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Bohr’s condition (1.2.4). We will not pursue this approach here, because it was
soon made obsolete by the advent of wave mechanics.

In 1916 (in his spare time while discovering the general theory of relativity),
Einstein returned to the theory of black-body radiation,’ this time combining it
with the Bohr idea of quantized atomic energy states. Einstein defined a quantity
A" as the rate at which an atom will spontaneously make a transition from a
state 7 to a state n of lower energy, emitting a photon of energy E,— E,. He
also considered the absorption of photons from radiation (not necessarily black-
body radiation) with an energy density p(v)dv at frequencies between v and
v + dv. The rate at which an individual atom in such a field makes a transition
from a state n to a state m of higher energy is written as B))' 0 (Vum)s where
Vym = (Em — Ey)/ h is the frequency of the absorbed photon. Einstein also took
into account the possibility that the radiation would stimulate the emission of
photons by the atom in transitions from a state m to a state n of lower energy, at
a rate written as B” p(v,,). The coefficients By and By, like A” are assumed to
depend only on the properties of the atoms, not the radiation.

Now, suppose the radiation is black-body radiation at a temperature 7', with
which the atoms are in equilibrium. The energy density of the radiation will
be the function p(v, T), given by Eq. (1.1.5). In equilibrium the rate at which
atoms make a transition m — n from higher to lower energy must equal the rate
at which atoms make the reverse transition n — m:

Nm [A” =+ B”p(l)nma f)] - Nn B;,”p(unms T) ’ (1213)

m m

where N, and N,, are the numbers of atoms in states n and m. According to the
Boltzmann rule of classical statistical mechanics, the number of atoms in a state
of energy E is proportional to exp(—E/kgT), so

Nm/Nn = exp(“"(Em - E.u)/A-BT) = exp (—hunm/kBT) . (]214)

(It is important here to take the N, as the numbers of atoms in individual states
n, some of which may have precisely the same energy, rather than the numbers
of atoms with energies E,.) Putting this together, we have

A == 8l U’B”” ( (/ kgT) B B”) (1.2.15
= ex hemi K . : 2
" c3 exp(hvn/ksT) — 1 P(rvun/KpT) By " )

For this to be possible at all temperatures for temperature-independent A and B
coefficients, these coefficients must be related by

n m n 87-[ /I UJ?HI n
B" =B", Al=|—%"2)B. (1.2.16)

m m . m
ok

Hence, knowing the rate at which a classical light wave of a given energy den-
sity is absorbed or stimulates emission by an atom, we can calculate the rate

7 A. Einstein, Phys. Z. 18, 121 (1917).
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at which it spontaneously emits photons.® This calculation will be presented in
Section 6.5.

1.3 Wave Mechanics

Ever since Maxwell, light had been understood to be a wave of electric and
magnetic fields, but after Einstein and Compton, it became clear that it is also
manifested in a particle, the photon. So is it possible that something like the
electron, that had always been regarded as a particle, could also be manifested
as some sort of wave? This was suggested in 1923 by Louis de Broglie (1892—
1987).! a doctoral student in Paris. Any kind of wave of frequency v and wave
number k has a spacetime dependence exp(ik - x — iwt), where @ = 2mv.
Lorentz invariance requires that (k, @) transform as a four-vector, just like the
momentum four-vector (p, E). For light, according to Einstein, the energy of a
photon is E = hv = hw, and its momentum has a magnitude |p| = E/c =
hv/c = h/) = hlK|, so de Broglie was led to suggest that in general a particle
of any mass is associated with a wave having the four-vector (k, w) equal to 1/h
times the four-vector (p, E):

k= h/l, w=E/h. (1.3.1)

This idea gained support from the fact that a wave satisfying (1.3.1) would
have a group velocity equal to the ordinary velocity c’p/E of a particle of
momentum p and energy E. For a reminder about group velocity, consider a
wave packet in one dimension:

Y(x, 1) = [n’k 2(k) exp (ka - fw(i()r), (13.2)
where g (k) is some smooth function with a peak at an argument ko. Suppose also

that the wave [ dk g(k)exp(ikx) att = 01s peaked at x = 0. By expanding
w (k) around kg, we have

V(x, 1) = exp ( — it{wlke) — kncu’(ko)_]) f dk g(k) exp (ik[x - (u’(k(,_)f]) .
and therefore
W (x, 1)) ~ ‘w([_x — ' (ko)1], ()). , (13.3)

The wave packet that was concentrated at time £ = 0 near x = 0 is evidently
concentrated at time ¢ near x = o' (kg)t, so it moves with speed

8 Einstein actually used this argument, together with some thermodynamic relations. to give a new
derivation of the Planck formula for p(v. T').
I' L. de Broglie, Comptes Rendus 177, 507, 548, 630 (1923).
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and the allowed energies E are those for which there is a single-valued solu-
tion ¥ (X;. ...Xy), vanishing when any |x,| goes to infinity, of the Schrédinger
equation

N

EY(x,...xx) =Y

=1

—h2

2m,

VZE VX, ... xN) | ¥, ...xn) - (1.3.10)

So now it was possible at least in principle to calculate the spectrum not only of
hydrogen, but of any other atom, and indeed of any non-relativistic system with
a known potential.

1.4 Matrix Mechanics

A few years after de Broglie introduced the idea of wave mechanics, and
a little before Schrodinger developed his version of the theory, a quite dif-
ferent approach to quantum mechanics was developed by Werner Heisenberg
(1901-1976). Heisenberg suffered from hay fever, so in 1925 he escaped the
pollen-laden air of Géttingen to go on vacation to the grassless North Sea island
of Helgoland. While on vacation he wrestled with the mystery surrounding the
quantum conditions of Bohr and de Broglie. When he returned to the University
of Gottingen he had a new approach to the quantum conditions, which has come
to be called matrix mechanics.'

Heisenberg’s starting point was the philosophical judgment, that a physical
theory should not concern itself with things like electron orbits in atoms that
can never be observed. This is a risky assumption, but in this case it served
Heisenberg well. He fastened on the energies £, of atomic states, and the rates
A" at which atoms spontaneously make radiative transitions from one state m
to another state n, as the observables on which to base a physical theory. In
classical electrodynamics, a particle with charge +e with a position vector X
that undergoes a simple harmonic oscillation emits a radiation power

P =K. (L4.1)

Heisenberg guessed that this formula gives the power emitted in a radiative tran-
sition from an atomic state with energy E,, to one with a lower energy F,, with
x replaced with

X = [X]lrrfl X exp(”'iwmnf) 5 (142)

where [x],,, is a complex vector amplitude characterizing this transition, and
w,,, is the circular frequency (the frequency times 2m) of the radiation emitted
in the transition:

I W. Heisenberg, Z. f. Physik 33, 879 (1925).
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Wpm — (Em - ﬁn)/h (143)
Then Eq. (1.4.1) becomes a formula for the radiation power emitted in the
transition m — n:

4e*w? 2
P(HI —>n) = ""‘""""‘"—"[X]nm

2
(1.4.4)

3¢3

That is, the rate of emitting photons carrying energy hw,,, in the transition m —

n is, in Einstein’s notation,

y 23 7
Pim—n) 4wy, 2

AH —

m

[.xlnm (]45)

Tt 3:3h
and, according to the Einstein relations (1.2.16), this gives the coefficients of
P (V) 1n the rates for induced emission and absorption

-

2 e?

By =B, = ET

In Egs. (1.4.5) and (1.4.6), [x],., appears only with £, > E,, but Heisenberg
extended the definition of [x],,, to the case where E, > E,,, by the condition

(1.4.6)

IX]HJ‘H

[.x]nm = [XJT;,,, .6 BXP(’.wmn“) ) (1.4.7)

so that Eq. (1.4.6) holds whether £,, > £, or £, > £,,.
Heisenberg limited his calculations to the example of an anharmonic oscil-
lator in one dimension, for which the energy is given classically in terms of
position and its rate of change by
R
Me .n M@y 5  MeA 4
2 4 0,2 i

9 2 3

L -

(1.4.8)

To calculate the E, and [x],,,, Heisenberg used two relations. The first is a
quantum mechanical interpretation of Eq. (1.4.8):
i -
W . .5 ey Wik = [ E, n=m

_[X-jnm -+ [vr_]nm + __[\ ]nm = 0 n 7& m

1.4.9
2 2 3 ( )

where E, is the energy of the quantum state labeled n. But what meaning should
. o) # . u e

be attached to [,\‘3],,,,,, [x=]sm, and [x‘%],,,,,? Heisenberg found that the “simplest

and most natural assumption™ was to take

Plom =} Bl 6l 1o = 3 L2 W0t (3 (1.4.10)
/ 1.k
and likewise
[-%Q]nm = Z[J{’]nk [-i-lkm = Z wnkwmk[f\.]uk [-V ]km . (141 1)
k k

Note that because [x],,, is proportional to exp(i (FE,, — E,)/h) for all n and m,
each term in Eq. (1.4.9) is time-independent for n = m. Also, by virtue of the
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condition (1.4.7), the first two terms are positive for n = m though the last may
not be.

The second relation is a quantum condition. Here Heisenberg adopted a for-
mula that had been published a little earlier by W. Kuhn? and W. Thomas®, which
Kuhn derived using a model of an electron in a bound state as an ensemble of
oscillators vibrating in three dimensions at frequencies v, . From the condition
that at very high frequency the scattering of light from such an electron should be
the same as if the electron were a free particle, Kuhn derived the purely classical
statement” that, for any given state n:

TL’C’:
Y By (Ew— En)=— (1.4.12)
m,

m

Combining this with Eq. (1.4.6) gives

h= Z_I;EE Z ’[x]nm

m

O - (1.4.13)

By

Since in three dimensions there are three terms in ’[x],,,,,} , the factor 1/3 gives

the average of these three terms, so in one dimension we would have

h=2m, Y i[x],,,”’zw,m, . (14.14)

m

This is the quantum condition used by Heisenberg.

Heisenberg was able to find an exact solution® of Egs. (1.4.9) and (1.4.14) for
the case A = 0: For any integer n > 0,

Ep=|# —Irl hw B = [x] = ¢! (”—+l)—h 1.4.15)

“n = 7 W, Xlpetn = Xnnt1 = € .o . (LadS

with [x],m vanishing unless n—m = £1. We will see how to derive these results
for A = 0in Section 2.5. Heisenberg was also able to calculate the corresponding
results for small non-zero A, to first order in A.

This was all very obscure. On his return from Helgoland, Heisenberg showed
his work to Max Born (1882-1970). Born recognized that the formulas in
Eq. (1.4.10) were just special cases of a well-known mathematical procedure,

W. Kuhn, Z. Phys. 33, 408 (1925).

W. Thomas, Naturwiss. 13, 627 (1925).

Kuhn actually gave this condition only where 2 is the ground state, the state of lowest energy, but the
argument applies to any state. Where 5 is not the ground state, the terms in the sum over m are positive
if m has higher energy than n, but negative if nr has lower energy.

Somewhat inconsistently, Heisenberg took the time-dependence factor in [x ]y to be cos(wy 1) rather
than exp(—iwy,t). The results here apply to the case where (x]um o exp(—i@pm!): [X]ym is the term
in Heisenberg's solution proportional to exp(—iwnmt).

R A R TR
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known as matrix multiplication. A matrix denoted [A],, or just A is a square
array of numbers (real or complex), with [A],,, the number in the nth row and
mth column. In general, for any two matrices [A],,, and [B],,,, the matrix AB
is the square array

[ABlun = D _[Alul Bl - (14.16)
!
We also note for further use that the sum of two matrices is defined so that
[A g B,]nm = [A]n.‘u + [B]nm ’ (1 417)
and the product of a matrix and a numerical factor is defined as
[IA'A]HHI = )\' [A]Hl” - (14'18)

Matrix multiplication is thus associative [A(BC) = (AB)C] and distributive
[A(A]B] +A’_)Bg) = A.]AB[ ‘I—KQABQ and (}\.13; ‘*AgB])A = )\.| B|A +)\.281A]
but in general it is not commutative [AB and B A are not necessarily equal]. As
defined by Eq. (1.4.10), [x?] is the square of the matrix [x], [x?] is the cube of
the matrix [x], and so on.

The quantum condition (1.4.14) can also be given a pretty formulation as a
matrix equation. Note that according to Eq. (1.4.7), the matrix for momentum is

[])L”if = "?ll’[":‘]”iﬁ = _ii”(’wﬂl”[’ri”lﬂ k]

so the matrix products [ px] and [xp] have the diagonal components

[Px],m = Z[p]nm [x]mn - _‘;”15' Z Wpm ‘ [-x]mn

m mn

i ) . —
I.-rp]nn = Z[I,]mn[[?]mn = —inm, L Winn

m m

’

[‘r ]HHI 1 -

(In both formulas, we have used the relation (1.4.7), which says that [x],,, is

what is called an Hermitian matrix.) Since w,,, = —wj,,, the quantum condition
(1.4.14) can be written in two ways
ih==2[pxlu, = +2[xplun - (1.4.19)

Of course, the relation can then also be written
ih= (xplan — [pX]an = [xp — pf\']mz ) (1.4.20)

where we have used the definitions (1.4.17) and (1.4.18).

Shortly after the publication of Heisenberg’s paper, there appeared two papers
that extended Eq. (1.4.20) to a general formula for all elements of the matrix
XxXp — px:

xp—px=ihxl, (1.4.21)
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where here 1 is the matrix

I n=m

[l]nm = 6”’” = { 0 n # m

That is, in addition to Eq. (1.4.20), we have [xp — px)um = 0forn # m. Born
and his assistant Pascual Jordan® (1902-1984) gave a mathematically fallacious
derivation of this fact, on the basis of the Hamiltonian equations of motion.
Paul Dirac? (1902—-1984) simply assumed Eq. (1.4.21), from an analogy with
the Poisson brackets of classical mechanics, described in Section 9.4.

Matrix mechanics was now a general scheme for calculating the spectrum of
any system described classically by a Hamiltonian H (g, p), given as a func-
tion of a number of coordinates ¢, and the corresponding “momenta” p,. One
looks for some representation of the gs and ps as matrices satisfying the matrix
equation

(1.4.22)

qrPs — Psqdr = ihd,; x I, (]423)
and such that the matrix H (g, p) is diagonal
[H(Qe p)]nm — En(smn . (1424)

The diagonal elements E, are the energies of the system, and the matrix ele-
ments [x],,, can be used with Eqgs. (1.4.5) and (1.4.6) to calculate the rates for
spontaneous and stimulated emission and absorption of radiation.

Unfortunately, there are very few physical systems for which this sort of
calculation is practicable. One is the harmonic oscillator, already solved by
Heisenberg. Another is the hydrogen atom, whose spectrum was obtained using
matrix mechanics in a display of mathematical brilliance by Wolfgang Pauli®
(1900-1958), a student of Sommerfeld. (Pauli’s calculation is presented in Sec-
tion 4.8.) These two problems were soluble because of special features of the
Hamiltonians. the same features that make the classical orbits of particles closed
curves. It was hopeless to use matrix mechanics to solve more complicated prob-
lems, like the hydrogen molecule, so wave mechanics largely superseded matrix
mechanics among the tools of theoretical physics.

But it must not be thought that wave mechanics and matrix mechanics are
different physical theories. In 1926, Schrédinger showed how the principles
of matrix mechanics can be derived from those of wave mechanics.” To see
how this works, note first that the Hamiltonian is what is called an Hermitian
operator, meaning that for any functions f and g that satisfy the conditions

6 P Jordan, Z. f. Physik 34, 858 (1925).

7 P A. M. Dirac, Proc. Roy. Soc. Lond. A 109, 642 (19206).
8 W. Pauli, Z. Physik 36, 336 (1926).

9 E. Schrisdinger, Ann. d. Physik 79, 734 (1926).

TR ATy
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of single-valuedness and vanishing at infinity imposed on wave functions,
we have

ff*(Hg) :f(_H.f')*g. (1.4.25)

the integrals being taken over all coordinates. This is trivial for the term V' in
Eq. (1.3.7), and it is also true for the Laplacian operator, as can be seen by
integrating the identity
b) . ) s T
(Vf)y'g—fr(Vig)=V-I[(V))'¢— Vel

It follows that for solutions ,, of the Schrodinger equation with energy £, we
have

Enfkl’:,% :fv/,z(HT/fn) Z‘/(fllj)',”.)*w” = E:;/I/I:,T/fn- (]426)

Taking m = n, we see that E, is real, and then taking m # n, we see that
f Yiy, = 0for E, # E,. It can be shown that if there is more than one
solution of the Schridinger equation with the same energy, the solutions can
always be chosen so that [ 4%y, = 0 for n # m. (This is shown in footnote
3 of Section 3.1 in cases where there are a finite number of solutions of the
Schridinger equation with a given energy.) By multiplying the v, with suitable
factors we can also arrange that [ V1, = 1, so the v, are orthonormal, in the
sense that

f VoWn = 8pm - (1.4.27)

Now consider any operators A, B, etc., defined by their action on wave func-
tions. For instance, for a single particle, the momentum operator P and position
operators X are defined by

[Py ](x) = —ihV i (x), (XY ](x) = Xy (X) . (1.4.28)
For any such operator, we define a matrix

[A]nm E[vf,TlAI/flﬁr] . (1429)

Note as a consequence of Eq. (1.3.6), this has the time-dependence (1.4.7)
assumed by Heisenberg

[A]nm 0.6 CXP ( = i(Em - ﬁ‘n){/h’) .

With the definition (1.4.29), we can show that the matrix of a product of
operators is the product of the matrices:

f¢fT[A[Bw1n I] = Z[A]HJ[B]MJ . (1.4.30)
/
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To prove this, we assume that the function B, can be written as an expansion
in the wave functions:

me = Z b.(m)y, .

with some coefficients b, (). (To make this literally true, it may be necessary
to put the system in a box, like that used in Section 1.1, so that the solutions
of the Schrédinger equation form a discrete set, including those correspond-
ing to unbound electrons.) We can find these coefficients by multiplying both
sides of the expansion with ¥ and integrating over all coordinates, using the
orthonormality property (1.4.27):

[Blin = f WJ*le/m] = Zbr(’”)&‘! == byt

It follows that

Bllf”, = ZlB]lrrrUf[ . (]43])
!

Repeating the same reasoning, we have
T ;
AlBYm) =Y [BlinlAlats - (1.4.32)
l.s
Multiplying with v, integrating over all coordinates, and again using the
orthonormality property (1.4.27) then gives Eq. (1.4.30).

We can now derive the Heisenberg quantization conditions. First, note that
the matrix [ H ], 18 simply

[_H']mu == -/ W:IHWu:] = Em [ W,lefm = E,”(S,,,,, (1433)

which is the same as Eq. (1.4.24). Next, we can verify the condition (1.4.14) in
the generalized form (1.4.21). Note that

d 0 ;
Z() =Y Fx—y :
0x 0x
so the operators P and X defined by (1.4.28) satisfy
[P[xu/]} — il + [X[Pw]] .
Applying the general formula (1.4.30), we have then
[-’fP - p-".]mn = inénm ) (1434)

which is the same as (1.4.21). The same argument can evidently be applied to
give the more general condition (1.4.23).

R
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1.5 Probabilistic Interpretation

The approach that will be adopted when we come to the general princi-
ples of quantum mechanics in Chapter 3 will be neither matrix mechanics nor
wave mechanics, but a more abstract formulation, that Dirac called transforma-
tion theory,'® from which matrix mechanics and wave mechanics can both be
derived.

Although we will not be going into quantum electrodynamics until Chap-
ter 11, 1 should mention here that in 1926 Born, Heisenberg, and Jordan''
applied the ideas of matrix mechanics to the electromagnetic field. They showed
that the free field in a cubical box with edges of length L can be written as a
sum of terms with wave numbers given by (1.1.1), that is, q, = 27n/L with n
a vector with integer components, each term described by a harmonic oscillator
Hamiltonian H, = [4> + w2a2]/2 (with a, replacing /mX) where wp = ¢|qn|.
The energy of this field in which the nth oscillator is in the N th excited state is
the sum of the harmonic oscillator energies (1.4.15)

1
E e Z [Nﬂ + 5} e, . (1.4.35)

Such a state is interpreted as one containing A, photons of wave number
qn = 27n/L, thus justifying the Einstein assumption that light comes in quanta
with energy hv = hw. (The additional “zero-point” energy > fuw,/2 is the
energy of quantum fluctuations in the vacuum, which has no effect, except on
the gravitational field. This is one contribution to the “dark energy,” that is cur-
rently a major concern of physicists and astronomers.) In 1927 Dirac'? was able
to use this quantum theory of radiation to give a completely quantum mechan-
ical derivation of the formula (1.4.5) for the rate of spontaneous emission of
photons, without having to rely on analogies with classical radiation theory. This
derivation is presented and generalized in Section 11.7.

1.5 Probabilistic Interpretation

At first, Schrédinger and others thought that wave functions represent particles
that are spread out, like pressure disturbances in a fluid — most of the particle
is where the wave function is large. This interpretation became untenable with
the analysis of scattering in quantum mechanics by Max Born' (1882-1970).

10 p A. M. Dirac, Proc. Roy. Soc. Lond. A 113, 621 (1927). This approach is the basis of Dirac’s treatise,
The Principles of Quantum Mechanics, 4th edn. (rev.) (Oxford University Press, 1976).

' M, Born, W. Heisenberg, and P. Jordan, Z. f. Physik 35, 557 (1926). They ignored the polarization
of light, and treated the problem in one dimension, rather than as in the three-dimensional version
described here.

12 P A. M. Dirac, Proc. Roy. Soc. Lond. A 114, 710 (1927).

' M. Born, Z. f. Physik 37, 863 (1926); 38, 803 (1926).



