1	Anthropogenic Aerosols Significantly Reduce
2	Mesoscale Convective System Occurrences and Precipitation
3	over Southern China in April
4	
5	Lijuan Zhang ¹ , Tzung-May Fu ^{2,3,*} , Heng Tian ¹ , Yaping Ma ¹ ,
6	Jen-ping Chen ^{4,5} , Tzu-Chin Tsai ⁴ , I-Chun Tsai ⁶ , Zhiyong Meng ¹ , Xin Yang ^{2,3}
7	
8 9	¹ Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, China
10 11	² School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
12 13	³ Shenzhen Institute of Sustainable Development, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
14	⁴ Department of Atmospheric Sciences, National Taiwan University, Taiwan
15 16	⁵ International Degree Program in Climate Change and Sustainable Development, National Taiwan University, Taiwan
17	⁶ Research Center for Environmental Changes, Academia Sinica, Taiwan
18	
19	* Corresponding author: Tzung-May Fu (fuzm@sustech.edu.cn)
20	
21	Key Points:
22 23	• Anthropogenic aerosols inhibit mesoscale convective systems and reduce convective precipitation over Southern China in April
24 25 26	• Aerosols directly scatter solar radiation and indirectly exert Twomey effect on warm clouds to stabilize regional atmosphere

27 Abstract

28 Precipitation over Southern China in April, largely associated with mesoscale 29 convective systems (MCSs), has declined significantly in recent decades. It is unclear 30 how this decline in precipitation may be related to the concurrent increase of 31 anthropogenic aerosols over this region. Here, using observation analyses and model 32 simulations, we showed that increased levels of anthropogenic aerosols can 33 significantly reduce MCS occurrences by 21% to 32% over Southern China in April, 34 leading to less rainfall. Half of this MCS occurrence reduction was due to the direct 35 radiative scattering of aerosols and the indirect enhancement of non-MCS liquid cloud 36 reflectance by aerosols, which stabilized the regional atmosphere. The other half of the 37 MCS occurrence reduction was due to the microphysical and dynamical responses of 38 the MCS to aerosols. Our results demonstrated the complex effects of aerosols on MCSs 39 via impacts on both the convective systems and on the regional atmosphere.

40 Plain Language Summary

Rainfall over Southern China for the month of April has decreased significantly between the late 1970s and the late 2000s, concurrent with increasing anthropogenic aerosol pollution in this region. Through model simulations, we found that higher levels of aerosols and the resulting increase in liquid cloud reflectance both enhanced the scattering of sunlight, cooled the surface, and stabilized the lower atmosphere. As a

- 46 result, the occurrences of strong, well-organized convective systems were suppressed,
- 47 leading to decreased rainfall over Southern China in April.

48 **1 Introduction**

49 Atmospheric aerosols affect cloud systems and precipitation in complex ways 50 [Stevens and Feingold, 2009; IPCC, 2013; Fan et al., 2016; Li et al., 2019]. Aerosols 51 may scatter and/or absorb radiation to exert direct radiative forcing to the atmosphere 52 and the surface, perturbing atmospheric stability [Hansen et al., 1997]. Aerosols may also serve as cloud condensation nuclei (CNN) and ice nuclei (IN) and change the 53 54 microphysical composition of clouds. One well-understood effect is that the ingestion 55 of additional aerosols in warm (i.e., liquid) clouds could increase cloud droplet number, 56 which enhance cloud reflectance and radiatively cool the surface - referred to as the 57 "Twomey effect" [Twomey, 1977]. In addition, aerosol-induced microphysical changes 58 may alter the subsequent microphysical, thermodynamic, and dynamic processes in 59 clouds and their interactions with the ambient atmosphere, leading to diverse responses 60 in the evolution of clouds and precipitation [Albrecht, 1989; Rosenfeld, 1999]. For 61 example, observations of individual deep convective clouds (DCCs) polluted by aerosols often reported higher cloud tops, greater cloud cover, and invigorated 62 63 convections [Andreae et al., 2004; Rosenfeld et al., 2008; Li et al., 2011; Niu and Li, 64 2012; Chen et al., 2016]. These observed responses to aerosols have been attributed to 65 the release of latent heat at higher altitudes [Rosenfeld et al., 2008] or the slowed dissipation of the anvil of DCCs [Fan et al., 2013]. Subsequent processes in individual 66 67 DCCs can lead to either enhancement or suppression of convective rainfall in response

to aerosols [e.g., *Khain et al.*, 2005; *Tao et al.*, 2007; *Lebo and Morrison*, 2014; *Fan et al.*, 2018].

70 The impacts of aerosols on mesoscale convective systems (MCSs) are poorly 71 understood [Fan et al., 2016]. MCSs are highly organized convective systems 72 extending more than 100 km in at least one direction, including regions of both 73 convective and stratiform precipitation and are often responsible for heavy precipitation 74 [Houze, 2004]. Studies have found that the responses of individual MCSs to aerosols 75 differ by the type of MCSs, by the stages of the MCSs within their life cycles, and may be non-monotonic to aerosol abundance [e.g., Khain et al., 2005; Tao et al., 2007; Li et 76 77 al., 2009; Lebo and Morrison, 2014; Kawecki et al., 2016; Chakraborty et al., 2018; 78 Clavner et al., 2018; Fan et al., 2018], but there is currently no holistic theory to explain 79 these diverse responses [e.g., Stevens and Feingold, 2009; Tao et al., 2012; Fan et al., 80 2016]. An important reason for the diverse responses of MCSs to aerosols is likely 81 related to the variety of environments and synoptic-scale weather systems in which 82 MCSs are embedded [Houze et al., 2015]. Previous studies mostly focused on the 83 impacts of aerosols on individual MCSs. Much less is known about how aerosols perturb the interactions between the MCS and its ambient atmosphere to ultimately 84 85 affect the climatology of MCSs.

86 Over Southern China, precipitation in late spring (April and May), prior to the onset
87 of East Asian Summer Monsoon, has decreased significantly between the late 1970s

88	and the 2000s [Yang and Lau, 2004; Liu et al., 2005; Xin et al., 2006; Qiu et al., 2009;
89	Gemmer et al., 2011; Zhu et al., 2014; Day et al., 2018; Li et al., 2018; You and Jia,
90	2018], in contrast to the better-known positive trends of summer and annual
91	precipitation over this region [e.g., Zhai et al., 2005; Ding et al., 2007]. Several studies
92	have tentatively linked the decreasing springtime precipitation over Southern China to
93	interdecadal climate variability [Yang and Lau, 2004; Xin et al., 2006; Qiu et al., 2009;
94	Zhu et al., 2014; You and Jia, 2018]. However, concurrent with the decline in
95	springtime precipitation, Chinese anthropogenic emission of aerosols and their
96	precursors have approximately doubled between the late 1970s and the late 2000s
97	[Lamarque et al., 2010], and surface aerosol extinction coefficients over Southern
98	China have significantly increased [J. Li et al., 2016]. Given that approximately 90%
99	of the total rainfall over Southern China in late spring is attributable to MCSs [Luo et
100	al., 2013], it is possible that the responses of MCSs to increasing aerosols may have
101	contributed to the decline of late-spring precipitation. A few modeling studies have
102	investigated the impacts of aerosols to late-spring precipitation over Southern China
103	[Kim et al., 2007; Liu et al., 2011; Hu and Liu, 2013; Jiang et al., 2015], but these
104	previous studies used coarse-resolution climate models that were unable to explicitly
105	characterize the impacts of aerosols to MCSs.

In this study, we used observations and simulations to explore the impacts of aerosols on both the MCSs and the environment from whence MCSs occur. We focused on the month of April (the beginning of the raining season in Southern China) to

highlight the impacts on MCSs while avoiding confounding signals from the East Asian
Summer Monsoon and the Meiyu fronts, both on-setting in May [*Luo et al.*, 2013; *Day et al.*, 2018].

112 2 Observed changes in April precipitation over Southern China during the 113 recent decades

114 We first examined the changes in rainfall and rainfall intensities over Southern 115 China for the month of April during recent decades. Figure 1a shows that April 116 precipitation over Southern China during the more polluted period of 2001-2011 has decreased relative to that during the cleaner period of 1979-1989 according to the 117 118 Global Precipitation Climatology Project (GPCP) dataset [Adler et al., 2003], consistent 119 with the findings of previous observational analyses [e.g., Li et al., 2018; You and Jia, 120 2018]. Figure 1b shows the time series of April precipitation over Southern China 121 between 1979 and 2015 from the GPCP dataset. There is a general negative trend in precipitation (-16.8 \pm 3.0 mm decade⁻¹, p-value = 0.017) during this period despite the 122 123 large interannual variability. The mean April precipitation during the more polluted 124 periods of 2001-2011 was 128.3 ± 10.1 mm, significantly lower (p-value = 0.004) than 125 the 170.4±10.5 mm during the cleaner period of 1979-1989. A similar reduction was also found from the surface rain gauge data (Figure S1). Measurements at 59 surface 126 127 stations (Figure 1c) showed that the decline in precipitation during the polluted period 128 relative to the clean period was due to decreased strong rainfall. Interestingly, Figure

129	1b showed that the decline of April precipitation over Southern China was evident
130	during the 1980s and 2000s but not so during the 1990s. J. Li et al. [2016] analyzed
131	surface visibility observations and found that the surface aerosol extinction coefficients
132	over Southern China increased sharply during the 1980s and 2000s but declined slightly
133	during the 1990s. These observations are qualitative consistent with our hypothesis that
134	increased levels of aerosols may have affected springtime MCS activities over Southern
135	China, leading to reduced precipitation. We investigated with model simulations below.

136 3 Simulated impacts of anthropogenic aerosols on rainfall and MCSs over 137 Southern China in April

138 We used the Weather Research and Forecasting model coupled to Chemistry (WRF-Chem) [Grell et al., 2005] to simulate April precipitation over Southern China 139 140 for the years 2009 and 2010. Our model setup is described in the supporting information. 141 Briefly, radiative scattering/absorption by aerosol and clouds were explicitly calculated using aerosol and cloud optical thicknesses [Chou and Suarez, 1994]. Cloud 142 143 microphysics were simulated using a two-moment bulk scheme [Morrison et al., 2005, 144 2009], while CCN-activation was simulated using the κ-Köhler theory [Petters and 145 Kreidenweis, 2007]. Fan et al. [2012, 2015] previously showed that, when coupled to prognostic CCN-activation, the Morrison two-moment scheme was able to simulate the 146 147 RADAR reflectivity of deep convections, and its simulated sensitivity of hydrometers to aerosols was similar to that simulated by a spectral bin microphysics scheme. The 148

149	default IN-activation scheme in WRF-Chem was dependent solely on temperature but
150	not on aerosols. We modified the IN scheme to include dependency on particle number
151	[DeMott et al., 2010] but found that this modification had little impact on our main
152	conclusions (Figure S3).

153 We conducted pairs of sensitivity simulations by including and excluding Chinese 154 emissions of anthropogenic aerosols and precursors to represent polluted and clean conditions, respectively. We simulated the years 2009 and 2010 to qualify the 155 156 interannual variability while also avoiding the potential confounding influences of the sharp reduction in Chinese anthropogenic emissions since 2013 [e.g., Li et al., 2017; 157 158 Zheng et al., 2018]. We verified that the polluted simulations reproduced the observed 159 regional climatological features of rainfall and aerosols over Southern China (Text S1 160 and Figure S4).

161 We found that the accumulated April precipitation over Southern China in the 162 polluted simulations were 16% and 8% lower than those in the clean simulations for 163 2009 and 2010, respectively (Figure S5). In addition, the PDFs of rainfall intensity showed less heavy rain in the polluted simulations relative to the clean simulations 164 165 (Figure 2a). These model results were qualitatively consistent with the observed decreases in April rainfall over Southern China during the past decades as the region 166 167 became more polluted (Figure 1). We found that more than 70% (for 2009) and 90% (for 2010) of the April precipitation reduction between the polluted and clean 168

simulations occurred within the convective areas (defined as maximum RADAR
reflectivity in the vertical column ≥35 dBZ, Figure S6).

171 We next examined the impacts of aerosol pollution on MCS activities over 172 Southern China in April. We developed an automated algorithm to objectively detect 173 the occurrences and spatial extents of MCSs in our simulations based on the definition 174 of MCSs [Parker and Johnson, 2000]. We defined the occurrence of an MCS as the presence of a strictly contiguous surface area satisfying the following criteria: (1) all 175 176 surface grids within the area has RADAR reflectivity ≥ 40 dBZ somewhere in the vertical column of air above it; (2) some model grids within that contiguous area have 177 \geq 45 dBZ RADAR reflectivity; (3) the contiguous area extends \geq 100 km in at least 178 179 one horizontal direction (4) but extends ≤ 250 km in all horizontal directions.

180 Figure 2b shows the total number-hours of MCS occurrences in our simulations for 181 April 2009 and April 2010, parsed from hourly model outputs using our automated algorithm. For April 2009, the total number-hours of MCS occurrences decreased from 182 183 689 hours under clean conditions to 471 hours under polluted conditions (-32%). Similarly, the total number-hours of MCS occurrences decreased from 962 hours under 184 185 clean conditions to 756 hours under polluted conditions in April 2010 (-21%). This reduction in MCS occurrences in polluted simulations relative to clean simulations was 186 187 not affected by changes in the thresholds used in the automated algorithm (Text S2). We further found that the reduced number-hours of MCSs under polluted conditions 188

189	was not due to a shortening of individual MCS lifetime (Figure S7a), or a reduction in
190	the horizontal extent of individual MCSs (Figure S7b), nor a reduction of rainfall
191	intensity from individual MCSs (Figure S7c). In addition, the simulated reduction in
192	total monthly precipitation over Southern China under polluted conditions was mainly
193	driven by reduction in the monthly MCS rainfall (Figure S8). In fact, there was a slight
194	increase in the monthly non-MCS rainfall under polluted conditions (Figure S8). We
195	thus concluded that higher concentrations of anthropogenic aerosols suppressed the
196	number of MCSs that occurred, leading to less total rainfall and weaker rainfall intensity
197	over Southern China in April. Sensitivity experiments showed that the use of aerosol
198	number-dependent IN-activation did slightly impact the simulated rainfall intensity, but
199	it did not affect our main finding that higher levels of aerosols suppressed MCS
200	occurrences (Figure S3).

201 We also examined the impacts of aerosols on the simulated structure of individual 202 MCSs. The results were consistent with previous observations and model studies: for each individual MCS that occurred, increased aerosols led to a stronger and deeper 203 204 convective core [e.g., Rosenfeld et al., 2008; Lee et al., 2016; Guo et al., 2016]. Figure 205 3 shows the composite normalized contoured frequency of RADAR reflectivity as a 206 function of altitude [Yuter and Houze, 1995; Text S3] for all simulated MCSs for April 207 2009 under polluted and clean conditions, as well as the difference between the two 208 conditions. The MCSs simulated under polluted conditions had stronger convective 209 cores (RADAR reflectivity ≥ 40 dBZ) that also developed to higher altitudes. Below

210	1 km, the RADAR reflectivity under the MCSs shifted slightly toward smaller values
211	under polluted conditions due to an 8.7% radius-reduction of raindrops, which likely
212	evaporated more quickly. Overall, the RADAR reflectivity of MCSs under polluted
213	conditions was invigorated at midlevel and shifted toward lower values near the surface
214	(Figure 3c), consistent with observations [Guo et al., 2018]. However, the rainfall
215	reaching the surface from individual MCSs was not significantly different in the
216	polluted and clean simulations (Figure S7c).

217 4 Mechanisms by which aerosol suppresses MCS occurrences

218 We analyzed the impacts of aerosols on the simulated radiative and thermodynamic 219 conditions over Southern China (Tables 1 and S2) to diagnose the mechanism by which 220 aerosol suppresses MCS occurrences. Over land areas in Southern China in April 2009, 221 the simulated air temperature and downward shortwave flux at surface under polluted conditions were 0.5 °C cooler and 24 W m⁻² lower than those under clean conditions, 222 respectively (Table 1). The simulated domain-average convective available potential 223 224 energy (CAPE) under polluted conditions was 17% lower than that under clean 225 conditions. Similar simulated changes were found for April 2010 (Table S2). These findings suggested that anthropogenic aerosols may suppress MCS occurrence in part 226 by cooling the surface air and increasing regional atmospheric stability. 227

228 We found that in the polluted simulations, the domain-average aerosol optical

229	depth (AOD) were 0.34 and 0.39 over Southern China for 2009 and 2010 (Tables 1 and
230	S2), respectively, which was ten and six times higher than those in the clean simulations,
231	respectively. The ingestion of additional anthropogenic aerosols by warm clouds led to
232	the domain-average liquid cloud droplet numbers in the polluted simulations to be
233	approximately four times the values in the clean simulations (Table S3). The cloud
234	liquid water content below 750 hPa in the polluted simulations were 38% higher than
235	that in the clean simulations (Table S3). As a result, the domain-averaged liquid cloud
236	optical thicknesses (LCOT) in the lower troposphere in the polluted simulations were
237	approximately twice of the values in the clean simulations for April 2009 and 2010
238	(Tables 1 and S2). In other words, under polluted conditions, more aerosols were
239	activated into more numerous liquid cloud droplets and the cloud liquid water contents
240	were larger (Table S3), both contributing to larger LCOT. This is the "Twomey effect"
241	of aerosols on warm clouds. We found that the warm cloud coverage over Southern
242	China in April was extensive (46% over our simulated domain) and was mainly
243	associated with the frontal systems in which the MCSs were embedded. Only 0.4% - 0.6%
244	of the warm cloud coverage was directly associated with the MCSs themselves, based
245	on the delineation of MCSs (Section 3). Thus, the Twomey effect of aerosols was
246	mainly manifested by the non-MCS warm clouds. It thus appeared that either the direct
247	radiative effect or the Twomey effect of aerosols, or the combination of these two
248	effects, may be effectively cooling the surface and increasing regional atmospheric
249	stability.

Confidential manuscript submitted to Geophysical Research Letters

250	We designed further sensitivity simulations to elucidate the mechanisms by which
251	aerosols suppress MCS occurrences over Southern China. First, we turned off the direct
252	radiative forcings of aerosols while keeping all other model configurations the same as
253	those in the polluted simulations for April 2009 and April 2010 ("Polluted_NoADE"
254	simulations). We found that, by turning off the direct radiative forcing of aerosols, the
255	number-hour of MCS increased (from 471 to 538 for April 2009 and from 756 to 776
256	for April 2010, Figure 2b), the accumulated rainfall increased (Figure S5), and the
257	rainfall intensities shifted toward heavier rainfall (Figure 2a), relative to the base
258	polluted case. However, the changes were not enough to explain the large differences
259	between the clean and polluted simulations.

260 Secondly, we repeated the polluted simulations for April 2009 and April 2010 but decreased the LCOT values by 50% in the radiation calculation only 261 ("Polluted 0.5LCOT" simulations). In these simulations, the number-hour of MCS 262 263 activities (increased from 471 to 584 for April 2009 and from 756 to 804 for April 2010, Figure 2b), the accumulated rainfall (Figure S5), and the rainfall intensity (Figure 2a) 264 265 all increased significantly relative to the base polluted case, and they were both closer 266 to the values in the clean simulations than those in the "Polluted NoADE" simulations. This suggested that the Twomey effect of aerosols, which mostly involved the non-267 MCS warm clouds, played a stronger role than the aerosol direct radiative effect in 268 269 suppressing MCS occurrences over Southern China in April.

270	Finally, we conducted simulations where the direct radiative forcing of aerosols
271	was turned off and the LCOT used in radiative calculations were halved
272	("Polluted_0.5LCOT_NoADE" simulations). This was equivalent to shutting off both
273	the direct radiative forcing and the Twomey effect of aerosols on warm clouds. The
274	simulated MCS activities increased significantly relative to the base polluted simulation
275	(from 471 to 574 for April 2009 and from 756 to 851 for April 2010, Figure 2b). The
276	accumulated rainfall and rainfall intensity both increased (Figures S5 and 2a).
277	Combined, the direct effect and Twomey effect of aerosols acting on ambient
278	atmosphere accounted for approximately half of the total MCS occurrence suppression
279	due to anthropogenic aerosols (Figure 2b).

280 Tables 1 and S2 diagnosed the simulated thermodynamic variables in the 281 sensitivity simulations over Southern China land areas for April 2009 and 2010. 282 Relative to the base polluted simulations, if the direct radiative forcing and the Twomey 283 effect of aerosols on warm clouds were turned off, either individually or combined, the simulated thermodynamic conditions would become more conducive to MCS 284 285 occurrences. The direct and Twomey effects of aerosols enhanced atmospheric stability 286 and reduced CAPE by cooling surface air. Although individual MCSs polluted by 287 anthropogenic aerosols showed stronger convective cores (Section 3 and Figure 3), the overall numbers of MCSs were reduced under polluted conditions relative to clean 288 289 conditions. As a result, for the entire Southern China, the domain-average cloud top 290 temperature was higher (i.e., lower average cloud top height) and the updraft velocity

Confidential manuscript submitted to Geophysical Research Letters

were lower under polluted conditions, indicating less convective activities in the region
overall. Furthermore, the simulated moisture convergence in the boundary layer and the
precipitable water over Southern China were also reduced under polluted conditions,
suggesting a possible feedback between regional convection and large-scale moisture
convergence [*Li et al.*, 2018].

Our result also indicated that, in addition to the direct and Twomey effects of aerosols, subsequent aerosol-induced microphysical, thermodynamic, and dynamic changes of MCS and the ambient atmosphere led to the other half of the MCS suppression by aerosols (differences between the blue and green bars in Figure 2b).

300 **5 Conclusions**

301 Based on our observational analyses and model simulations, we constructed a 302 conceptual model (Figure 4) to elucidate the impacts of aerosols on MCS occurrences and precipitation over Southern China in April. Under clean conditions (Figure 4a), 303 304 MCSs embedded in frontal systems are triggered by the unstable surface atmosphere and dynamic conditions [Luo et al., 2013]. Under polluted conditions (Figure 4b), 305 306 increased concentrations of aerosols enhance direct radiative scattering. The ingestion of more aerosols in non-MCS warm clouds also lead to higher warm cloud reflectance 307 308 via the Twomey effect. Both of these effects stabilize the atmosphere and suppress MCS occurrences. Subsequent microphysical, thermodynamic, and dynamic adjustment lead 309

to further reduction in MCS occurrences. Meanwhile, the precipitation from and the lifetimes and sizes of individual MCS that did occur were not significantly altered by aerosols. The reduced MCS occurrences under polluted conditions result in less accumulated precipitation and weaker rainfall intensity. This suppression of aerosols on MCS occurrences contributed to the observed declining late spring precipitation over Southern China in recent decades, although the interdecadal variability of climate likely also played a role.

317 MCSs over Southern China in April are mostly associated with frontal systems [Luo et al., 2013; Day et al., 2018] with extensive warm cloud coverages. Hence there 318 319 is great leverage for the Twomey effect of aerosols on warm clouds to stabilize the 320 regional atmosphere. MCSs associated with other synoptic weather systems, such as 321 the summertime MCSs triggered by local instability [Ding and Chan, 2005] or 322 convergence preceding landfalling tropical cyclones [Meng and Zhang, 2012], may be 323 accompanied by less warm clouds, with less leverage for Twomey effect. This may explain why previous studies on summertime MCSs and rainfall over Southern China 324 325 generally found increased precipitation under polluted conditions relative to clean 326 conditions [e.g., Z. Li et al., 2016; Guo et al., 2017].

327 Our results indicate that the impacts of aerosols on the thermodynamic 328 environment from whence the MCS develop, can be important pathways by which 329 aerosols affect MCSs. Moreover, the traditional view of separating the aerosol-cloud

330	interactions for warm and convective clouds does not work, as adjustments happen not
331	only in each cloud system in isolation, but also between different cloud systems via
332	interactions with the regional atmosphere, as shown here. Future model studies should
333	simulate synoptic-scale spatial domains and for longer periods to elucidate the full
334	impacts of aerosols on MCSs and the associated precipitation.

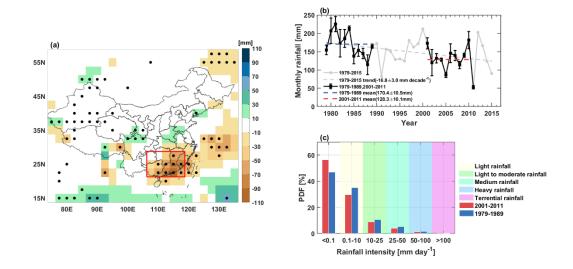
335 Acknowledgements

336	This study was funded by the National Natural Science Foundation of China
337	(41461164007, 41975158). The surface rain gauge data
338	(https://gis.ncdc.noaa.gov/maps/ncei) and the GPCP dataset (version 2.3,
339	https://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html) are freely available from
340	the National Oceanic and Atmospheric Administration (NOAA). The NCEP FNL
341	Operational Global Analysis data is freely available from the National Center for
342	Atmospheric Research (https://rda.ucar.edu/datasets/). Anthropogenic emissions of
343	aerosols and precursors for China (http://www.meicmodel.org) and for the rest of Asia
344	(https://espo.nasa.gov/intex-b) are available online and from the developers. Our WRF-
345	Chem model metadata and outputs are archived at
346	https://opendata.pku.edu.cn/dataverse/atmoschem/.

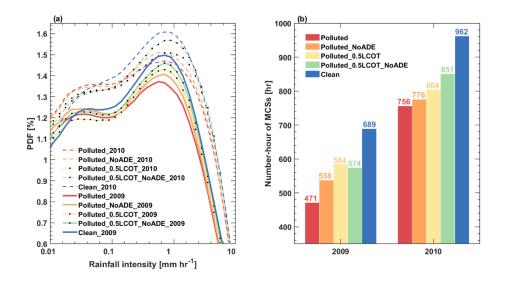
347 **References**

348 Ackermann, I. J., H. Hass, M. Memmesheimer, A. Ebel, F. S. Binkowski, and U. 349 Shankar (1998), Modal aerosol dynamics model for Europe: Development and 350 first applications, Atmos. Environ., 32(17), 2981-2999, doi:10.1016/s1352-351 2310(98)00006-5. 352 Adler, R. F., et al. (2003), The version-2 global precipitation climatology project 353 (GPCP) monthly precipitation analysis (1979-present), J. Hydrometeorol., 354 4(6), 1147-1167, doi:10.1175/1525-7541(2003)004<1147:tvgpcp>2.0.co;2 355 Albrecht, B. A. (1989), Aerosols, Cloud Microphysics, and Fractional Cloudiness, 356 Science, 245(4923), 1227-1230, doi:10.1126/science.245.4923.1227.

357	Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and
358	M. A. F. Silva-Dias (2004), Smoking rain clouds over the Amazon, <i>Science</i> ,
359	303(5662), 1337-1342, doi:10.1126/science.1092779.
360	 Chakraborty, S., R. Fu, D. Rosenfeld, and S. T. Massie (2018), The Influence of
361	Aerosols and Meteorological Conditions on the Total Rain Volume of the
362	Mesoscale Convective Systems Over Tropical Continents, <i>Geophys. Res. Lett.</i> ,
363	45(23), 13099-13106, doi:10.1029/2018gl080371.
364	Chen, T., J. Guo, Z. Li, C. Zhao, H. Liu, M. Cribb, F. Wang, and J. He (2016), A
365	CloudSat Perspective on the Cloud Climatology and Its Association with
366	Aerosol Perturbations in the Vertical over Eastern China, J. Atmos. Sci., 73(9),
367	3599-3616, doi:10.1175/jas-d-15-0309.1.
368	Chou, MD., and M. J. Suarez (1994), An Efficient Thermal Infrared Radiation
369	Parameterization for Use in General Circulation Models, NASA Technical
370	Memorandum No. 104606, Vol.3, 85p.
371	https://archive.org/details/nasa_techdoc_19950009331.
372 373 374 375	Clavner, M., W. R. Cotton, S. C. van den Heever, S. M. Saleeby, and J. R. Pierce (2018), The response of a simulated mesoscale convective system to increased aerosol pollution: Part I: Precipitation intensity, distribution, and efficiency, <i>Atmos. Res.</i> , <i>199</i> , 193-208, doi:10.1016/j.atmosres.2017.08.010.
376	Day, J. A., I. Fung, and W. Liu (2018), Changing character of rainfall in eastern
377	China, 1951-2007, Proc. Natl. Acad. Sci. USA, 115(9), 2016-2021,
378	doi:10.1073/pnas.1715386115.
379	DeMott, P. J., A. J. Prenni, X. Liu, S. M. Kreidenweis, M. D. Petters, C. H. Twohy,
380	M. S. Richardson, T. Eidhammer, and D. C. Rogers (2010), Predicting global
381	atmospheric ice nuclei distributions and their impacts on climate, <i>Proc. Natl.</i>
382	<i>Acad. Sci. USA</i> , 107(25), 11217-11222, doi:10.1073/pnas.0910818107.
383 384	Ding, Y., and J. C. L. Chan (2005), The East Asian summer monsoon: an overview, <i>Meteorol. Atmos. Phys.</i> , 89(1-4), 117-142, doi:10.1007/s00703-005-0125-z.
385	Ding, Y., G. Ren, Z. Zhao, Y. Xu, Y. Luo, Q. Li, and J. Zhang (2007), Detection,
386	causes and projection of climate change over China: An overview of recent
387	progress, <i>Adv. Atmos. Sci.</i> , 24(6), 954-971, doi:10.1007/s00376-007-0954-4.
388	Emmons, L. K., et al. (2010), Description and evaluation of the Model for Ozone and
389	Related chemical Tracers, version 4 (MOZART-4), <i>Geosci. Model Dev.</i> , <i>3</i> (1),
390	43-67, doi:10.5194/gmd-3-43-2010.
391 392 393 394	Fan, J., L. R. Leung, Z. Q. Li, H. Morrison, H. B. Chen, Y. Q. Zhou, Y. Qian, and Y. Wang (2012), Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics, <i>J. Geophys. Res. Atmos.</i> , 117, 21, doi:10.1029/2011jd016537.
395	Fan, J., L. R. Leung, D. Rosenfeld, Q. Chen, Z. Li, J. Zhang, and H. Yan (2013),
396	Microphysical effects determine macrophysical response for aerosol impacts


397 398	on deep convective clouds, <i>Proc. Natl. Acad. Sci. USA</i> , <i>110</i> (48), 4581-4590, doi:10.1073/pnas.1316830110.
399400401402403	Fan, J., Y. Liu, K. Xu, K. North, S. Collis, X. Dong, G. Zhang, Q. Chen, P. Kollias, and S. J. Ghan (2015), Improving representation of convective transport for scale-aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics, J. Geophys. Res. Atmos., 120(8), 3485-3509, doi:10.1002/2014jd022142.
404	Fan, J., Y. Wang, D. Rosenfeld, and X. Liu (2016), Review of Aerosol-Cloud
405	Interactions: Mechanisms, Significance, and Challenges, J. Atmos. Sci.,
406	73(11), 4221-4252, doi:10.1175/jas-d-16-0037.1.
407 408 409	Fan, J., et al. (2018), Substantial convection and precipitation enhancements by ultrafine aerosol particles, <i>Science</i> , <i>359</i> (6374), 411-418, doi:10.1126/science.aan8461.
410	Gemmer, M., T. Fischer, T. Jiang, B. Su, and L. L. Liu (2011), Trends in Precipitation
411	Extremes in the Zhujiang River Basin, South China, J. Clim., 24(3), 750-761,
412	doi:10.1175/2010jcli3717.1.
413	Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock,
414	and B. Eder (2005), Fully coupled "online" chemistry within the WRF model,
415	<i>Atmos. Environ.</i> , 39(37), 6957-6975, doi:10.1016/j.atmosenv.2005.04.027.
416	Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron (2006),
417	Estimates of global terrestrial isoprene emissions using MEGAN (Model of
418	Emissions of Gases and Aerosols from Nature), <i>Atmos. Chem. Phys.</i> , <i>6</i> , 3181-
419	3210, doi:10.5194/acp-6-3181-2006.
420 421 422 423	 Guo, J., M. J. Deng, S. S. Lee, F. Wang, Z. Q. Li, P. M. Zhai, H. Liu, W. T. Lv, W. Yao, and X. W. Li (2016), Delaying precipitation and lightning by air pollution over the Pearl River Delta. Part I: Observational analyses, <i>J. Geophys. Res. Atmos.</i>, 121(11), 6472-6488, doi:10.1002/2015jd023257.
424	 Guo, J., T. Su, Z. Li, Y. Miao, J. Li, H. Liu, H. Xu, M. Cribb, and P. Zhai (2017),
425	Declining frequency of summertime local-scale precipitation over eastern
426	China from 1970 to 2010 and its potential link to aerosols, <i>Geophys. Res. Lett.</i> ,
427	44(11), 5700-5708, doi:10.1002/2017gl073533.
428	Guo, J., et al. (2018), Aerosol-induced changes in the vertical structure of
429	precipitation: a perspective of TRMM precipitation radar, <i>Atmos. Chem. Phys.</i> ,
430	18(18), 13329-13343, doi:10.5194/acp-18-13329-2018.
431	Hansen, J., M. Sato, and R. Ruedy (1997), Radiative forcing and climate response, J.
432	Geophys. Res. Atmos., 102(D6), 6831-6864, doi:10.1029/96jd03436.
433 434	Houze, R. A. (2004), Mesoscale convective systems, <i>Rev. Geophys.</i> , 42(4), RG4003, doi:10.1029/2004rg000150.
435 436	Houze, R. A., Jr., K. L. Rasmussen, M. D. Zuluaga, and S. R. Brodzik (2015), The variable nature of convection in the tropics and subtropics: A legacy of 16

437 438	years of the Tropical Rainfall Measuring Mission satellite, <i>Rev. Geophys.</i> , 53(3), 994-1021, doi:10.1002/2015rg000488.
439	Hu, N., and X. Liu (2013), Modeling Study of the Effect of Anthropogenic Aerosols
440	on Late Spring Drought in South China, <i>Acta. Meteorol. Sin.</i> , 27(5), 701-715,
441	doi:10.1007/s13351-013-0506-z.
442	Huang, X. F., C. Wang, J. F. Peng, L. Y. He, L. M. Cao, Q. Zhu, J. Cui, Z. J. Wu, and
443	M. Hu (2017), Characterization of particle number size distribution and new
444	particle formation in Southern China, <i>J. Environ. Sci.</i> , <i>51</i> , 342-351,
445	doi:10.1016/j.jes.2016.05.039.
446	Intergovernmental Panel on Climate Change (IPCC) (2013), <i>Climate Change 2013:</i>
447	<i>The Physical Science Basis. Contribution of Working Group I to the Fifth</i>
448	<i>Assessment Report of the Intergovernmental Panel on Climate Change</i> , edited
449	by T. F. Stocker et al., pp. 1535, Cambridge Univ. Press, Cambridge, U. K.,
450	and New York.
451	Jiang, Y., XQ. Yang, and X. Liu (2015), Seasonality in anthropogenic aerosol
452	effects on East Asian climate simulated with CAM5, J. Geophys. Res. Atmos.,
453	120(20), 10837-10861, doi:10.1002/2015jd023451.
454	Kawecki, S., G. M. Henebry, and A. L. Steiner (2016), Effects of Urban Plume
455	Aerosols on a Mesoscale Convective System, <i>J. Atmos. Sci.</i> , 73(12), 4641-
456	4660, doi:10.1175/jas-d-16-0084.1.
457	Khain, A., D. Rosenfeld, and A. Pokrovsky (2005), Aerosol impact on the dynamics
458	and microphysics of deep convective clouds, Q. J. R. Meteorol. Soc.,
459	131(611), 2639-2663, doi:10.1256/qj.04.62.
460	Kim, MK., W. K. M. Lau, KM. Kim, and WS. Lee (2007), A GCM study of
461	effects of radiative forcing of sulfate aerosol on large scale circulation and
462	rainfall in East Asia during boreal spring, <i>Geophys. Res. Lett.</i> , 34(24), L24701,
463	doi:10.1029/2007gl031683.
464	Lai, S. C., Y. Zhao, A. J. Ding, Y. Y. Zhang, T. L. Song, J. Y. Zheng, K. F. Ho, S. C.
465	Lee, and L. J. Zhong (2016), Characterization of PM2.5 and the major
466	chemical components during a 1-year campaign in rural Guangzhou, Southern
467	China, <i>Atmos. Res.</i> , 167, 208-215, doi:10.1016/j.atmosres.2015.08.007.
468	Lamarque, J. F., et al. (2010), Historical (1850-2000) gridded anthropogenic and
469	biomass burning emissions of reactive gases and aerosols: methodology and
470	application, <i>Atmos. Chem. Phys.</i> , 10(15), 7017-7039, doi:10.5194/acp-10-
471	7017-2010.
472	Lebo, Z. J., and H. Morrison (2014), Dynamical Effects of Aerosol Perturbations on
473	Simulated Idealized Squall Lines, <i>Mon. Weather Rev.</i> , 142(3), 991-1009,
474	doi:10.1175/mwr-d-13-00156.1.


475	Lee, S. S., J. P. Guo, and Z. Q. Li (2016), Delaying precipitation by air pollution over
476	the Pearl River Delta: 2. Model simulations, <i>J. Geophys. Res. Atmos.</i> , 121(19),
477	11739-11760, doi:10.1002/2015jd024362.
478	Li, C., et al. (2017), India Is Overtaking China as the World's Largest Emitter of
479	Anthropogenic Sulfur Dioxide, <i>Sci. Rep.</i> , 7, 7, doi:10.1038/s41598-017-
480	14639-8.
481 482 483	Li, G., Y. Wang, KH. Lee, Y. Diao, and R. Zhang (2009), Impacts of aerosols on the development and precipitation of a mesoscale squall line, <i>J. Geophys. Res. Atmos.</i> , <i>114</i> , 209-214, doi:10.1029/2008jd011581.
484	Li, J., C. C. Li, C. S. Zhao, and T. N. Su (2016), Changes in surface aerosol extinction
485	trends over China during 1980-2013 inferred from quality-controlled visibility
486	data, <i>Geophys. Res. Lett.</i> , 43(16), 8713-8719, doi:10.1002/2016gl070201.
487	Li, P., T. Zhou, and X. Chen (2018), Water vapor transport for spring persistent rains
488	over southeastern China based on five reanalysis datasets, <i>Clim. Dyn.</i> , 51(11-
489	12), 4243-4257, doi:10.1007/s00382-017-3680-3.
490	Li, Z., F. Niu, J. W. Fan, Y. G. Liu, D. Rosenfeld, and Y. N. Ding (2011), Long-term
491	impacts of aerosols on the vertical development of clouds and precipitation,
492	<i>Nature Geosci.</i> , 4(12), 888-894, doi:10.1038/ngeo1313.
493 494	Li, Z., et al. (2016), Aerosol and monsoon climate interactions over Asia, <i>Rev. Geophys.</i> , <i>54</i> (4), 866-929, doi:10.1002/2015rg000500.
495	Li, Z., et al. (2019), East Asian Study of Tropospheric Aerosols and their Impact on
496	Regional Clouds, Precipitation, and Climate (EAST-AIR(CPC)), <i>J. Geophys.</i>
497	<i>Res. Atmos.</i> , <i>124</i> (23), 13026-13054, doi:10.1029/2019jd030758.
498	Liu, B. H., M. Xu, M. Henderson, and Y. Qi (2005), Observed trends of precipitation
499	amount, frequency, and intensity in China, 1960-2000, J. Geophys. Res.
500	Atmos., 110(D8), D08103, doi:10.1029/2004jd004864.
501	Liu, F., Q. Zhang, D. Tong, B. Zheng, M. Li, H. Huo, and K. B. He (2015), High-
502	resolution inventory of technologies, activities, and emissions of coal-fired
503	power plants in China from 1990 to 2010, <i>Atmos. Chem. Phys.</i> , 15(23), 13299-
504	13317, doi:10.5194/acp-15-13299-2015.
505	Liu, X., X. Xie, ZY. Yin, C. Liu, and A. Gettelman (2011), A modeling study of the
506	effects of aerosols on clouds and precipitation over East Asia, <i>Theor. Appl.</i>
507	<i>Clim.</i> , 106(3-4), 343-354, doi:10.1007/s00704-011-0436-6.
508	Luo, Y., H. Wang, R. Zhang, W. Qian, and Z. Luo (2013), Comparison of Rainfall
509	Characteristics and Convective Properties of Monsoon Precipitation Systems
510	over South China and the Yangtze and Huai River Basin, J. Clim., 26(1), 110-
511	132, doi:10.1175/jcli-d-12-00100.1.
512	Meng, Z., and Y. Zhang (2012), On the Squall Lines Preceding Landfalling Tropical
513	Cyclones in China, <i>Mon. Weather Rev.</i> , 140(2), 445-470, doi:10.1175/mwr-d-
514	10-05080.1.

515 516 517	Morrison, H., J. A. Curry, and V. I. Khvorostyanov (2005), A new double-moment microphysics parameterization for application in cloud and climate models.Part I: Description, J. Atmos. Sci., 62(6), 1665-1677, doi:10.1175/jas3446.1.
518	Morrison, H., G. Thompson, and V. Tatarskii (2009), Impact of Cloud Microphysics
519	on the Development of Trailing Stratiform Precipitation in a Simulated Squall
520	Line: Comparison of One- and Two-Moment Schemes, <i>Mon. Weather Rev.</i> ,
521	<i>137</i> (3), 991-1007, doi:10.1175/2008mwr2556.1.
522	Niu, F., and Z. Li (2012), Systematic variations of cloud top temperature and
523	precipitation rate with aerosols over the global tropics, <i>Atmos. Chem. Phys.</i> ,
524	12(18), 8491-8498, doi:10.5194/acp-12-8491-2012.
525	Parker, M. D., and R. H. Johnson (2000), Organizational modes of midlatitude
526	mesoscale convective systems, <i>Mon. Weather Rev.</i> , 128(10), 3413-3436,
527	doi:10.1175/1520-0493(2001)129<3413:omommc>2.0.co;2.
528	Petters, M. D., and S. M. Kreidenweis (2007), A single parameter representation of
529	hygroscopic growth and cloud condensation nucleus activity, <i>Atmos. Chem.</i>
530	<i>Phys.</i> , 7(8), 1961-1971, doi:10.5194/acp-7-1961-2007.
531	Qiu, Y., W. Cai, X. Guo, and A. Pan (2009), Dynamics of Late Spring Rainfall
532	Reduction in Recent Decades over Southeastern China, J. Clim., 22(8), 2240-
533	2247, doi:10.1175/2008jcli2809.1.
534 535 536	Rosenfeld, D. (1999), TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall, <i>Geophys. Res. Lett.</i> , <i>26</i> (20), 3105-3108, doi:10.1029/1999gl006066.
537 538 539	Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O'Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae (2008), Flood or drought: How do aerosols affect precipitation?, <i>Science</i> , <i>321</i> (5894), 1309-1313, doi:10.1126/science.1160606.
540	Schell, B., I. J. Ackermann, H. Hass, F. S. Binkowski, and A. Ebel (2001), Modeling
541	the formation of secondary organic aerosol within a comprehensive air quality
542	model system, <i>J. Geophys. Res. Atmos.</i> , 106(D22), 28275-28293,
543	doi:10.1029/2001jd000384.
544	Stevens, B., and G. Feingold (2009), Untangling aerosol effects on clouds and
545	precipitation in a buffered system, <i>Nature</i> , 461(7264), 607-613,
546	doi:10.1038/nature08281.
547	Tao, J., L. M. Zhang, K. F. Ho, R. J. Zhang, Z. J. Lin, Z. S. Zhang, M. Lin, J. J. Cao,
548	S. X. Liu, and G. H. Wang (2014), Impact of PM _{2.5} chemical compositions on
549	aerosol light scattering in Guangzhou - the largest megacity in South China,
550	<i>Atmos. Res.</i> , 135, 48-58, doi:10.1016/j.atmosres.2013.08.015.
551	Tao, WK., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson (2007), Role of
552	atmospheric aerosol concentration on deep convective precipitation: Cloud-
553	resolving model simulations, J. Geophys. Res. Atmos., 112(D24), D24S18,
554	doi:10.1029/2007jd008728.

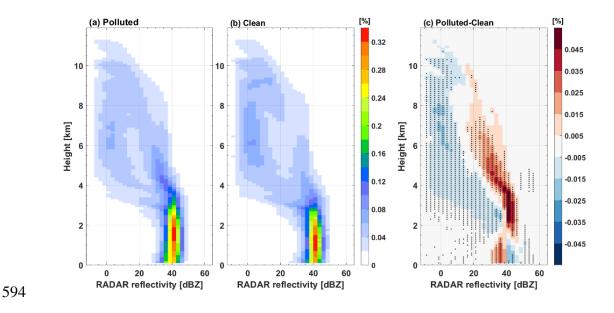

555	Tao, WK., JP. Chen, Z. Li, C. Wang, and C. Zhang (2012), Impact of Aerosols on
556	Convective Clouds and Precipitation, <i>Rev. Geophys.</i> , 50, RG2001,
557	doi:10.1029/2011rg000369.
558	Twomey, S. (1977), The Influece of Pollution on Shortwave Albedo of Clouds, J.
559	Atmos. Sci., 34(7), 1149-1152, doi:10.1175/1520-
560	0469(1977)034<1149:tiopot>2.0.co;2.
561	Wiedinmyer, C., S. K. Akagi, R. J. Yokelson, L. K. Emmons, J. A. Al-Saadi, J. J.
562	Orlando, and A. J. Soja (2011), The Fire INventory from NCAR (FINN): a
563	high resolution global model to estimate the emissions from open burning,
564	<i>Geosci. Model Dev.</i> , 4(3), 625-641, doi:10.5194/gmd-4-625-2011.
565 566	Xin, X., R. Yu, T. Zhou, and B. Wang (2006), Drought in late spring of South China in recent decades, <i>J. Clim.</i> , <i>19</i> (13), 3197-3206, doi:10.1175/jcli3794.1.
567	Yang, F. L., and K. M. Lau (2004), Trend and variability of China precipitation in
568	spring and summer: Linkage to sea-surface temperatures, <i>Int. J. Climatol.</i> ,
569	24(13), 1625-1644, doi:10.1002/joc.1094.
570	You, Y., and X. Jia (2018), Interannual Variations and Prediction of Spring
571	Precipitation over China, J. Clim., 31(2), 655-670, doi:10.1175/jcli-d-17-
572	0233.1.
573	 Yuter, S. E., and R. A. Houze (1995), Three-Dimensional Kinematic and
574	Microphysical Evolution of Florida Cumulonimbus. Part II: Frequency
575	Distributions of Vertical Velocity, Reflectivity, and Differential Refectivity,
576	<i>Mon. Weather Rev.</i> , 123(7), 1941-1963, doi:10.1175/1520-
577	0493(1995)123<1941:tdkame>2.0.co;2.
578	Zhai, P. M., X. B. Zhang, H. Wan, and X. H. Pan (2005), Trends in total precipitation
579	and frequency of daily precipitation extremes over China, <i>J. Clim.</i> , <i>18</i> (7),
580	1096-1108, doi:10.1175/jcli-3318.1.
581	Zhang, Q., et al. (2009), Asian emissions in 2006 for the NASA INTEX-B mission,
582	<i>Atmos. Chem. Phys.</i> , 9(14), 5131-5153, doi:10.5194/acp-9-5131-2009.
583 584 585	Zheng, B., et al. (2018), Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, <i>Atmos. Chem. Phys.</i> , <i>18</i> (19), 14095-14111, doi:10.5194/acp-18-14095-2018.
586 587 588 589	Zhu, Z., T. Li, and J. He (2014), Out-of-Phase Relationship between Boreal Spring and Summer Decadal Rainfall Changes in Southern China, J. Clim., 27(3), 1083-1099, doi:10.1175/jcli-d-13-00180.1.


Figure 1. (a) Observed difference in April precipitation over China between the more polluted period of 2001-2011 versus the cleaner period of 1979-1989. Stilted grids indicate significant differences at the 90% confidence level. (b) Time series of April precipitation (grey solid line) over Southern China (red box in Figure 1a) between 1979 and 2015 and its linear trend (grey dashed line with the slope shown inset). The black line highlights the mean April precipitation during 1979 to 1989 and 2001 to 2011; the blue and red dashed lines indicate the mean during those periods, respectively. (c) Probability distribution of April daily rainfall intensity over Southern China during 1979 to 1989 (blue) and 2001 to 2011 (red) from surface gauge measurements. The categories of rainfall intensities, as defined by the Chinese Meteorological Administration, are shown in colors.

Figure 2. (a) Probability distribution functions of modelled rainfall intensity in the sensitivity simulations. Results from simulations for 2009 and 2010 are shown in solid and dashed lines, respectively. (b) The total number-hours of MCSs over Southern China in April parsed from the hourly model outputs of the sensitivity simulations. Color codes for the sensitivity simulations are shown inset.

Figure 3. Composite of the normalized contoured frequency of RADAR reflectivity as a function of altitude for all simulated MCSs under (a) polluted conditions and (b) clean conditions in April 2009, respectively. Also shown is (c) the difference between (a) and (b). Stilted grids indicate significant differences at the 95% confidence level.

Figure 4. Schematic illustration of the impacts of anthropogenic aerosols on MCSs and precipitation over Southern China in April under (a) clean and (b) polluted conditions. Under polluted conditions, more aerosols lead to more direct scattering of solar radiation. Also, the ingestion of more aerosols in warm clouds leads enhanced cloud reflectance via the Twomey effect. Both of these effects stabilize the regional atmosphere and suppress MCS occurrences.

Table 1. Diagnostics of simulated surface and atmospheric thermodynamic variables in the sensitivity simulations for April 2009. Values are

599 averages over the land areas in Southern China.

	Sensitivity simulations					
	Polluted	Polluted	Polluted	Polluted	Clean	Percent impacts of aerosols
		_NoADE	_0.5 LCOT	_NoADE		(Polluted -Clean)/Polluted
				_0.5 LCOT		
AOD (all sky)	0.343	0.326	0.325	0.309	0.0322	+90%
LCOT	62.6	63.4	30.0	30.6	31.25	+50%
April accumulated precipitation [mm]	256	263	273	281	297	-16%
Downward shortwave radiation at the surface [W m ⁻²]	201	206	213	214	225	-12%
T at 2 m [°C]	20.2	20.3	20.5	20.6	20.7	-2.4%
Convective available potential energy (CAPE) [J]	277	277	285	286	323	-17%
Cloud top temperature [°C]	-13.1	-14.0	-14.0	-14.9	-15.5	+18%
Vertical velocity [m s ⁻¹]	0.0617	0.0629	0.0636	0.0649	0.0681	-10%
Moisture convergence [10 ⁻⁶ g cm ⁻² hPa ⁻¹ s ⁻¹]	1.48	1.74	1.49	1.76	2.00	-36%
Precipitable water [mm]	36.3	36.4	36.4	36.5	36.7	-1.2%