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Special Relativity and 4-Vector Notation
•Will use 4-vector notation with       as the time-like component, e.g.

•In particle physics, usually deal with relativistic particles. Require all  
   calculations to be Lorentz Invariant.  L.I. quantities formed from 4-vector 
   scalar products, e.g.   

Invariant mass
Phase

(contravariant)

(covariant)

with

•A few words on NOTATION

Quantities evaluated in the centre of mass frame: 
Three vectors written as:
Four vector scalar product:
Four vectors written as either: oror

or

etc. 2



Mandelstam s, t and u

3

★ Consider the scattering process
1 2

4

3

•Can define three kinematic variables:  s, t  and u from the following four vector  
     scalar products (squared four-momentum of exchanged particle)

★ In particle scattering/annihilation there are three particularly useful 
    Lorentz Invariant quantities:  s, t and u

e–e–

e– e–

γ

★ (Simple) Feynman diagrams can be categorized according to the four-momentum 
         of the exchanged particle 

e– µ–

e+ µ+

γ
e–e–

e– e–

γ

s-channel t-channel u-channel



Example: Mandelstam s, t and u
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★ e.g. Centre-of-mass energy, s:

• Since this is a L.I. quantity, can evaluate in any frame. Choose the  
    most convenient, i.e. the centre-of-mass frame:    

 is the total energy of collision in the centre-of-mass frame

Note:

•This is a scalar product of two four-vectors            Lorentz Invariant

★Hence

e– µ–

e+ µ+

γ



From Feynman diagrams to Physics

★ Particle physics is about building fundamental theories and testing their 
    predictions against precise experimental data

Particle Physics = Precision Physics

•Dealing with fundamental particles and can make very precise theoretical 
   predictions – not complicated by dealing with many-body systems
•Many beautiful experimental measurements  
          precise theoretical predictions challenged by precise measurements 
•For all its flaws, the Standard Model describes all experimental data ! 
   This is a (the?) remarkable achievement of late 20th century physics.

Before we can start, need calculations for:   

• Interaction cross sections  
• Particle decay rates 

★   Feynman diagrams mainly used to describe how particles interact 
Requires understanding of theory and experimental data

⬧ will use Feynman diagrams and associated Feynman rules to  
    perform calculations for many processes 
⬧ hopefully gain a fairly deep understanding of the Standard Model  
    and how it explains all current data

5



Cross Sections and Decay Rates
• In particle physics we are mainly concerned  
    with particle interactions and decays, i.e. 
    transitions between states

• Calculate transition rates from Fermi’s Golden Rule

is Transition Matrix Element

is density of final states 

is number of transitions per unit time from initial state 
      to final state                  – not Lorentz Invariant !

★ Rates depend on MATRIX ELEMENT and DENSITY OF STATES 

 the ME contains the fundamental particle physics 

▪ these are the experimental observables of particle physics

 just kinematics 

     is the perturbing 
Hamiltonian

6



Next a few lectures
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e– µ–

e+ µ+
γ

★ Aiming towards a proper calculation of decay and scattering processes
Will concentrate on: e– e–

qq

• e+e– ¦ µ+µ–

• e– q  ¦ e– q

(e– q¦e– q to probe 
 proton structure)

© Need relativistic calculations of particle decay rates and cross sections: 

© Need relativistic calculation of interaction Matrix Element: 
Interaction by particle exchange and Feynman rules

© Need relativistic treatment of spin-half particles:
Dirac Equation

+ and a few mathematical tricks along, e.g. the Dirac Delta Function 



Particle Decay Rates
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• Consider the two-body decay 

i
1

2

θ

• Want to calculate the decay rate in first order  
   perturbation theory using plane-wave descriptions  
   of the particles (Born approximation):

as

For decay rate calculation need to know:
• Wave-function normalization 
• Transition matrix element from perturbation theory 
• Expression for the density of states

• Non-relativistic: normalized to one particle in a cube of side 

where N is the normalization and 

★  First consider wave-function normalization 

All in a Lorentz  
Invariant form



 Non-relativistic Phase Space
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a

a
a

• Volume of single state in momentum space: 

• Normalizing to one particle/unit volume gives 
   number of states in element: 

• Integrating over an elemental shell in  
   momentum-space gives 

• Apply boundary conditions   (               ):

• Therefore density of states in Golden rule:

• Wave-function vanishing at box boundaries  
                 quantized particle momenta: 

with



Dirac δ Function
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a

• In the relativistic formulation of decay rates and cross sections we will make 
   use of the Dirac δ function:  “infinitely narrow spike of unit area”

• Any function with the above properties can represent 

e.g.
(an infinitesimally narrow Gaussian) 

• In relativistic quantum mechanics delta functions prove extremely useful   
   for integrals over phase space, e.g. in the decay

express energy and momentum conservation

and



• From properties of the delta function (i.e. here only  
    non-zero at      )

• Now express in terms of                     where 

Dirac δ Function

11

• Start from the definition of a delta function

• Rearranging and expressing the RHS as a delta function 

★ We will soon need an expression for the delta function of a function

(1)

x

x

and then change variables

.



The Golden Rule revisited
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• Rewrite the expression for density of states using a delta-function 

Note : integrating over all final state energies but energy conservation now  
           taken into account explicitly by delta function 

• Hence the golden rule becomes: 

  the integral is over all “allowed” final states of any energy 

i
1

2

θ• For dn in a two-body decay, only need to consider 
   one particle : mom. conservation fixes the other 

• However, can include momentum conservation explicitly by integrating over  
   the momenta of both particles and using another δ-function

Energy cons. Mom. cons. Density of states

since



Phase Space is Critical

13



 Lorentz Invariant Phase Space
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• In non-relativistic QM normalise to one particle/unit volume:
• When considering relativistic effects, volume contracts by 

a

a
a

a/γ

a
a

• Particle density therefore increases by 
★ Conclude that a relativistic invariant wave-function normalization  
     needs to be proportional to E particles per unit volume 

• Usual convention: Normalise to 2E particles/unit volume

• Previously   

• Define Lorentz Invariant Matrix Element,         , in terms of the wave-functions  
   normalized to        particles per unit volume  

used       normalized to 1 particle per unit volume

• Hence is normalized to        per unit volume



This form of  is simply a rearrangement of the original equation
but  the integral is now frame independent (i.e. L.I.)

Two Body Decay
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• For the two body decay

Note:

uses relativistically normalised wave-functions. It is Lorentz Invariant  

is the Lorentz Invariant Phase Space for each final state particle              
the factor of        arises from the wave-function normalization  

is inversely proportional to Ei, the energy of the decaying particle. This is  
exactly what one would expect from time dilation (Ei = γm).

Energy and momentum conservation in the delta functions

★ Now expressing        in terms of          gives



Decay Rate Calculations
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i
1

2

θ

★ Because the integral is Lorentz invariant (i.e. frame independent) it can be  
     evaluated in any frame we choose. The C.o.M. frame is most convenient 

• Writing  

• In the C.o.M. frame                 and 

For convenience, here 
       is written as  

• Integrating over      using the δ-function:  

   now                                 since the δ-function imposes 
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• Which can be written in the form 

where 

and 

•                     imposes energy conservation.     

★ Eq. (2) can be integrated using the property of δ–function derived earlier (eq. (1)) 

where       is the value for which 

(2)

• All that remains is to evaluate                 

•                      determines the C.o.M momenta of   
      the two decay products   

 i.e.                      for  

i
1

2

θNote:



giving:

•     can be obtained from 

• But from                      , i.e. energy conservation:

(3)

VALID FOR ALL TWO-BODY DECAYS !

In the particle’s rest frame
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• The “cross section”, σ ,  can be thought of as the effective cross-sectional 
    area of the target particles for the interaction to occur. 

here          is the projective area of nucleus 

• In general this has nothing to do with the physical size of the  
    target although there are exceptions, e.g. neutron absorption 

σ

# of interactions per unit time per target 
incident flux 

σ  =

Differential Cross section
# of particles per sec/per target into dΩ

incident flux  
=

dσ
dΩ

integrate over all 
other particles

θe–

e–

p

Flux = number of 
incident particles/ 
unit area/unit time

with

dσ
d...

or generally

Cross section definition
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Example
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• Consider  a single particle of type a with velocity, va, traversing a region of area  
  A containing nb particles of type b per unit volume 

vaA vb
In time δt  a particle of type a traverses  
region containing 
 particles of type b
 

A
σ ★Interaction probability obtained from effective 

   cross-sectional area occupied by the  
                                     particles of type b

• Interaction Probability = 

• Consider volume V,  total reaction rate = 
=

• As anticipated:     Rate = 

nb v σRate per particle of type a = 

Flux  x  Number of targets x cross section



Cross Section Calculations
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• Start from Fermi’s Golden Rule: 

• Now

where         is the transition matrix for a normalization of 1/unit volume

• For 1 target particle per unit volume

• Consider scattering process

the parts are not Lorentz Invariant

1 2

4

3
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• Again define L.I. Matrix element

•To obtain a Lorentz Invariant form  use wave-functions normalized to        particles 
   per unit volume

• The integral is now written in a Lorentz invariant form

• The quantity        can be written in terms of a four-vector     

(see appendix I)

• Consequently cross section is a Lorentz Invariant  quantity

Two special cases of Lorentz Invariant Flux:
• Centre-of-Mass Frame • Target (particle 2) at rest

 scalar product and is therefore also Lorentz Invariant  (the Lorentz Inv. Flux)    



2¦2 Body Scattering in C.o.M. Frame
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★The integral is exactly the same integral that appeared in the particle decay  
    calculation but with         replaced by

1 2

4

3

• Here

• We will now apply above Lorentz Invariant formula for the 
   interaction cross section to the most common cases used  
   in the course. First consider  2¦2 scattering in C.o.M. frame

• Start from

(4)
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• In the case of elastic scattering   

• For calculating the total cross-section (which is Lorentz Invariant) the result on  
   the previous page (eq. (4)) is sufficient. However, it is not so useful for calculating  
   the differential cross section in a rest frame other than the C.o.M:

e– e–

µ+ µ+

1

2

3

4

e– e–

★ Start by expressing            in terms of Mandelstam t  
        i.e. the square of the four-momentum transfer 

because the angles in  refer to the C.o.M frame  
• For the last calculation in this section, we need to find a L.I. expression for    

Product of  
four-vectors 
therefore L.I.
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1
2

4

3

z

x⬧ In C.o.M. frame: 

giving

hence

• Finally, integrating over           (assuming no       dependence of              ) gives:

therefore

• Want to express            in terms of Lorentz Invariant  

where



• All quantities in the expression for  are Lorentz Invariant and 
therefore, it applies to any rest frame. It should be noted that  
is a constant, fixed by energy/momentum conservation

• As an example of how to use the invariant expression 
we will consider elastic scattering in the laboratory frame in the limit 
where we can neglect the mass of the incoming particle  

E1 m2 e.g. electron or neutrino scattering

In this limit

Lorentz Invariant differential cross section

26

2



2¦2 Body Scattering in Lab. Frame
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e– e–

X X

1 3

2 4

• First take the case of elastic scattering at high energy where the mass 
  of the incoming particles can be neglected: 

e.g.

1
3

2

4

θ

• Wish to express the cross section in terms of scattering angle of the e– 

therefore

• The rest is some rather tedious algebra….  start from four-momenta

so here

But from (E,p) conservation
and, therefore, can also express t in terms of particles 2 and 4 

• The other commonly occurring case is scattering from a fixed target in the  
   Laboratory Frame (e.g. electron-proton scattering)

Integrating 
 over
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Note E1 is a constant (the energy of the incoming particle) so

• Equating the two expressions for t gives

so

Using

gives

Particle 1 massless

In limit 

2
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In this equation, E3 is a function of θ :

giving

★The calculation of the differential cross section for the case where m1 can not be  
    neglected is longer and contains no more “physics” (see appendix II). It gives:

Again there is only one independent variable, θ,  which can be seen from 
conservation of energy

General form for 2¦2 Body Scattering in Lab. Frame

i.e. is a function of 



★  Particle decay:

★  Scattering cross section in C.o.M. frame:

★  Invariant differential cross section (valid in all frames):

★ Used a Lorentz invariant formulation of Fermi’s Golden Rule to  
     derive decay rates and cross-sections in terms of the Lorentz  
     Invariant Matrix Element  (wave-functions normalised to 2E/Volume)

Main Results:

Where        is a function of particle masses

Summary

30



★Differential cross section in the lab. frame (m1=0)

★Have now dealt with kinematics of particle decays and cross sections 

★The fundamental particle physics is in the matrix element 

★The above equations are the basis for all calculations that follow

★Differential cross section in the lab. frame (m1≠ 0)

with

Summary of the summary:

Summary cont.
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a b▪Collinear collision:

To show this is Lorentz invariant, first consider

Giving

Appendix I : Lorentz Invariant Flux

32.



Appendix II : general 2¦2 Body Scattering in lab frame
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1
3

2

4

θ

again

But now the invariant quantity t:
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Which gives

To determine dE3/d(cosθ), first differentiate

Then equate to give 

Differentiate wrt. cosθ

(AII.1)

Using (1) (AII.2)
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It is easy to show

and using (AII.2) obtain

.


