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Special Relativity and 4-Vector Notation

0
*Will use 4-vector notation with P as the time-like component, e.g.

pt = {Eaﬁ} = {E,P.r,[?y,l?;} (contravariant)
Pu = gpvp‘u - {E’ _ﬁ} - {Ea —Pxs —Py; _P:} (covariant)
with 1 0 0 O
_ouv_[O0-—=1 0 0
SBuv=8"=10 0-1 0
0O 0 0 -1

*In particle physics, usually deal with relativistic particles. Require all
calculations to be Lorentz Invariant. L.l. quantities formed from 4-vector

scalar products, e.g. )

) .
p“pu — E%— p-=m Invariant mass

x*py =Et—p.F Phase

*A few words on NOTATION
Four vectors written as either: p* or p

Four vector scalar product:  ptqy, or p.q
Three vectors written as: p
Quantities evaluated in the centre of mass frame: p*, p* etc.




Mandelstam s, t and u

% In particle scattering/annihilation there are three particularly useful

Lorentz Invariant quantities: s, tand u

% Consider the scattering process

| +2 —>3+4

1

4/

* (Simple) Feynman diagrams can be categorized according to the four-momentum

of the exchanged particle

s-channel

*Can define three kinematic variables: s, t and u from the following four vector

Pl P3
Y

P2 P4
t-channel

e-

e

Pl

P3

u-channel

scalar products (squared four-momentum of exchanged particle)

2

2

s=(p1+p2)°, t=(p1—p3)°, u=(p —174)2

e




Example: Mandelstam s, t and u

s=(p1+p2)°, t=(p1—p3)

2 2
p)

u=(p1—ps)?

Note: sS+71+u= m% + m% + m% -} mf’l
* e.g. Centre-of-mass energy, S:

e’ P

y P3 u*

€7 p2 P4

s=(p1+p2)? = (E\ +E)*— (P + p2)?

*This is a scalar product of two four-vectors == [orentz Invariant

* Since this is a L.l. quantity, can evaluate in any frame. Choose the
most convenient, i.e. the centre-of-mass frame:

py = (E{,p*) p2»=(E5,—p")

=)

s = (Ei"+E:’§‘)2

*Hence \/? is the total energy of collision in the centre-of-mass frame




From Feynman diagrams to Physics

Particle Physics = Precision Physics
% Particle physics is about building fundamental theories and testing their
predictions against precise experimental data
*Dealing with fundamental particles and can make very precise theoretical
predictions — not complicated by dealing with many-body systems
*Many beautiful experimental measurements
== precise theoretical predictions challenged by precise measurements

*For all its flaws, the Standard Model describes all experimental data !
This is a (the?) remarkable achievement of late 20" century physics.

Requires understanding of theory and experimental data
% Feynman diagrams mainly used to describe how particles interact

¢ will use Feynman diagrams and associated Feynman rules to
perform calculations for many processes

¢ hopefully gain a fairly deep understanding of the Standard Model
and how it explains all current data

Before we can start, need calculations for:

* Interaction cross sections
* Particle decay rates




Cross Sections and Decay Rates

* In particle physics we are mainly concerned
with particle interactions and decays, i.e.
transitions between states

= these are the experimental observables of particle physics

» Calculate transition rates from Fermi’s Golden Rule

[si = 27|Tyi|*p(Ey)

['f; is number of transitions per unit time from initial state
i) to final state (f] — not Lorentz Invariant !

Ts; is Transition Matrix Element

Tﬁ=<f|]-1|,'>+z<f| |J><j| |l>+ H is the perturbing

P E;—E; " Hamiltonian
p(Ey) is density of final states

% Rates depend on MATRIX ELEMENT and DENSITY OF STATES
- _/ — _/

Y YT

the ME contains the fundamental particle physics just kinematics




Next a few lectures

% Aiming towards a proper calculation of decay and scattering processes
Will concentrate on:

cefem > utus o
‘e q > €g(g
(e-q—eq to probe

proton structure)

A Need relativistic calculations of particle decay rates and cross sections:
Mi|?
flux

c = X (phase space)

A Need relativistic treatment of spin-half particles:
Dirac Equation

A Need relativistic calculation of interaction Matrix Element:
Interaction by particle exchange and Feynman rules

+ and a few mathematical tricks along, e.g. the Dirac Delta Function




Particle Decay Rates

 Consider the two-body decay 1

i — 142 l/iﬁ/'
@

« Want to calculate the decay rate in first order
perturbation theory using plane-wave descriptions /
of the particles (Born approximation): 2

Wl=xei(z;"‘_"5” (kF=pF as h=1)
— Ne—ip-

where N is the normalization and P-X = I’“xﬂ

For decay rate calculation need to know:

* Wave-function normalization
* Transition matrix element from perturbation theory
» Expression for the density of states

All in a Lorentz
Invariant form

¥ First consider wave-function normalization

* Non-relativistic: normalized to one particle in a cube of side ¢

[wy*dV =N?a’ =1 = N?’=1/d°




Non-relativistic Phase Space

* Apply boundary conditions (ﬁ = 717& ):

» Wave-function vanishing at box boundaries &
== (uantized particle momenta: p /\/\/
I 27[1’1_‘- . I 27:") . . 27[":
Px= = s Py= (s P:= — !
* Volume of single state in momentum space: Dy a
(2_7:)3 _ (@n)’ 0
a I %
* Normalizing to one particle/unit volume gives
number of states in element:  d*p = dp,dp,dp. T 2x
&Skp 1 dp A T Py
dn = 7 XV = )
hT 2%) P:
* Therefore density of states in Golden rule: :
(E)) = dn| | dn d|p] W'tzh o
P aE,, T Al aE |, ET=piam
* Integrating over an elemental shell in / \ 2EdE=2pdp

dp E 1

momentum-space gives _

1
(d°p = 4np*dp) p(Ey) = 2n)} B dEp B




Dirac 6 Function

* In the relativistic formulation of decay rates and cross sections we will make
use of the Dirac 6 function: “infinitely narrow spike of unit area”

O(x—a) | £(x) ;+°°5(x—c1)dx = 1
" F0)8(x - a)dx = f(a)

a "X J—

* Any function with the above properties can represent 8(.x)

e.g. x?
J ) (x) — lim ] e ( ii) (an infinitesimally narrow Gaussian)
o020

* In relativistic quantum mechanics delta functions prove extremely useful
for integrals over phase space, e.g. inthedecay «a — 1 +2

[...8(E,—E,—E>))dE and [..8%(p,—p1—p)d°p

express energy and momentum conservation




Dirac 6 Function

* We will soon need an expression for the delta function of a function & ( f(x))
- Start from the definition of a delta function

y2 | ify, <0<y
6()7)(1),» — { 0 1 i)]l V y2 .
Vi otherwise f(x)

- Now express in terms of y = f(x) where f(xg) =0
and then change variables
X2 df { I ifx; <xp<xo ~_ "X
O(f(x))—dx = ) “ X0

/\] (1 ))dx 0 otherwise S(f(x))t

* From properties of the delta function (i.e. here only
non-zero at x )

df 2 . 1 1fx) <xp<x >
— My — 2 ¥
dx [, Jx, O(/(x))dx { 0 otherwise X0
* Rearranging and expressing the RHS as a delta function
X2 ] X9
o0 (f(x))dx = O (x —xp)dx
Jx) |df/dx|\() X
—1
df
= | S(f()= || Slr—x0)
X0




The Golden Rule revisited

2
Ui =27|Tyi|*p (Ef)
* Rewrite the expression for density of states using a delta-function

d d
p(Ef) = dg - —"5(15 E;)dE since £, = E;

dE

Note : integrating over all flnal state energies but energy conservation now
taken into account explicitly by delta function

* Hence the golden rule becomes:  T'y; =27 / |Tf,-|26(E,- — E)dn

the integral is over all “allowed” final states of any energy

1

* For dn in a two-body decay, only need to consider 1/16‘

one particle : mom. conservation fixes the other ¢ _

Fﬂ:ZTC/|Tf,‘| 6(E,'—E1 —Ez)(zﬂ)3 ) (271-);1

* However, can include momentum conservation explicitly by integrating over

the momenta of both particles and using another d-function

32
351 dPph

= zﬂ/r-za E,—E| —E))8(pi— p
fi = ( ). | Tl \( —Er 2) 'z Pi— 2( 3 (21)’
Energy cons. Mom. cons. @

DenS|ty of states




Phase Space is Critical




Lorentz Invariant Phase Space

* In non-relativistic QM normalise to one particle/unit volume: ] yvrydV =1
- When considering relativistic effects, volume contracts by ¥ = E / m

= S
N Y

>

a
a aly
- Particle density therefore increases by Y = E/m
% Conclude that a relativistic invariant wave-function normalization
needs to be proportional to E particles per unit volume

- Usual convention: [Normalise to 2E particles/unit volume | [y"™*y/dV =2E

* Previously used ¥/ normalized to 1 particle per unit volume [ W ydV = 1

- Hence Y’ = (2E)'/2y is normalized to 2E per unit volume

» Define Lorentz Invariant Matrix Element, Mf,- in terms of the wave-functions
normalized to 2FE particles per unit volume

M=y, .y |H|..v ) = (2E|.2E,.2E5...2E,) *Ty; @




Two Body Decay

* For the two body decay M fi
i — 142

= (yiw|A'|y)
(2E1.2E1 2E2) P (yy o | A |yr)
= (2E;.2E) 2E;)' /Ty

* Now expressing 71y; in terms of My; gives

(2m)* / , Y d’p>
[ — M |28(E; — Ey — E>)83 (B, — By —
fi= 5, ) Msl"0(Ei = Ey = E2)8"(Pa = P P2) )2k, (2m)32E;
Note:

M ; uses relativistically normalised wave-functions. It is Lorentz Invariant

d3ﬁ is the Lorentz Invariant Phase Space for each final state particle
(27)32E the factor of 2E arises from the wave-function normalization

:> This form of I_‘f,- is simply a rearrangement of the original equation
but the integral is now frame independent (i.e. L.I.)

I“ﬁ is inversely proportional to E, the energy of the decaying particle. This is
~ exactly what one would expect from time dilation (E;=ym). E

Energy and momentum conservation in the delta functions



Decay Rate Calculations

(2m)4 d?p d?p5
2E; (27)32E, (27)32E;

% Because the integral is Lorentz invariant (i.e. frame independent) it can be
evaluated in any frame we choose. The C.o.M. frame is most convenient

[pi= /le,-lzé(E,-—E] —E»)8 (Pi — P1 — P2)

* In the C.o.M. frame E; = m; and p; =0

['fi=— /M-“3 m; —E| — E>)0° (P + p- -
. - . . 1
- Integrating over p> using the d-function: : g
grating ov Izlulg unction d3ﬁ 54
= = /M-26 . —E,—E :
vy \Mi|~8(m; — E\ 2)415152 2/
now E% = (m% + | pi |2) since the d-function imposes ﬁz = —1_51

" " : For convenience, here

I prdpdQ
2 2 2 2 2 I
= Tyi= W/VWM 0 (m,-— my + py— \/’"2 +1’|) E\E, @




* Which can be written in the form

| :
O = 55 | MiPee)3((p))dpde 2

where g(p;) = pf/(ElEg) = pf(mf +p‘?') '/2(111% +pf) 1/2

and  f(p1) =n~z,-—(mf+p%)'/2—(m%—{—p%)'/z P 1
Note: * O(f(p;)) imposes energy conservation. 1 /{
®

« f(p1) = 0 determines the C.0.M momenta of /
p*

the two decay products
ie. f(p1)=0 for p =p°

% Eq. (2) can be integrated using the property of 0—function derived earlier (eq. (1))

[ ep3(an = g7 [ - p)am = (")

where P’ is the value for which f(p*) =0

Idf/d[)] | p’

- All that remains is to evaluate df/dp
dr 4 4

T R R e




. I E|E; p?
iving: ['y; = M ;i |? - ' dQ
VNG 1 i 327r2E,-/| sl p1(E1 +E») E\E> p1=p*
1 / 2| P
3272E; U E+E |, _,
* But from f(p;) =0, i.e. energy conservation' Ey| + Ey = m;
[y = / Mi|*dQ
/i 327:25 oy | 1M
In the particle’s rest frame FE; = m;
1
~=T= / M i |*dQ (3)
- T 3271‘2m IMyi

VALID FOR ALL TWO-BODY DECAYS !

» p*can be obtained from f(p;) =0
(m} +p™)' 2+ (m3 + p2)' /2 = m;
I
) p* e — [(m,? — (ml +m?_)7—] [mi_’. - (m| . ’"2)2]

2m;




Cross section definition

# of interactions per unit time per target Flux = number of
O = — incident particles/
incident flux unit area/unit time

* The “cross section”, ¢, can be thought of as the effective cross-sectional
area of the target particles for the interaction to occur.

* In general this has nothing to do with the physical size of the
target although there are exceptions, e.g. neutron absorption

°o— ‘ here @ is the projective area of nucleus

Differential Cross section

or generall
do # of particles per sec/per target into dQ2 J q Y
— — O
dQ incident flux o

A dQ =d(cosB)d¢

e do
> ‘/ with |0 = [ —dQ
D \ — | integrate over all
A‘ other particles




Example

- Consider a single particle of type a with velocity, v_, traversing a region of area
A containing n, particles of type b per unit volume

In time Ot a particle of type a traverses
region containing 1y, (v, + vp)AO! A
particles of type b

@0 % Interaction probability obtained from effective
A ® cross-sectional area occupied by the
C np(ve + vy )AL particles of type b
np(vy+vp)AOto
- Interaction Probability = b(Va Ab) = npvoto v =va+vs)

== | Rate per particle of type 1 = 7,00

* Consider volume V, total reaction rate = (nvo).(n,V) = (npV) (ngv)
= Np@,O

* As anticipated: Rate =Flux x Number of targets x cross section




Cross Section Calculations

 Consider scattering process
| +2 —3+4 1 y &
* Start from Fermi’s Golden Rule: 4 /

4 [ 2 d*py d’py
rf,=(27l') /ITfII 6(E1+E2_E3_E4)6 (PI+P7_173_P4)(27I) (27:)

where Tfi is the transition matrix for a normalization of 1/unit volume

- Now Rate/Volume = (flux of 1) x (number density of 2) X &

= nI(Vl +v2) XNy XO
» For 1 target particle per unit volume Rate = (v| + ;)0
l“f,-
(vi+wn)

d‘;p’i d3“
Tsi|“0(Ey +E; —E3 — E 53 — P3 —
Vi +V’)/| fl| | T+ £2 3 4) (p|+p2 p3 p4)(27r) (271:)‘;
H—j ——

T >_|the parts are not Lorentz Invariant / d

O =

O =




*To obtain a Lorentz Invariant form use wave-functions normalized to 2E particles

per unit volume Y = (25)]/2‘/’
* Again define L.I. Matrix element M f; = (2E12E»2E32E,) 1/2 Tyi
(2m)~2 / d?p3 d3 py
= M;i|*8(E\ + E; — E3 — E4)8° 2—P3—
o 2E12E,(vi +v2) Myi|*8(E) + 3—E4)0”(p1 + p2 — P3 — Pa) By 2E:

* The integral is now written in a Lorentz invariant form

* The quantity F' = 2F] 2E2(v| + Vi ) can be written in terms of a four-vector
scalar product and is therefore also Lorentz Invariant (the Lorentz Inv. Flux)

F=4 [(pl 1”#) m,m,] /2 (see appendix )

« Consequently cross section is a Lorentz Invariant quantity

Two special cases of Lorentz Invariant Flux:

* Centre-of-Mass Frame * Target (particle 2) at rest
F = 4E|E3(V| +v7) F = 4E E’)(\’] -+ V'))
= 4E\Ex(|p*|/E1 + |p"|/E2) = 4E;mov
45" |(E) + Er) = 4Eimy(|p1|/E)
- = 4m_7_|13'| | é



2—2 Body Scattering in C.o.M. Frame

* We will now apply above Lorentz Invariant formula for the 7} 3
interaction cross section to the most common cases used 7! ' !
in the course. First consider 2—2 scattering in C.0.M. frame 1 a 2

 Start from 4 b

(2m)~2 / p3 A py
c= Mgi|"0(E\+Ey —Ez — E 8P+ pr— Py — P
2EE (v )| i[*8(E1 +E2 — E3 — E4) (P + P2 = Py "‘) 215; 2F,

‘Here p1+p>=0 and E|+E; =/s
d’p3 d? py
2E3 2FE4

= o= 4|ﬁ*|f/|M'|5f Es — E4)8° (73 + Pa)

* The integral is exactly the same integral that appeared in the particle decay
calculation but with 71, replaced by \/?

(2r)~2 |Py

= A7 s ays ) Ml
1 |[3}| 2
= M i 2dQ*
64725 |,3;."|./| il (4)




+ In the case of elastic scattering |} | = |1'5’}| 1 e e 3

|
O¢lastic — 64712

/ M i|*dQ*

+ +

2w ut 4

* For calculating the total cross-section (which is Lorentz Invariant) the result on
the previous page (eq. (4)) is sufficient. However, it is not so useful for calculating
the differential cross section in a rest frame other than the C.o.M:

N 73 IR
do‘ — M ] -dQ*
64725 |ﬁ;i‘|| fl

because the angles in  dQ* = d(cos0*)d@™ refer to the C.0.M frame
* For the last calculation in this section, we need to find a L.I. expression for do

% Start by expressing d€2* in terms of Mandelstam ¢
i.e. the square of the four-momentum transfer

t =q* = (p1—p3)’

e~/ Py e

Product of
Ti four-vectors

1
(/“ - I"l —P3 therefore L.I. ﬁ



« Want to express d€2* in terms of Lorentz Invariant d¢

where 1 = (p; —p3)2 = p%-i—p% —2p1.p3 = m%—{-m% —2p1.p3

¢ In C.o.M. frame: ¥
3
. -, -)'* A

I’T“ = (Elvoaosll)ll) 1 s P3 _
py' = (E3,|p3|sin6%,0,|p3|cos 6%) = = >
{ o =k | | =% * —y

Pipsu = E{E;—|pi||P3|cosO , o P

t = mi+mi—EjE;+2|p}||P;|cos 6

giving  dr =2|p||p3|d(cos 6)

drdo”
therefore  dQ" =d(cos0")d¢™ = — ¢_.*
2|pil1p3l
hence do I, |ﬁ§||Mﬁ|2dQ‘ = | \Mi|*de*dr
642 | 2-647%s[ i

* Finally, integrating over d¢* (assuming no (p* dependence of |Mf,-|2 ) gives:
do 1
dt  647ns|p;|

zll\/lfil2




Lorentz Invariant differential cross section

» All quantities in the expression for do/dr are Lorentz Invariant and

therefore, it applies to any rest frame. It should be noted that |p |
is a constant, fixed by energy/momentum conservation

]
= gols—(m+ m2)?|[s — (my — my)?]

|5

* As an example of how to use the invariant expression do /dt
we will consider elastic scattering in the laboratory frame in the limit
where we can neglect the mass of the incoming particle E; > m;

£ - e.g. electron or neutrino scattering
22
In this limit |52 = (s —m3)
4s
do l

5 |Myil* (m; =0)

dr  167(s —m3)?




2—2 Body Scattering in Lab. Frame

* The other commonly occurring case is scattering from a fixed target in the
Laboratory Frame (e.g. electron-proton scattering)

* First take the case of elastic scattering at high energy where the mass
of the incoming particles can be neglected: m| =m3 =0, mr=myg =M

o (E3,|p3)) 3 €4. 1 e e J
. (Er,[P1]) 2 %/
(Eq, |Pa) > 4 X X

* Wish to express the cross section in terms of scattering angle of the e-
dQ =2nd(cos0)

do do dr I d do Integrating

= = over d¢@
dQ dr dQ 2w d(cosO) dt
* The rest is some rather tedious algebra.... start from four-momenta
p1=(E,0,0,E,), pp=(M,0,0,0), p3=(E3,E3sin0,0,E3¢c080), ps=(E4,ps)

sohere t=(p;—p3)® =—2p1.p3 = —2E E3(1 —cos0)

therefore

But from (E,p) conservation p| + p2 = p3+ P4
and, therefore, can also express t in terms of particles 2 and 4 é



t = (pr—ps)* =2M*—2p>.ps =2M* —2ME,
= 2M?—-2M(E| +M — E3) = —2M(E| — E3)

Note E, is a constant (the energy of the incoming particle) so

dr dE
) § ) it A
d(cos ) d(cos9)
* Equating the two expressions for t gives Ex = Z1M
) M+ E; —E|cos@
2 2 2
dFE; EM " Ez3 \° Ei’
pr— pr— E"M e = -
> d(cos ) (M +E, —E;cos8)? ' (E.M) M
de 1 d& do | _. Ejdoc Ejdc E3 | ,
—_— = = 2M — = — = 2 |Mfi|~
dQ 2md(cos@) dr 2 M dt w dr w 16m(s — M=)
Using s = (p1+p2)? = M2 +2py.py = M* + 2ME, Particle 1 massioss
= (p}=0)

gives (s— M?') — 2ME,

do 1

2
- — = — [ — | Mg Inlimit m; — 0 *
dQ ~ 64n2 (MEI) IMyi | @




In this equation, E; is a function of 0 :

(m| =0)

EM
Ey =
M+ E,—E;cosf
. ldo 1 1 P
Ivin — = M|
IVINI dQ  64r? (M—l—E; —Elcose) IM;i
General form for 2—2 Body Scattering in Lab. Frame

% The calculation of the differential cross section for the case where 11, can not be

neglected is longer and contains no more “physics” (see appendix Il). It gives:

do 1 1 73/*

dQ ~ 642 pymy |p3|(E) +ma) — Es|p)|cos @

| M|

Again there is only one independent variable, 0, which can be seen from

conservation of energy

E\+my = \/|1'53|2 +m3 + \/lﬁl 2+ |p3|> —2|p1|| P3| cos @ + m3

| . Ps = P — D3
l.e. |p3| is a function of @




Summary

% Used a Lorentz invariant formulation of Fermi’s Golden Rule to
derive decay rates and cross-sections in terms of the Lorentz
Invariant Matrix Element (wave-functions normalised to 2E/Volume)

Main Results:

% Particle decay:

Where p* is a function of particle masses

| I
pt = \/[(Iﬂ,2 = (my +m2)?] [m} — (my —my)?]

2m;

r— 7| /|M,,| 4o
3272 m

% Scattering cross section in C.0.M. frame:

1 |p
64m%s |p

’|/|M 2dQ*

* Invariant differential cross section (valid in all frames):

do 1 9 «12 1 2 2
— = — M ¢i|” P = —[s— (my +m2)"|[s — (m) —m3)7]
dt  64ns|pr|? Myl T 4

£



Summary cont.

* Differential cross section in the lab. frame (1,=0)

d_O' — ] E3 2|M ..|2
dQ 6412 \ ME, Ji

-

do

1

dQ ~ 64n2 (M+E|

| 2
M;;|?
—E|c039> IMyi

* Differential cross section in the lab. frame (m,=0)

do ]

1

—_

P3|

M|

dQ ~ 6412 |pmi |ps|(E) +m2) — Es|py|cos B

with E\+mp = \/|ﬁ3|2+lll% 5 \/|ﬁ||2+ |ﬁ3|2 —2|1')'1||['53|0039+m§

Summary of the summary:

* Have now dealt with kinematics of particle decays and cross sections
* The fundamental particle physics is in the matrix element

* The above equations are the basis for all calculations that follow




Appendix | : Lorentz Invariant Flux

=Collinear collision: i S b
Vas Pa Vs Db
F =2Ea2Eb(va+vb) = 4E,E, (lpal + |pb|)
E. Ep

= 4(|PalEp+ |Pb|Ea)

To show this is Lorentz invariant, first consider
Pa-Pb = l’gl’bu = EqEp — Pa-Pb = EaEp + |Pal| Pb|

Gving  F2/16— (plipsu)® = (|PalEs+ |PplEa)* — (Eap +|Pal|Pbl)*
= |Bal*(Ej — 1Ps|*) + E¢(|Ps|* - Ep)

|Bal*m — Egm,

2.2
amp

1/2
F = 4[(pf,‘pbu)2—m‘2,mlz,] @

—m



Appendix Il : general 2—2 Body Scattering in lab frame

. Es, |p- 3
= J
(Ea.,|Pal) >\ 4

Pl =(E|,0,0,|ﬁ1|), p2=(M,0,0,0), p3=(E3,E3Sin9,0,E3COSG), pa = (Es4,Ps)

do do dr 1 d do
dQ dr dQ 2w d(cos®) dr

b

again

But now the invariant quantity ¢

[ = (pz —p4)2 o m% +m§ —2pa2.ps = m% +m§ —2myEy
= m% + mi —2my(E) +my — Ej)
dt dEs
- 27722
d(cos8) d(cos @)

-




Which gives d_O' ~mp dE3 do
dQ 7 d(cos@) dr

To determine dE,/d(cosb), first differentiate |P3 |2 "13
dE3 d|P3|
2F D All.1
3d(cos 9) 2Ip l d(cos8) ( )

Then equate 1 = (p; — p3)?> = (ps — p2)? to give

m? +m3 —2(E\Es — |p1|| P3| cos 0) = m5 +m3 —2my(E) +my — E3)

Differentiate wrt. cos6

dEs . d|p3| e
E - — 9 - —
( 1-J'_mz)dcos@ |p||cos dcos @ |p1||p3|
Using (1)  mmp dE; |p153°

d(cos8)  |ps|(E1 +m2) — E3|pi|cos 6 (All.2)

d_O' ~mp dE3 do  mp dEj3 ]
dQ 7 d(cos®) dr 7 d(cos@) 647s|p;

2
|2 |Mfi|




It is easy to show |pf|\/s = ma|pi|

d_O' _ dE3 m»
dQ  d(cos0) 64x2m3|p; |2
and using (All.2) obtain

M|

do 1 1 73/*

dQ ~ 6472 pym; |p3|(E; +ma) — E3|p)|cos @

| M|




