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Finally, we note that in terms of the wave number k the ground state wave func-
tion is

A0 (k) = 1
π1/4

√
α
e−k2/(2α2) (4.54)

and the uncertainty in the wave number !k is

!k = 1√
2
α (4.55)

so, in terms of x and k, the uncertainty relation is

!x!k =
(

1
√
2α

) (
1

√
2
α

)
(4.56)

=
1
2

(4.57)

4.5 Motion of a Wave Packet

We wish to investigate the fate of a wave packet with increasing time. To do this we
must specify either" (x, 0) or# (p, 0) and find the time-dependent wave functions.
To be definite we will assume that the initial wave functions are Gaussians. Our rea-
soning is that we already know that if the momentumwave function is Gaussian, the
coordinate wave function is also Gaussian. Moreover, the values of the definite inte-
grals involving Gaussian functions are known. Now, let us be clear that because we
are starting with a Gaussian does notmean that we are starting with the ground state
of the harmonic oscillator, an eigenstate (see Problem 22 of Chapter 3). How can
we imagine the creation of such a packet? There is more than one way. Suppose that
we have a bound system, for example a particle subjected to a harmonic oscillator
potential. Suppose further that the particle is not in an eigenstate, but that the wave
function is a Gaussian. This means that the constant α =

√
mω/! is not present

in the exponent in the wave function. If the constant analogous to α is designated
β with the stipulation that β #= α, then the initial Gaussian wave packet cannot be
an eigenfunction of the harmonic oscillator. There is another method of creating an
initial Gaussian wave packet that is not the ground state wave function, in this case
even if the system is initially in the ground state. This will be explained below. Our
initial wave functions can be represented as linear combinations of the eigenstates
of the harmonic oscillator. (Indeed, it can be represented as a linear combination
of the eigenstates of any Hamiltonian provided the potential energy has the same
boundary conditions as the harmonic oscillator potential.)
To create the initial conditions, we imagine a particle that is initially subjected

to a harmonic oscillator potential and at t = 0 is described by a momentum
wave function # (p, 0) and a coordinate wave function " (x, 0) that are Fourier
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transforms of each other. We specify, however, that they are each some form of
Gaussian, but not the ground state of a harmonic oscillator. Physically, we may
imagine the particle is attached to a spring and oscillating, but not in any eigenstate
of the harmonic oscillator Hamiltonian. Thus, our Gaussian wave packet has been
created while under the influence of a harmonic oscillator potential. At t = 0 we
investigate the fate of the packet under three different circumstances.

• Case I. The spring is cut and nothing is done thereafter (it is a free packet/particle).
• Case II. The spring is cut and a constant field is turned on at t = 0.
• Case III. Nothing is done. That is, the packet remains under the influence of the
spring.

In our treatment of these three cases we will tailor our initial Gaussian packet
for computational convenience of the particular case. Before doing this we write the
wave functions in coordinate space and momentum space for a general Gaussian
packet. That is, suppose we imagine a Gaussian wave packet that is displaced from
the origin by an amount x0 and given initial momentum p0. The wave functions are
Fourier transforms of each other and are given by

! (x, 0) =
√

β

π1/4
e−β2(x−x0 )2/2 · eip0x/! (4.58)

and

" (p, 0) = 1
π1/4

√
β!

e−(p−p0)2/2β2!2 · e−i px0/! (4.59)

where we have used the constant β (rather than α as defined in Equation 3.25) to
emphasize that, even though it has the appearance of the ground state eigenfunction
of the harmonic oscillator, the system is not in an eigenstate. It is easily shown that
for these wave packets #x0 = 1/

(√
2β

)
and #p0 = β!/

√
2 (see Problem 6). We

may therefore write Equations 4.58 and 4.59 in terms of the uncertainties #x0 and
#p0:

! (x, 0) = 1
π1/4

(
1

21/4
√

#x0

)
e−(x−x0 )2/4#x20 · eip0x/! (4.60)

" (p, 0) = 1
π1/4

(
1

21/4
√

#p0

)
e−(p−p0)2/4#p20 · e−i px0/! (4.61)

Equations 4.60 and 4.61 illustrate an important property of Fourier transforms
of Gaussian wave packets. Their uncertainties are equal in the sense that they occur
in precisely the same form in each ! (x, 0) and " (p, 0). An alternative way of
saying this is that if (x − x0) and (p − p0) are measured in units of their respective
uncertainties, then the functions have decreased by the same amount. For example,
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if (x − x0) = 2!x , then " (x, 0) has decreased by one e-fold. In order for # (p, 0)
to decrease by one e-fold requires (p − p0) = 2!p.
It is actually more useful to have the absolute squares of" (x, 0) and # (p, 0) in

terms of !x0 and !p0 at our disposal. They are

|" (x, 0)|2 = 1√
2π

(
1

!x0

)
e−(x−x0 )2/2!x20 (4.62)

|# (p, 0)|2 = 1√
2π

(
1

!p0

)
e−(p−p0)2/2!p20 (4.63)

In what follows we will be interested in finding the time dependence of the uncer-
tainties. It is a simple matter to include the time in the last two equations. We have

|" (x, t)|2 = 1
√
2π

(
1

!x (t)

)
e−(x−x0 )2/2[!x(t)]2 (4.64)

|# (p, t)|2 = 1
√
2π

(
1

!p (t)

)
e−(p−p0)2/2[!p(t)]2 (4.65)

4.5.1 Case I. The Free Packet/Particle

We choose to cut the spring at a time such that x0 = 0. The packet will then have
nonzero average momentum p0. The Gaussian packet in momentum space at t = 0
is therefore (see Equation 4.59)

# (p, 0) =
1

π1/4
√

β!
e−(p−p0)2/2β2!2 (4.66)

Let us first ask what we expect. Certainly we expect the packet to propagate in
the direction of p0, +x or −x . We also expect the packet to change shape. The
mathematics will tell us exactly how the packet propagates and how it reshapes
after it is free. On the other hand, being a free particle we expect no change in the
momentum so that the initial spread in momentum !p cannot change in time.
First we will find the wave function in coordinate space " (x, t). Inserting

# (p, 0) = $ (p) in Equation 4.34 we have

" (x, t) = 1√
2π!

1
π1/4

√
β!

∫ ∞

−∞
e−(p−p0)2/(2β2!2)eipx/!e−i p2t/(2m!)dp (4.67)

Now, there is some unpleasant algebra in the exponent, but it is straightforward to
complete the square and integrate. The result is
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! (x, t) =
β1/2

π1/4
1

√
1+ iβ2!t

m

× exp
[

−β2 (x − p0t/m)2

2
(
1+ iβ2!t/m

)
]

× exp
[
i
!
p0

(
x − p0

2m
t
)]

(4.68)

The absolute square of the wave function, the probability density, tells us how the
packet spreads. Squaring Equation 4.68 we obtain

|! (x, t)|2 = 1√
π

β
√
1+ β4!2t2

m2

exp





−β2




(x − p0t/m)2(
1+ β4!2t2

m2

)









(4.69)

or in terms of "x0 = 1/
(√
2β

)

|! (x, t)|2 = 1
√
2π

1

"x0

√

1+ !2t2

4m2"x40

exp





−




(x − p0t/m)2

2"x20

(
1+ !2t2

4m2"x40

)










(4.70)
From Equation 4.69 we see that, because x and t occur in the combination x−vt ,

the probability packet travels with group velocity vg = p0/m = 〈p〉 /m which
corresponds to the classical particle velocity. Moreover, 〈x (t)〉 = (p0/m) t which
corresponds to the particle position. Additionally, the phase factor in Equation 4.68
shows that the phase velocity vp = p0/ (2m).
Comparing Equation 4.69 with Equation 4.64, we see that the uncertainty as a

function of time is given by

"x (t) = "x0

√

1+
( !t
2"x20m

)2
(4.71)

so that, in terms of "x (t), Equation 4.70 may be written more compactly as

|! (x, t)|2 = 1
√
2π

1
"x (t)

exp

{
−

[
(x − p0t/m)2

2"x (t)2

]}
(4.72)

Notice that comparison with Equation 4.64 provides a double check because
"x (t) occurs in both the exponent and the preexponential factor. From Equation 4.71
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it is seen that, in coordinate space, the packet spreads as it moves along. On the
other hand, this is a free particle so !p must be independent of time. This may be
seen quantitatively by examining the appropriate integrals. Because the only time
dependence in the momentum wave function is in the imaginary exponent, the time
will not appear in the integrand of either

〈
p2

〉
or 〈p〉. The time appears in !x because

x and x2 must be changed to their momentum notation, derivatives, which operate
on the time-dependent part of the imaginary exponent. Thus, the uncertainty product
!x!p, while initially its minimum value, grows with time. Figure 4.2 illustrates the
motion in time of the packet.
Another feature of this packet is that the amplitude of the probability density

decreases as indicated by the preexponential factor. This decrease in amplitude is
compensated by the spreading with time of !x (t). The normalization of " (x, t)
is preserved in time as may be seen by evaluating the integral of |" (x, t)|2 (see
Problem 8). Thus, while the Gaussian wave packet propagates and spreads with in-
creasing time, the area under it remains constant. Note that if we imagine the packet
to have originated from cutting the spring when the particle was in an eigenstate of
the harmonic oscillator so that 〈p〉 = 0, the packet would not propagate because
vg = 0. The packet would, however, spread just as described by Equation 4.71
because the momentum does not enter into this result. In other words, the concave
up parabola that is U (x) disintegrates and the Gaussian ground state in coordinate
space would spread symmetrically forever.
The probability density represented in Equation 4.69 may be more revealing if it

is cast in terms of the initial uncertainty in position !x (t = 0) = !x0 = 1/
(√
2β

)
,

which is identical with Equation 4.52 with α → β. Rewriting Equation 4.71 and
letting

t0 =
2m
! !x20 (4.73)

we have

!x (t) = !x0

√

1+ t2

t20
(4.74)

Fig. 4.2 A free Gaussian
wave packet shown at three
different times. Note that the
width of the packet increases
in time, but the area under the
curve remains constant
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We see from Equation 4.74 that !x (t) > !x0 for t > 0. Naturally, we expect this
effect to be evident only at the microscopic level. For a free electron we can assume
the initial uncertainty to be the order of the Compton wavelength !/ (mec) so that

t0 = 2!
mec2

=
2

(
6.58× 10−16eV · s

)

0.51× 106eV
= 2.6× 10−21s (4.75)

Thus, the probability density representing a free electron initially confined to a re-
gion of space comparable with its own Compton wavelength spreads very rapidly.
On the other hand, if it is a macroscopic particle of mass say 10−4kg having di-
ameter 10−3m, appreciable spreading takes more than 1017s, roughly the age of the
universe.

4.5.2 Case II. The Packet/Particle Subjected to a Constant Field

At t = 0 the Gaussian packet is subjected to a constant force ϕ. How could such
a situation arise? If the particle of mass m carries an electrical charge and if it is
in a region of constant electric field, then the force is the product of the charge and
the electric field. It would also occur if a particle oscillating on a hanging spring
were suddenly set free by cutting the spring. After cutting the spring the particle is
subjected to the constant gravitational force.
Without specifying the origin of the force we may write the potential as

U (x) = −ϕx ; − ∞ < x < ∞ (4.76)

To simplify the mathematics we take the Gaussian packet to be one for which the
average momentum and average displacement are zero. In momentum space the
initial packet is described by

" (p, 0) = 1
π1/4

√
β!

e−p2/2β2!2 (4.77)

The TDSE with the potential energy of Equation 4.76 can be solved exactly in co-
ordinate space (see Section 5.5), but for the present purpose it is convenient to write
the TDSE in momentum space. Using Equation 4.38 to replace x → (i!)#/#p in
the TDSE with a linear potential, we have

p2

2m
" (p, t)− i!ϕ

#" (p, t)
#p

= i!#" (p, t)
#t

(4.78)
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This partial differential equation may be solved by making the substitution

! (p, t) = "
(
p′) f (p) where p′ = p − ϕt (4.79)

which leads to a differential equation for the function f (p)

ϕ
d f (p)
dp

=
p2

2m (i!) f (p) (4.80)

the solution to which is

f (p) = exp
(

− i p3

6m!ϕ

)
(4.81)

so that

! (p, t) = " (p − ϕt) exp
(

− i p3

6m!ϕ

)
(4.82)

where " (p − ϕt) is any function of (p − ϕt) (see Problem 12). Initial conditions
fix " (p − ϕt).
To determine the " (p − ϕt) that corresponds to the wave packet in Equation

4.77 we set t = 0 in Equation 4.82 and equate the result to the wave function
representing the initial Gaussian wave packet, Equation 4.77. This permits deter-
mination of " (p) which can immediately be converted to " (p − ϕt) because this
function can contain p and t in only the combination (p − ϕt) (see Problem 13).
We obtain

" (p − ϕt) =
(

1
π1/4

√
β!

)
exp

(
− (p − ϕt)2

2β2!2
+ i (p − ϕt)3

6m!ϕ

)
(4.83)

Substituting Equation 4.83 into Equation 4.82 we obtain the time-dependent wave
function in momentum space for a Gaussian wave packet:

! (p, t) =
(

1
π1/4

√
β!

)
exp

(
− (p − ϕt)2

2β2!2

)
exp

[
i

(
(p − ϕt)3 − p3

6m!ϕ

)]
(4.84)

and the probability density in momentum space is

|! (p, t)|2 =
(

1√
πβ!

)
exp

[

− (p − ϕt)2

β2!2

]

(4.85)
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or in terms of !p0 = β!/
√
2

|" (p, t)|2 =
(

1√
2π!p0

)
exp

[

− (p − ϕt)2

2!p20

]

(4.86)

Comparing Equation 4.85 with Equation 4.65 reveals that

!p (t) = !p0 (4.87)

which contains no time dependence. Thus, as for the free particle Gaussian wave
packet, this packet does not spread in momentum. Why is this? After all, there is
a force applied. The force is, however, constant so all momentum components are
affected equally. The packet moves as a unit in momentum space, but it does not
spread.
It is straightforward to extract the time-dependent expectation values 〈x (t)〉 and

〈p (t)〉 (see Problem 15). We obtain

〈x (t)〉 = ϕt2

2m
and 〈p (t)〉 = ϕt (4.88)

both of which are consistent with the Ehrenfest equations. Note that 〈x (t)〉 has the
familiar t2 dependence of any particle under the influence of a constant force be-
cause, by Newton’s second law, the acceleration is ϕ/m. The expectation value of
the momentum is indeed Newton’s second law because the force is the time rate of
change of the (average) momentum.
Consider now the uncertainty in position !x (t). We already know 〈x (t)〉 so one

method of obtaining !x (t) is to compute
〈
x (t)2

〉
using the momentum space wave

function, Equation 4.84, and replacing x2 in the integral with !2d2/dp2. Alterna-
tively, we could obtain# (x, t) by performing a Fourier transform on themomentum
wave function, squaring, and identifying !x (t) by comparing with Equation 4.64.
The Fourier transform yields

# (x, t) = 1
π1/4

√
β

γ
exp

[
iϕt
!

(
x − ϕt2

6m

)]
· exp

{

−
[
x − ϕt2/ (2m)

]2
(
2γ /β2

)
}

(4.89)

where, defining t0 = m/
(
!β2

)
as in Equation 4.73,

γ = 1+ i t
t0

and t0 = m
!β2

= 2m
!

!x20 (4.90)
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The probability density in coordinate space is then

|! (x, t)|2 = 1
√

π



 1
√

|γ |2 /β2



 exp
{

−
[
x − ϕt2/ (2m)

]2
(
|γ |2 /β2

)
}

(4.91)

Comparing Equation 4.91 with Equation 4.64 we see that

2"x (t)2 =
|γ |2

β2
(4.92)

so that in terms of "x (t) we have

|! (x, t)|2 = 1
√
2π

(
1

"x (t)

)
exp

{
−

[
x − ϕt2/ (2m)

]2

2"x (t)2

}
(4.93)

where, recalling that "x0 = 1/
(√
2β

)

"x (t) = "x0
(
1+ t2

t20

)1/2
(4.94)

which is identical to Equation 4.71, again a consequence of the constant force being
applied.

4.5.3 Case III. The Packet/Particle Subjected to a Harmonic
Oscillator Potential

In this case we assume that we have a Gaussian wave packet that is a linear super-
position of harmonic oscillator eigenstates and that we know the wave function in
coordinate space ! (x, 0). To be specific we choose an initial wave function of the
form

! (x, 0) =
√

α

π1/4
e−α2(x−x0 )2/2 (4.95)

where, in this case, α =
√
mω/!, the same constant that appears in the eigenfunc-

tions of the harmonic oscillator. The inclusion of a nonzero average displacement,
however, assures us that Equation 4.95 is not an eigenfunction of the harmonic
oscillator Hamiltonian. Of course, it may be expanded upon the complete set of
harmonic oscillator eigenfunctions. Despite not being an eigenfunction, Equation
4.95 is nonetheless a Gaussian distribution with average displacement x0 and zero
initial momentum which (classically) is equivalent to pulling the particle to x = x0
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and releasing it with no initial momentum. Such a state is sometimes referred to
as a displaced ground state. In the case studied here, the particle remains under the
influence of the potential energy U (x) = 1

2kx
2.

We wish to find the function ! (x, t) so that we may determine the time depen-
dence of the probability distribution |! (x, t)|2. There is no need to determine the
momentum space wave function so we do not require any Fourier transforms. Using
the superposition theorem we write

! (x, t) =
∞∑

n=1
anψn (x) e−i(En/!)t (4.96)

Of course, it makes sense to choose as our complete set, theψn (x), the harmonic os-
cillator eigenfunctions; the En in the exponents are then the corresponding harmonic
oscillator energy eigenvalues. To complete the task we would have to multiply both
sides by ! (x, 0) and integrate, taking advantage of the orthogonality of the eigen-
functions. In this particular case, however, there is an easier way. It involves using
the generating function for the Hermite polynomials. Although generating functions
may seem intimidating, this exercise will illustrate the friendliness of such functions.
Recall that for the Hermite polynomials the generating function is (see Table 3.2)

e2µξ−µ2 =
∞∑

n=0

Hn (ξ )µn

n!
(4.97)

For simplicity of notation let us temporarily use the scaled distance ξ = αx . The
initial packet is

! (ξ, 0) =
√

α

π1/4
e−(ξ−ξ0)2/2 (4.98)

which, with a prescient eye toward using the generating function we let ξ0 = 2µ so
that

! (ξ, 0) =
√

α

π1/4
exp

[
−ξ2

2
+ 2µξ − 2µ2

]

=
√

α

π1/4
exp

[
−ξ2

2
− µ2 + 2µξ − µ2

]

=
√

α

π1/4
exp

[
−

(
ξ2

2
+ µ2

)]
· exp

(
2µξ − µ2

)
(4.99)

In this form, the last term is recognized as the generating function of the Hermite
polynomials. We may therefore replace it using Equation 4.97:
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! (ξ, 0) =
√

α

π1/4
exp

[
−

(
ξ2

2
+ µ2

)] ∞∑

n=0

Hn (ξ )µn

n!

=
√

α

π1/4
e−µ2

∞∑

n=0

µn

n!

{
e−ξ 2/2Hn (ξ )

}
(4.100)

Notice, however, that the terms in the brackets in Equation 4.100 are precisely the
harmonic oscillator eigenfunctions. Comparing Equation 4.100 with Equation 4.96
we see that we have “accidentally” calculated the expansion coefficients, the an .
To include the time in the wave function we multiply each harmonic oscil-

lator eigenfunction in the summation by an exponential that contains the corre-
sponding energy eigenvalue. Inserting the time dependence into Equation 4.100
we have

! (ξ, t) =
√

α

π1/4
e−µ2

∞∑

n=0

µn

n!

{
e−ξ 2/2Hn (ξ )

}
exp

[
−i

(
n + 1

2

)
ωt

]

=
√

α

π1/4
e−µ2e−iωt/2

∞∑

n=0

µn

n!

{
e−ξ 2/2Hn (ξ )

}
e−inωt (4.101)

Removing e−ξ 2/2 from the summation and regrouping the terms we have

! (ξ, t) =
√

α

π1/4
e−µ2e−iωt/2e−ξ 2/2

∞∑

n=0

[(
µe−iωt)n

n!
Hn (ξ )

]
(4.102)

Incredibly, the summation is the generating function for the Hermite polynomials
with µ → µe−iωt as is easily seen from Equation 4.97. That is,

∞∑

n=0

Hn (ξ )
(
µe−iωt)n

n!
= exp

[
2ξµe−iωt −

(
µe−iωt)2

]
(4.103)

so that, after substituting µ = ξ0/2, Equation 4.102 becomes

! (ξ, t) =
√

α

π1/4
e−iωt/2 exp

[
−

(
ξ2

2
+

ξ20
4

)]
· exp

[
ξ0ξe−iωt −

ξ20
4
e−2iωt

]
(4.104)

Converting to sines and cosines, we have

! (ξ, t) =
√

α

π1/4
e−iωt/2 exp

[
−1
2

(
ξ2 +

ξ20
2
(1+ cos 2ωt)− 2ξ0ξ cosωt

)]

× exp
[
i
2

(
ξ20
2
sin 2ωt − 2ξ0ξ sinωt

)]
(4.105)
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Finally, the time-dependent probability density is

|! (ξ, t)|2 = α
√

π
exp

{
−

[
ξ2 +

ξ20
2
(1+ cos 2ωt)− 2ξ0ξ cosωt

]}

= α√
π
exp

[
− (ξ − ξ0 cosωt)2

]
(4.106)

or, in terms of the coordinate x ,

|! (x, t)|2 =
α

√
π
exp

[
−α2 (x − x0 cosωt)2

]
(4.107)

Equation 4.107 shows that the wave packet oscillates about x = 0 so the expec-
tation value of position as a function of time is (see Problem 18)

〈x (t)〉 = x0 cosωt (4.108)

Comparison with Equation 4.64 shows that the uncertainty in position is

"x (t) = 1
√
2α

= "x0 (4.109)

which is time-independent. The packet oscillates without any change in shape!
(Remember, the harmonic oscillator is special.) This was first pointed out by
Schr‘̀odinger in 1926 and is often referred to as the coherent state, but, in truth, it is
really a coherent state. We will return to this state in a future chapter. The reason
for this special behavior is that the energy levels are equally spaced. There are few
other systems that exhibit such a feature. The behavior is illustrated in Fig. 4.3 at
three different values of the time.
There are some other interesting features of this wave packet. Rewriting! (ξ, 0)

from Equation 4.100 we have

Fig. 4.3 A Gaussian wave
packet under the influence of
a harmonic oscillator
potential shown at three
different times. Note that the
shape of the packet does not
change
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! (ξ, 0) =
√

α

π1/4
e−ξ 20 /4

∞∑

n=0

(ξ0/2)n

n!
e−ξ 2/2Hn (ξ )

=
∞∑

n=0

(
ξn0 e−ξ 20 /4
√
2nn!

) [√
α

2nn!
1

π1/4
e−ξ 2/2Hn (ξ )

]
(4.110)

The form of this last equation isolates the expansion coefficients an in Equation 4.96
because the expression in the square brackets represents the normalized harmonic
oscillator eigenfunctions (see Equation 3.49). Thus,

an =
ξn0 e−ξ 20 /4
√
2nn!

=
αn xn0e−α2x20 /4

√
2nn!

(4.111)

As x0 → 0 it is clear from the form of the initial wave packet that it approaches
the ground state of the harmonic oscillator, a stationary state. It might be said that
the packet oscillates about x = 0 with zero amplitude. Thus, we expect that a0 = 1
and all other expansion coefficients vanish. Note that in Equation 4.111 the limit as
x0 → 0 for n = 0 is indeterminate because zero to the zero power is indeterminate.
On the other hand,

lim
x0→0

an ≡ 0 for all n ≥ 1 (4.112)

so we conclude that, in this case, indeed, the mathematics yield a0 = 1.
In the opposite extreme the correspondence principle tells us that the motion

should emulate that of a classical oscillator. In that case it can be shown that
for large x0 high harmonic oscillator eigenstates make significant contributions.
Moreover, for high n the maximum contribution to the admixture comes from the
state that has the same energy as the classical oscillator having amplitude x0 (see
Problem 19).

4.6 Retrospective

Wave packets provide the crucial link between classical and quantum physics. Un-
derstanding of this concept should not be obscured by the morass of Fourier trans-
forms attendant to the mathematical description of wave packets. While quantum
mechanics permits particles to retain their pointlike properties, the probabilistic
nature of quantum physics manifests itself via constructive and destructive inter-
ference of probability waves that produce localized probability distributions, thus
emulating the characteristics of a classical particle. As we have seen, however, the



Problems 109

price that Mr. Heisenberg exacts from us for having precise knowledge of position
is that we must ante up by relinquishing knowledge of the particle’s momentum.
On the other hand, a pure de Broglie wave is the antithesis of such a particle. Here
we have precise knowledge of the momentum so we must pay by having no idea
of the particle’s position. Such is the life of a quantum mechanic. Mathematically,
Fourier transforms account for the Heisenberg uncertainty principle, but physical
comprehension should trump mathematical quagmires.

Problems

1. Derive the Ehrenfest equation that is the relationship between the expectation
values of the time rate of change of momentum and the force.

2. To see how the superposition of waves can cause the probability density to
cluster, add two waves of differing frequencies and make a plot of their sum as
a function of time at a fixed value of x . For ease of computation use!1 (x, t) =
15x cos t and !2 (x, t) = −3x cos (17t). The trigonometric identity cos A −
cos B = 2 sin

[ 1
2 (A + B)

]
sin

[ 1
2 (B − A)

]
will be helpful.

3. Find ("x)2 =
〈
x2

〉
and ("p)2 =

〈
p2

〉
for the ground state of the harmonic

oscillator to show that, indeed, "x"p ≡ 1
2! for a Gaussian wave function.

4. For the wave functions

! (x, 0) =
√

β

π1/4
e−β2(x−x0 )2/2eip0x/!

and

# (p, 0) = 1
π1/4

√
β!

e−(p−p0)2/2β2!2 · e−i px0/!

show that 〈x〉 = x0 and 〈p〉 = p0. Do the calculations in both coordinate and
momentum space.

5. (a) Show that for φ (p) = 1
π1/4

√
!β

e−(p−p0)2/(2β2!2), 〈p〉 = p0 and
〈
p2

〉
=

β2!2

2
+ p20 so that ("p)

2 =
〈
p2

〉
− 〈p〉2 = β2!2

2
.

(b) Show that both of these average values are independent of time.

6. Show that for the Gaussian wave packet

! (x, 0) =
√

β

π1/4
e−β2(x−x0 )2/2

the uncertainty in position and momentum at t = 0 are "x = 1/
(√
2β

)
and

"p =
(
β!/

√
2
)
.


