pi N_{\nu} = 4$ 两种情况下的 $\mu^+\mu^-$ 的不变质量分布,其中 N_{ν} 是无质量中微子的种类数目。(3分)
 - 7. 请说明为什么 τ ⁻轻子衰变道 τ ⁻ → $\nu_{\tau}e^{-}\bar{\nu}_{e}$ 的分支比是20%。(5分)(提示: 画 出费曼图分析)
 - 8. 请说明实验上如何发现下列粒子(任选5个): (10分)
 - 电子; (2) μ轻子; (3) τ轻子; (4) π介子; (5) 粲夸克;
 - (6) 底夸克; (7) 顶夸克; (8) 中微子; (9) W玻色子;
 - (10) Z玻色子; (11) 希格斯粒子; (12) 胶子。

二.(15分)请说明下面那些过程是可以发生并通过何种相互作用发生。如果某 过程被禁戒,请说明原因。

$$e^{+}\mu^{-} \rightarrow e^{-}\mu^{+} , \quad \mu^{+} \rightarrow e^{+}\nu_{e}\bar{\nu}_{\mu}$$
$$p \rightarrow ne^{+}\nu_{e} , \quad \Lambda \rightarrow p\pi^{-}$$
$$\pi^{+}n \rightarrow \Lambda K^{+} , \quad pp \rightarrow pp\bar{p}\bar{p}$$
$$e^{-}e^{+} \rightarrow \mu^{-}\mu^{+} , \quad p \rightarrow e^{+}\gamma$$
$$\pi^{-} \rightarrow \mu^{-}\nu_{\mu} , \quad K^{+} \rightarrow \pi^{+}\gamma$$

注意: 第3、4、5题中任选一题

三. (10分) 实验上观测到强衰变过程 $\rho^0 \to \pi^+\pi^-$,但没有观测到 $\rho^0 \to \pi^0\pi^0$ 衰变过程。请据此推导出 ρ 的量子数: (1) *G*-宇称, (2) 自旋, (3) 内禀宇称;并提供禁戒 $\rho^0 \to \pi^0\pi^0$ 衰变过程的三种不同原因。

四. (10分) 请分别列出 $\pi^{+}\pi^{-}\pi^{0}$ 和 $\pi^{0}\pi^{0}\pi^{0}$ 的各种同位旋态。

五. (10分) 请找出如下总散射截面之间的关系(设同位旋振幅A₀, A₁和A₃):

(1) $K^{-} + p \to \pi^{+} + \Sigma^{-}$ (2) $K^{-} + p \to \pi^{0} + \Sigma^{0}$ (3) $K^{-} + p \to \pi^{-} + \Sigma^{+}$,

其中 $K^ (I = 1/2, I_z = -1/2)$ 和 $\Sigma^{\pm,0}$ $(I = 1, I_z = \pm 1, 0)$ 。

六. (10分) 在未来质心系能量为1000 GeV的正负电子直线加速器上,我们期望 可观测到一对正反顶夸克事例,

 $e^+e^- \rightarrow t\bar{t}, t \rightarrow W^+b, \bar{t} \rightarrow W^-\bar{b}.$

- 1. 请画出顶夸克对产生过程的费曼图。(1分)
- 请说明顶夸克对事例的衰变末态中可以存在2个,4个或6个夸克,并给出每种 情况出现的几率。(4分)
- 考虑如下两种末态: (1) 4个夸克、μ⁺; (2) 2个夸克、e⁻、μ⁺, 请画图说明如何在探测器上观测这两种末态。(5分)

七. (8分) R_X值测量在粒子物理中具有异常重要的作用, R_X定义如下:

$$R_X \equiv \frac{\sigma(e^+e^- \to X)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

考虑下列各种新物理奇异粒子,假设这些奇异粒子仅参与QED相互作用。当正负电子对撞机具有足够高的能量可以产生一对新物理粒子时,请计算相应的R值:

1. R_L : SU(2)弱同位旋二重态的新轻子L,设其超荷为Y = +3,

$$L = \left(\begin{array}{c} L_1 \\ L_2 \end{array}\right)$$

2. $R_{Q'}$: SU(2)弱同位旋三重态的新夸克Q',设其超荷为Y = +4/3

$$Q' = \begin{pmatrix} Q'_1 \\ Q'_2 \\ Q'_3 \\ Q'_3 \end{pmatrix}$$

八. (22分) 仅考虑QED理论。在非极化的正负电子对撞机上,忽略电子质量时, $e^+e^- \rightarrow \tau^+\tau^-$ 的散射振幅模方为

$$\overline{|\mathcal{M}|^2} = \frac{2e^4 Q_{\tau}^2}{(p_1 \cdot p_2)^2} \left[(p_1 \cdot p_4)(p_2 \cdot p_3) + (p_1 \cdot p_3)(p_2 \cdot p_4) + m_{\tau}^2(p_1 \cdot p_2) \right]$$

其中 $p_{1,2,3,4}$ 分别是 e^-, e^+, τ^-, τ^+ 的动量, Q_τ 是 τ 轻子电荷。

 1. 令质心系能量为√s,设e⁻和e⁺分别沿+ź和-ź方向入射。请推导e⁺e⁻质心系 中末态τ⁻的空间极化角(θ)的微分散射截面,并计算总散射截面。(8分)
 2. 计算前后不对称性

$$A_{FB} \equiv \frac{\sigma(\cos\theta > 0) - \sigma(\cos\theta < 0)}{\sigma(\cos\theta > 0) + \sigma(\cos\theta < 0)}$$

并解释物理原因。(2分)

- 如果光子仅仅和左手手征性的带电轻子相互作用,在忽略电子和τ轻子质量的 情况下,请通过螺旋度振幅分析给出散射振幅模方。(2分)
- 4. 接上问,请写出末态 τ^- 的空间极化角的微分散射截面,并计算 A_{FB} 。(2分)
- 5. 如果 τ^{\pm} 自旋为零,请说明 τ^{-} 极化角微分散射截面在前后方向处为零。(2分)
- 6. 如果光子自旋为0,请给出末态τ-的空间极化角微分分布。(2分)
- 7. 请写出强子对撞机上τ+τ-产生过程的散射截面。(2分)
- 8. 考虑 τ 质量不可忽略的情况。当 $m_{\tau} = 500 \text{ GeV}$,请分析在 $\sqrt{s} = 2000 \text{ GeV}$ 的质子-反质子强子对撞机上价夸克和海夸克的贡献大小;当 $m_{\tau} = 1 \text{ GeV}$ 时重复上面分析。(2分)

公式和费曼规则

基本粒子质量(不计实验误差):

$m_e = 0.511 \text{ MeV},$	$m_{\mu} = 105.7 \text{ MeV},$	$m_{\tau} = 1.777 \text{ GeV},$
$m_W = 80.385 \text{ GeV},$	$m_Z = 91.188 \text{ GeV},$	$m_H = 125.7 \text{ GeV},$
$m_u \simeq 2.3 \text{ MeV},$	$m_d \simeq 4.8 \text{ Mev},$	$m_s = 95 \text{ MeV},$
$m_c = 1.275 \text{ GeV},$	$m_b = 4.66 \text{ GeV},$	$m_t = 173.2 \text{ GeV}.$

2 → n散射过程的微分散射截面:

$$d\sigma(2 \to n) = \frac{(2\pi)^4}{4\sqrt{(p_1 \cdot p_2)^2 - m_1^2 m_2^2}} |\mathcal{M}|^2 \times d\Phi_n(p_1 + p_2; p_3, \cdots, p_{n+2})$$

 $1 \rightarrow n$ 衰变微分截面:

$$d\Gamma(1 \to n) = \frac{(2\pi)^4}{2M} \left| \mathcal{M} \right|^2 d\Phi_n(P; p_1, \cdots, p_n)$$

n体相空间:

$$d\Phi_n(P; p_1, \cdots, p_n) = \delta^4 \left(P - \sum_{i=1}^n p_i \right) \prod_{i=1}^n \frac{d^3 p_i}{(2\pi)^3 2E_i}$$

两体衰变 $(a \rightarrow b + c)$:

$$d\Gamma = \frac{1}{32\pi^2} |\mathcal{M}(a \to b + c)|^2 \frac{|\vec{p}_b|}{M_a^2} d\Omega,$$

其中 $d\Omega = d\phi_b d(\cos \theta_b)$ 是末态粒子b的立体角, M_a 是粒子a的质量。

共振态散射截面: 对于 $a + b \rightarrow R \rightarrow c + d + \cdots$ 过程,

非相对论散射截面公式

$$= \frac{\pi^2}{k^2} \frac{(2s_R + 1)C_R}{(2s_a + 1)(2s_b + 1)C_aC_b} \frac{\Gamma(R \to ab)\Gamma(R \to c + d + \cdots)}{(E_R - E)^2 + \frac{\Gamma_R^2}{4}}$$

相对论性散射截面公式

$$= \frac{4\pi s}{k^2} \frac{(2s_R + 1)C_R}{(2s_a + 1)(2s_b + 1)C_aC_b} \frac{\Gamma(R \to ab)\Gamma(R \to c + d + \cdots)}{(s - m_R^2)^2 + m_R^2\Gamma_R^2}$$

G宇称定义: $G = C \exp(i\pi I_2)$ 盖尔曼和西岛关系: $Q = T_3 + \frac{Y}{2}$ 泡利矩阵:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

QED拉氏量:

$$\mathcal{L} = \overline{\psi} \left(i \gamma^{\mu} D_{\mu} - m \right) \psi - \frac{1}{4} F_{\mu\nu} F^{m u \nu}$$

微分散射截面的分波分析: 对于散射过程 $a + b \rightarrow c + d$, 选择 \hat{y} 垂直于反应平面, $\frac{d\sigma}{d\Omega} = |f_{\lambda_c \lambda_d, \lambda_a \lambda_b}(\theta, \phi)|^2,$

其中

$$f_{\lambda_c\lambda_d,\lambda_a\lambda_b}(\theta,\phi) = \frac{1}{P} \sum_{J} (2J+1) \left\langle \lambda_c\lambda_d | T^J(E) | \lambda_a\lambda_b \right\rangle e^{i(\lambda-\mu)\phi} d^J_{\lambda,\mu}(\theta)$$
$$\lambda = \lambda_a - \lambda_b, \qquad \mu = \lambda_c - \lambda_d, \qquad P = \frac{1}{2} \left| \vec{p}_a - \vec{p}_b \right|$$
$$d^J_{M',M}(\theta) \equiv \left\langle JM' \left| e^{-iJ_y\theta} \right| JM \right\rangle$$

 γ -矩阵:

$$\operatorname{tr}(I) = 4,$$

$$\operatorname{tr}(\operatorname{any odd} \# \operatorname{of} \gamma' \operatorname{s}) = 0$$

$$\operatorname{tr}(\gamma^{\mu}\gamma^{\nu}) = 4g^{\mu\nu}$$

$$\operatorname{tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}) = 4(g^{\mu\nu}g^{\rho\sigma} - g^{\mu\rho}g^{\nu\sigma} + g^{\mu\sigma}g^{\nu\rho})$$

$$\operatorname{tr}(\gamma^{5}) = 0$$

$$\operatorname{tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{5}) = 0$$

$$\operatorname{tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma^{5}) = -4i\epsilon^{\mu\nu\rho\sigma}$$

1. PHYSICAL CONSTANTS

Table 1.1. Reviewed 2013 by P.J. Mohr (NIST). Mainly from the "CODATA Recommended Values of the Fundamental Physical Constants: 2010" by P.J. Mohr, B.N. Taylor, and D.B. Newell in Rev. Mod. Phys. 84, 1527 (2012). The last group of constants (beginning with the Fermi coupling constant) comes from the Particle Data Group. The figures in parentheses after the values give the 1-standard-deviation uncertainties in the last digits; the corresponding fractional uncertainties in parts per 10⁹ (ppb) are given in the last column. This set of constants (aside from the last group) is recommended for international use by CODATA (the Committee on Data for Science and Technology). The full 2010 CODATA set of constants may be found at http://physics.nist.gov/constants. See also P.J. Mohr and D.B. Newell, "Resource Letter FC-1: The Physics of Fundamental Constants," Am. J. Phys. 78, 338 (2010).

Quantity	Symbol, equation	Value	Uncertainty (ppb)
speed of light in vacuum	С	299 792 458 m s ⁻¹	exact*
Planck constant	h	$6.626\ 069\ 57(29) \times 10^{-34}$ J s	44
Planck constant, reduced	$h \equiv h/2\pi$	$1.054\ 571\ 720(47) \times 10^{-64}\ \text{J s}$ = 6.582.110.28(15)×10 ⁻²² MeV s	44
electron charge magnitude	e	$= 0.382 119 28(13) \times 10^{-19} \text{ MeV s}$ 1 602 176 565(35) $\times 10^{-19} \text{ C} = 4.803 204 50(11)$	$) \times 10^{-10} esu 22 22$
conversion constant	ħc	197.326.9718(44) MeV fm	22
conversion constant	$(\hbar c)^2$	$0.389\ 379\ 338(17)\ \text{GeV}^2\ \text{mbarn}$	 44
electron mass	m_e	$0.510998928(11)\mathrm{MeV}/c^2 = 9.10938291(40) >$	$< 10^{-31} \text{ kg}$ 22, 44
proton mass	m_p	$938.272\ 046(21)\ \mathrm{MeV}/c^2 = 1.672\ 621\ 777(74) \times 10^{-1}$	(10^{-27} kg) 22, 44
		$= 1.007\ 276\ 466\ 812(90)\ u = 1836.152\ 672\ 440$	$5(75) m_e = 0.089, 0.41$
deuteron mass	m_d	$1875.612 859(41) \text{ MeV}/c^2$	22
unified atomic mass unit (u)	$(\text{mass }^{12}\text{C atom})/12 = (1 \text{ g})/(N_A \text{ mol})$	$931.494\ 061(21)\ \mathrm{MeV}/c^2 = 1.660\ 538\ 921(73) \times$	(10^{-27} kg) 22, 44
permittivity of free space	$\epsilon_0 = 1/\mu_0 c^2$	$8.854 \ 187 \ 817 \ \dots \ \times 10^{-12} \ F \ m^{-1}$	exact
permeability of free space	μ_0	$4\pi \times 10^{-7} \text{ N A}^{-2} = 12.566 \ 370 \ 614 \dots \times 10^{-7}$	7 N A ⁻² exact
fine-structure constant	$\alpha = e^2 / 4\pi\epsilon_0 \hbar c$	$7.297\ 352\ 5698(24) \times 10^{-3} = 1/137.035\ 999\ 074$	$4(44)^{\dagger}$ 0.32, 0.32
classical electron radius	$r_e = e^2 / 4\pi\epsilon_0 m_e c^2$	$2.817\ 940\ 3267(27) \times 10^{-15}\ \mathrm{m}$	0.97
$(e^- \text{ Compton wavelength})/2\pi$	$\lambda_e = \hbar/m_e c = r_e \alpha^{-1}$	$3.861\ 592\ 6800(25) \times 10^{-13} \text{ m}$	0.65
Bohr radius $(m_{\text{nucleus}} = \infty)$	$a_{\infty} = 4\pi\epsilon_0 \hbar^2 / m_e e^2 = r_e \alpha^{-2}$	$0.529\ 177\ 210\ 92(17) \times 10^{-10}\ \mathrm{m}$	0.32
wavelength of 1 eV/c particle	hc/(1 eV)	$1.239 841 930(27) \times 10^{-6} m$	22
Rydberg energy	$hcR_{\infty} = m_e e^4 / 2(4\pi\epsilon_0)^2 \hbar^2 = m_e c^2 \alpha^2 / 2$	$13.605\ 692\ 53(30)\ eV$	22
Thomson cross section	$\sigma_T = 8\pi r_e^2/3$	$0.665\ 245\ 8734(13)\ barn$	1.9
Bohr magneton	$\mu_B = e\hbar/2m_e$	5.788 381 8066(38) $\times 10^{-11}$ MeV T ⁻¹	0.65
nuclear magneton	$\mu_N = e\hbar/2m_p$	$3.152\ 451\ 2605(22) \times 10^{-14}\ {\rm MeV}\ {\rm T}^{-1}$	0.71
electron cyclotron freq./field	$\omega_{ m cycl}^e/B = e/m_e$	$1.758\ 820\ 088(39) \times 10^{11} \text{ rad s}^{-1} \text{ T}^{-1}$	22
proton cyclotron freq./field	$\omega_{ m cycl}^{p'}/B = e/m_p$	9.578 833 58(21)×107 rad s ⁻¹ T ⁻¹	22
gravitational constant [‡]	G_N	$6.673 \ 84(80) \times 10^{-11} \ m^3 \ kg^{-1} \ s^{-2}$	1.2×10^{5}
0	2 V	$= 6.708 \ 37(80) \times 10^{-39} \ \hbar c \ (\text{GeV}/c^2)^{-2}$	1.2×10^5
standard gravitational accel.	g_N	$9.806\ 65\ {\rm m\ s}^{-2}$	exact
Avogadro constant	N_A	$6.022\ 141\ 29(27) \times 10^{23}\ \mathrm{mol}^{-1}$	44
Boltzmann constant	k	$1.380\ 6488(13) \times 10^{-23} \text{ J K}^{-1}$	910
		$= 8.617 \ 3324(78) \times 10^{-5} \ eV \ K^{-1}$	910
molar volume, ideal gas at STP	$N_A k(273.15 \text{ K})/(101 \ 325 \text{ Pa})$	$22.413\ 968(20) \times 10^{-3}\ \mathrm{m}^3\ \mathrm{mol}^{-1}$	910
Wien displacement law constant	$b = \lambda_{\max} T$	$2.897\ 7721(26) \times 10^{-3} \text{ m K}$	910
Stefan-Boltzmann constant	$\sigma = \pi^2 k^4 / 60\hbar^3 c^2$	$5.670\ 373(21) \times 10^{-8}\ W\ m^{-2}\ K^{-4}$	3600
Fermi coupling constant **	$G_F/(\hbar c)^3$	1.166 378 7(6)×10 ⁻⁵ GeV ⁻²	500
weak-mixing angle	$\sin^2 \hat{\theta}(M_Z) \ (\overline{\text{MS}})$	$0.231\ 26(5)^{\dagger\dagger}$	2.2×10^5
W^{\pm} boson mass	m_W	$80.385(15) \text{ GeV}/c^2$	1.9×10^5
Z^0 boson mass	m_Z	$91.1876(21) \text{ GeV}/c^2$	2.3×10^{4}
strong coupling constant	$\alpha_s(m_Z)$	0.1185(6)	5.1×10^{6}
$\pi = 3.141 \ 592 \ 653 \ 500 $	$689\ 793\ 238 \qquad e = 2.718\ 281\ 828$	$8 \ 459 \ 045 \ 235 \qquad \gamma = 0.577 \ 215 \ 664 \ 90$	1 532 861
$1 \text{ in} \equiv 0.0254 \text{ m}$ $1 \text{ G} \equiv 10$	0^{-4} T 1 eV = 1.602 1	76 565(35) × 10 ⁻¹⁹ J kT at 300 K = [$38.681 \ 731(35)]^{-1} \ eV$
$1 \text{ Å} \equiv 0.1 \text{ nm}$ $1 \text{ dyne} \equiv 1000 \text{ dyne}$	$1 \text{ eV}/c^2 = 1.782 \text{ 6}$	61 845(39) × 10 ⁻³⁶ kg 0 °C $\equiv 2$	273.15 K
$1 \text{ barn} \equiv 10^{-28} \text{ m}^2$ $1 \text{ erg} \equiv 10^{-28} \text{ m}^2$	0^{-7} J 2.997 924 58 × 10 ⁹ esu = 1 C	1 atmosphere $\equiv 760 \text{ Torr} \equiv 1$.01 325 Pa

* The meter is the length of the path traveled by light in vacuum during a time interval of 1/299 792 458 of a second.

[†] At $Q^2 = 0$. At $Q^2 \approx m_W^2$ the value is ~ 1/128.

[‡] Absolute lab measurements of G_N have been made only on scales of about 1 cm to 1 m.

** See the discussion in Sec. 10, "Electroweak model and constraints on new physics."

^{††} The corresponding $\sin^2 \theta$ for the effective angle is 0.23155(5).

3. INTERNATIONAL SYSTEM OF UNITS (SI)

See "The International System of Units (SI)," NIST Special Publication **330**, B.N. Taylor, ed. (USGPO, Washington, DC, 1991); and "Guide for the Use of the International System of Units (SI)," NIST Special Publication **811**, 1995 edition, B.N. Taylor (USGPO, Washington, DC, 1995).

SI prefixes				
10^{24}	yotta	(\mathbf{Y})		
10^{21}	zetta	(\mathbf{Z})		
10^{18}	exa	(E)		
10^{15}	peta	(\mathbf{P})		
10^{12}	tera	(T)		
10^{9}	giga	(G)		
10^{6}	mega	(M)		
10^{3}	kilo	(k)		
10^{2}	hecto	(h)		
10	deca	(da)		
10^{-1}	deci	(d)		
10^{-2}	centi	(c)		
10^{-3}	milli	(m)		
10^{-6}	micro	(μ)		
10^{-9}	nano	(n)		
10^{-12}	pico	(p)		
10^{-15}	femto	(f)		
10^{-18}	atto	(a)		
10^{-21}	zepto	(z)		
10^{-24}	yocto	(y)		

K.A. Olive et al. (PDG), Chin. Phys. C38, 090001 (2014) (http://pdg.lbl.gov) $$_{\rm August\ 21,\ 2014\ 13:18}$$

43. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS, AND d FUNCTIONS

Figure 43.1: The sign convention is that of Wigner (*Group Theory*, Academic Press, New York, 1959), also used by Condon and Shortley (*The Theory of Atomic Spectra*, Cambridge Univ. Press, New York, 1953), Rose (*Elementary Theory of Angular Momentum*, Wiley, New York, 1957), and Cohen (*Tables of the Clebsch-Gordan Coefficients*, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).