量子力学中心势场

曹庆宏
北京大学物理学院

心势场的定态薛定谔方程
力学量完备集 $\left\{\hat{H}, \hat{\vec{L}}^{2}, \hat{L}_{z}\right\}$

$$
\begin{gathered}
{\left[-\frac{\hbar^{2}}{2 \mu} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{\hat{\vec{L}}^{2}}{2 \mu r^{2}}+V(r)\right] \psi(r, \theta, \varphi)=E \psi(r, \theta, \varphi)} \\
\psi(r, \theta, \phi)=R(r) Y(\theta, \phi) \\
E R(r)=-\frac{\hbar^{2}}{2 \mu r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R(r)}{d r}\right)+\frac{l(l+1) \hbar^{2}}{2 \mu r^{2}} R(r)+V(r) R(r) \\
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+k_{l}^{2}(r) R=0 \\
\text { 其中 } k_{l}^{2}(r)=\frac{2 \mu}{\hbar^{2}}\left[E-V_{l}(r)\right] \\
V_{l}(r)=V(r)+\frac{l(l+1) \hbar^{2}}{2 \mu r^{2}} \quad \text { 离心势 }
\end{gathered}
$$

$$
,^{\prime} \ell=0
$$

l增大时，$V_{\text {eff }}(r)$ 的谷＂深度＂减少，且其最小值处远离㕃奌 \Longrightarrow 粒子越难被束愽

Symbolic letter: s p d f g h Corresponding value of $\ell: \begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$

存在束缚态的势场条件
$V(r)=-\frac{A}{r^{m}} \quad$ 当 $0<m<2$ 时，定态薛定谔方程有束缚解
$2\langle\hat{T}\rangle=\langle\vec{r} \cdot \nabla V(r)\rangle$
$2\langle\hat{T}\rangle=-m\langle V(r)\rangle$
$\langle E\rangle=\langle T\rangle+\langle V\rangle=\left(1-\frac{2}{m}\right)\langle T\rangle$
$\langle E\rangle<0 \quad \Longrightarrow \quad 0<m<2$

即仅当势函数满足

$$
r^{2} V(r) \xrightarrow{r \rightarrow 0} 0
$$

中心势场的束缚态波函数的边界性质
引入一个非常有用的变换

$$
R(r)=\frac{U(r)}{r} \quad \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)=\frac{1}{r} \frac{d^{2} u(r)}{d r^{2}}
$$

剘有

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 \mu} \frac{d^{2} U(r)}{d r^{2}}+[V(r)+\underbrace{\underbrace{\text { 离心势 }}}_{\substack{\frac{l l+1) \hbar^{2}}{2 \mu \gamma^{2}}} U(r)=E U(r)} \begin{array}{l}
\text { 类似于一维 } \\
\text { 定态薛定呺方程 }
\end{array} \quad(l \text { 越大, 束缚态能级越高) }
\end{aligned}
$$

$$
r \geq 0
$$

中心势场的束缚态波函数的边界性质

波买数平方可积要求

$$
\begin{aligned}
\int|\psi|^{2} d \vec{r} & \infty \infty \\
\Rightarrow & \int_{0}^{\infty}|R(r)|^{2} r^{2} d r<\infty \\
& \int_{0}^{\infty}|U(r)|^{2} d r<\infty \\
& (\text { 类似一维问题, 但 } r \geqslant 0)
\end{aligned}
$$

当存在束德态解时，波正数模引｜u（r）｜在无穷远处为 0

$$
u(r)=r R(r) \xrightarrow{r \rightarrow \infty} 0
$$

但波函数是否平方可以还依赖于零点处的行为。
要求 $u(r)=r R(r) \xrightarrow{r \rightarrow 0} 0$ ，这保证 \hat{p}_{r} 是厄米算符

\hat{p}_{r} 和 $r R(r) \xrightarrow{r \rightarrow 0} 0$

如果 \hat{p}_{r} 是厄米算符，那么

$$
\begin{align*}
0= & \langle\psi| \hat{p}_{r}|\psi\rangle-\langle\psi| \hat{p}_{r}|\psi\rangle^{*}=\left\langle\psi \mid \hat{p}_{r} \psi\right\rangle-\left\langle\hat{p}_{r} \psi \mid \psi\right\rangle \\
= & \int \psi^{*}\left(\hat{p}_{r} \psi\right) d^{3} r-\int\left(\hat{p}_{r} \psi\right)^{*} \psi d^{3} r \\
= & (-i \hbar) \int \psi^{*}\left(\frac{\partial \psi}{\partial r}+\frac{\psi}{r}\right) r^{2} d r d \cos \theta d \phi-(+i \hbar) \int\left(\frac{\partial \psi^{*}}{\partial r}+\frac{\psi^{*}}{r}\right) \psi r^{2} d r d \cos \theta d \phi \\
0= & \int R^{*}(r) \frac{\partial R}{\partial r} r^{2} d r+\int R^{*}(r) R(r) r d r+\int \frac{\partial R^{*}(r)}{\partial r} R(r) r^{2} d r+\int R^{*}(r) R(r) r d r \\
= & \int R^{*}(r) \frac{\partial R}{\partial r} r^{2} d r+2 \int R^{*}(r) R(r) r d r+\int \frac{\partial R^{*}(r)}{\partial r} R(r) r^{2} d r \\
= & \int R^{*}(r) \frac{\partial R}{\partial r} r^{2} d r+2 \int R^{*}(r) R(r) r d r+\left.R^{*}(r) R(r) r^{2}\right|_{0} ^{\infty}-\int R^{*}(r) \frac{\partial r^{2} R(r)}{\partial r} r^{2} d r+2 \int R^{*}(r) R(r) r d r+\left.R^{*}(r) R(r) r^{2}\right|_{0} ^{\infty} \\
& -\int R^{*}(r) \frac{\partial R}{\partial r} r^{2} d r-2 \int R^{*}(r) R(r) r d r \\
= & \left.R^{*}(r) R(r) r^{2}\right|_{0} ^{\infty}=|r R(r)|_{r=\infty}-|r R(r)|_{r=0}=-|r R(r)|_{r=0}
\end{align*}
$$

波函数在 $r=0$ 处的渐进行为
假设 $\lim _{r \rightarrow 0} r^{2} V(r)=0$ ，则当 $r \rightarrow 0$ 时，上式可简化为

$$
u^{\prime \prime}(r)-\frac{l(l+1)}{r^{2}} u(r)=0
$$

此欧拉型方程具有墨级数解。令 $u(r) \sim r^{s}$ ，则有

$$
\begin{aligned}
& S(S-1)-l(l+1)=0 \\
\Rightarrow & \left\{\begin{array}{ll}
S_{1}=l+1, & U(r) \sim r^{l+1} \\
S_{2}=-l, & \quad \text { Yes }(r) \sim \frac{1}{r^{l}}
\end{array} \quad\right. \text { No }
\end{aligned}
$$

所以在 $\gamma=0$ 附近，径向波函数的渐近行为是

$$
R(r) \sim r^{l}
$$

在原定附近径向伸缩和
轨道角动量（旋转）相关

球谐函数的空间几何性质
当 $\gamma(r)$ 在 $\gamma=0$ 附近并非是异常奇异时，波画数 $\psi(\vec{x})$ 在 $\overrightarrow{\mathrm{X}}=0$ 时必定是一个平滑非奇异函数。
我们可在直角坐标系中将波函数展开为坐标分量的级数，形成一个阶数为l的齐次多项式
例如：$l=0, x^{0}, y^{0}, z^{0}$ —常数

$$
\begin{aligned}
& l=1, x, y, z . \\
& l=2, x^{2}, y^{2}, z^{2}, x y, x z, y z
\end{aligned}
$$

球谐函数的空间几何性质
在球坐标中，
$\{x, y, z\}=r\{\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta\}$ ℓ 阶齐次多项式可写作

$$
\gamma^{l} f(\theta, \phi)
$$

所 m ，当 $r \rightarrow 0$ 时，$\psi(r) \rightarrow \gamma^{\ell} Y(\theta, \varphi)$

$$
\Rightarrow Y_{l}^{m}(\theta, \varphi) \text { 是单位大量 } \hat{\vec{X}}=\frac{\vec{r}}{r}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)
$$

的l阶齐次多项式的求和。

为何束缚态的径向波函数在原点处趋于零
＊讨论l：两体问题中 $\gamma=0$ 意味着什么？
此时两粒子出现在空间中同一位置处。以氯原子为例，
$r=0$ 意味着电子姗缩到质子上，正负电荷粒子湮天，
导致気原子不稳定。所以 $\lim _{r \rightarrow 0} R(r)=0$ 。
＊讨论 2 ：个是否可以无限逼近 0 ？

$$
\gamma \rightarrow 0 \text { 也即 } \Delta r \rightarrow 0 \text { 时, } \Delta P_{r} \rightarrow \infty
$$

这意味着 $\left\langle P_{r}^{2}\right\rangle \sim\langle T\rangle \rightarrow \infty$
\rightarrow 非灰光神符
径向动量 $\hat{P}_{r}=-i \hbar \frac{1}{r} \frac{\partial}{\partial r} r$ ，与 $-i \hbar \frac{\partial}{\partial r}$ 不同
厄米 $\sim \sim \hat{p}_{r}=-i \hbar\left(\frac{\partial}{\partial r}+\frac{1}{r}\right)$
不同来自于径向运动
称符要求 $\gamma \geqslant 0$

为何束缚态的径向波函数在原点处趋于零
＊讨论 $3: S$－兮波（ $l=0$ ）设有离心势，但 $l>0$ 的分波在无奌附近的都被压低了。如果位势比 $\frac{1}{\gamma^{2}}$ 更发散（ $\frac{1}{r^{3}}, \cdots$ ），我们就遇到反常情况：粒子必然曾入中心，导致体系可能不存在有限能量的基态（或发敢）
\Rightarrow 意味着，当前的理论并不完备，需要考虑其他的
物理因素来改变非剖距离处的位势形为。
＊讨论 4： $\lim _{r \rightarrow 0} Y R(r)=0$ 保证 \hat{P}_{r} 祘符的厄米性
量子体系的哈密顿算符

$$
\hat{H}=\frac{\hat{p}_{r}^{2}}{2 \mu}+\frac{\vec{L}^{2}}{2 \mu r^{2}}+V(r)
$$

最简单的中心势场例子——自由粒子
身由粒子：$V(r)=0$

$$
\frac{d^{2} u(r)}{d r^{2}}+\left[k^{2}-\frac{l(l+1)}{r^{2}}\right] u(r)=0 \quad, k^{2}=\frac{2 m E}{\hbar^{2}}
$$

定义无量纲变量 $\rho=k r$ ，上式化为

$$
\frac{d^{2} u}{d \rho^{2}}+\left[1-\frac{\ell(\ell+1)}{\rho^{2}}\right] u=0
$$

注意：此式中设有能量依赖，完全是一个数学出式。
这意味着所有能量的解都是相似的，前提是我们
使用该能量所对应的特经长度来丈量距离

$$
\rho=k r=\frac{r}{\left(\frac{1}{k}\right)}=\frac{r}{\left(\frac{2 M E}{\hbar^{2}}\right)}
$$

最简单的中心势场例子——自由粒子
＊）球贝塞尔方程 使用 $\mathrm{Rn}_{\mathrm{n}}(\mathrm{r})$

$$
\frac{d^{2} R(\rho)}{d \rho^{2}}+\frac{2}{\rho} \frac{d k(\rho)}{d \rho}+\left[1-\frac{l(\rho+1)}{\rho^{2}}\right] R(\rho)=0
$$

其一般解为球见塞尔画数和球诺伊曼函数的叠加

$$
R_{l}(\rho)=A_{l} j_{l}(\rho)+B_{l} n_{l}(\rho)
$$

球贝塞尔函数 $\quad j_{l}(\rho)=(-\rho)^{l}\left(\frac{1}{\rho} \frac{d}{d \rho}\right)^{l} \frac{\sin \rho}{\rho}$
球诺伊曼正数 $\quad n_{l}(\rho)=-(-\rho)^{l}\left(\frac{1}{\rho} \frac{d}{d \rho}\right)^{l \cos \rho} \frac{\rho}{\rho}$

球贝塞尔函数和球诺依曼函数

$$
j_{0}(r)=\frac{\sin r}{r}
$$

$$
j_{1}(r)=\frac{\sin r}{r^{2}}-\frac{\cos r}{r}
$$

$$
j_{2}(r)=\left(\frac{3}{r^{3}}-\frac{1}{r}\right) \sin r-\frac{3 \cos r}{r}
$$

$$
n_{0}(r)=-\frac{\cos r}{r}
$$

$$
n_{1}(r)=-\frac{\cos r}{r^{2}}-\frac{\sin r}{r}
$$

$$
n_{2}(r)=-\left(\frac{3}{r^{3}}-\frac{1}{r}\right) \cos r-\frac{3}{r^{2}} \sin r
$$

最简单的中心势场例子——自由粒子
＊j_{l} 和 n_{l} 在 $\rho \ll 1$ 处渐近形为
将 $\frac{\sin \rho}{\rho}$ 和 $\frac{\cos \rho}{\rho}$ 展开为 ρ 的级数

$$
\Rightarrow j_{l}(\rho) \simeq \frac{2 l \ell!}{(2 l+1)} \rho^{l}, \quad n_{l}(\rho) \simeq-\frac{(2 l)!}{2 l l!} \rho^{-l-1}
$$

在 $\rho \gg 1$ 时渐近行为

$$
j_{l}(\rho) \simeq \frac{1}{\rho} \sin \left(\rho-\frac{\rho \pi}{2}\right), n_{l}(\rho) \simeq-\frac{1}{\rho} \cos \left(\rho-\frac{\rho \pi}{2}\right)
$$

＊因为 $R(r) \sim \gamma^{l}$ ，而 $n_{l} \sim \gamma^{-l-1}$

$$
\Rightarrow \quad \psi_{k \ell m}(r \cdot \theta \cdot \varphi) \sim j_{l}(k r) Y_{l m}(\theta \cdot \varphi)
$$

1） 2 －化后得。

$$
\psi_{k l m}(r . \theta \cdot \varphi)=k \sqrt{\frac{2}{\pi}} j_{l}(k r) Y_{l m}(\theta \cdot \varphi)
$$

$E=\frac{\hbar^{2}}{2 \mu} k^{2}, ~ k$ 连续 \Rightarrow 能量连续谱
＊）平而波按分波展开
自由米籽的力学量完备集可以选为 $\left\{\hat{H}, \vec{I}^{2}, ~ \hat{L} z\right\}, ~ 也$ 可选为 $\left\{\hat{p}, \hat{y}, ~ \hat{y}, ~ \hat{P}_{z}\right\}$能量 $E=\frac{\hbar^{2} k^{2}}{2 \mu}$ 在两坐标系中相同，而波正数不同：

直触杵系：稬皮 $\psi \sim e^{i \vec{k} \cdot \vec{\gamma}}$
球坐标系：$j_{l}(k r) Y_{l m}(\theta . \varphi)$
此二者描述同一个物理实在，所以它们必定等价。 $\left\{P P_{x}, P_{y}, P_{z}\right\}$ 和 $\left\langle\hat{A}, ~ \vec{L}^{2}, ~ \sum_{z}\right\}$ 都是力学量完备集，
\Rightarrow 我们可以将平而皮展开为具有相同人的不同l和 m 的
$\psi_{\mathrm{kgm}}(r .0 . \varphi)$ 的线性组合

$$
e^{i \vec{k} \cdot \vec{r}}=\sum_{l=0}^{\infty} \sum_{m=l}^{l} a_{l m} j_{l}(k r) Y_{l m}(\theta, \varphi)
$$

选取 \vec{k} 沿 \hat{z} 轴，$m=0$

$$
\begin{aligned}
& e^{i \vec{k} \cdot \vec{r}}=e^{i k r \cos \theta}=\sum_{l=0}^{\infty} a_{l 0} j_{l}(k r) Y_{l 0}(\theta, \varphi) \\
& =\sum_{l=0}^{\infty} C_{l} j_{l}(k r) P_{l}(\cos \theta)=\sum_{l=0}^{\infty} i^{l}(2 l+1) j_{l}(k r) P_{l}(\cos \theta)
\end{aligned}
$$

$$
Y_{\ell}^{0}(\theta, \phi)=\sqrt{\frac{2 \ell+1}{4 \pi}} P_{\ell}(\cos \theta)
$$

平面波描述确定动量，
但不是角动量

$$
\left\{\hat{p}_{x}, \hat{p}_{y}, \hat{p}_{z}\right\}
$$

球面波描述确定角动量，
但不是动量

$$
\left\{\hat{H}, \hat{\vec{L}}^{2}, \hat{L}_{z}\right\}
$$

氨原子

氢原子的粗略结构（Gross structure）

（1）不记及原子核或电子的自旋
（2）电子在静电场中做非相对论性运动

$$
\hat{H}=\frac{\vec{p}_{N}^{2}}{2 m_{N}}+\frac{\vec{p}_{e}^{2}}{2 m_{e}}-\frac{e^{2}}{4 \pi \epsilon_{0}\left|\vec{x}_{e}-\vec{x}_{N}\right|}
$$

$$
\hat{H} \psi\left(\vec{x}_{N}, \vec{x}_{e}\right)=\left[-\frac{\hbar^{2}}{2 m_{N}} \vec{\nabla}_{n}^{2}-\frac{\hbar^{2}}{2 m_{e}} \vec{\nabla}_{e}^{2}-\frac{e^{2}}{4 \pi \epsilon_{0}\left|\vec{x}_{e}-\vec{x}_{N}\right|}\right] \psi\left(\vec{x}_{N}, \vec{x}_{e}\right)=E \psi\left(\vec{x}_{N}, \vec{x}_{e}\right)
$$

$$
\vec{X} \equiv \frac{m_{e} \vec{x}_{e}+m_{N} \vec{x}_{N}}{m_{e}+m_{N}}, \quad \vec{r} \equiv \vec{x}_{e}-\vec{x}_{N}
$$

$$
\begin{gathered}
\frac{\partial}{\partial \vec{x}_{e}}=\frac{\partial \vec{X}}{\partial \vec{x}_{e}} \frac{\partial}{\partial \vec{X}}+\frac{\partial \vec{r}}{\partial \vec{x}_{e}} \frac{\partial}{\partial \vec{r}}=\frac{m_{e}}{m_{e}+m_{N}} \frac{\partial}{\partial \vec{X}}+\frac{\partial}{\partial \vec{r}} \\
\nabla_{e}^{2}=\left(\frac{\partial}{\partial \vec{x}_{e}}\right)^{2}=\left(\frac{m_{e}}{m_{e}+m_{N}}\right)^{2} \nabla_{\vec{X}}^{2}+\nabla_{\vec{r}}^{2}+\frac{2 m_{e}}{m_{e}+m_{N}} \frac{\partial^{2}}{\partial \vec{X} \partial \vec{r}} \\
\nabla_{N}^{2}=\left(\frac{\partial}{\partial \vec{x}_{n}}\right)^{2}=\left(\frac{m_{N}}{m_{e}+m_{N}}\right)^{2} \nabla_{\vec{X}}^{2}+\nabla_{\vec{r}}^{2}-\frac{2 m_{N}}{m_{e}+m_{N}} \frac{\partial^{2}}{\partial \vec{X} \partial \vec{r}} \\
\frac{1}{m_{e}} \nabla_{e}^{2}=\frac{m_{e}}{\left(m_{e}+m_{N}\right)^{2}} \nabla_{\bar{X}}^{2}+\frac{1}{m_{e}} \nabla_{\vec{r}}^{2}+\frac{2}{m_{e}+m_{N}} \frac{\partial^{2}}{\partial \vec{X} \partial \vec{r}}, \\
\frac{1}{m_{N}} \nabla_{N}^{2}=\frac{m_{N}}{\left(m_{e}+m_{N}\right)^{2}} \nabla_{\bar{X}}^{2}+\frac{1}{m_{N}} \nabla_{\vec{r}}^{2}-\frac{2}{m_{e}+m_{N}} \frac{\partial^{2}}{\partial \vec{X} \partial \vec{r}} \\
\frac{1}{m_{e}} \nabla_{e}^{2}+\frac{1}{m_{N}} \nabla_{N}^{2} \equiv \frac{1}{m_{e}+m_{N}} \nabla_{\vec{X}}^{2}+\frac{1}{\mu} \nabla_{\vec{r}}^{2}
\end{gathered}
$$

两体问题的定态薛定谔方程化为

$$
E \psi=-\frac{\hbar^{2}}{2\left(m_{e}+m_{N}\right)} \nabla_{\vec{X}}^{2} \psi-\frac{\hbar^{2}}{2 \mu} \nabla_{\vec{r}}^{2} \psi-\frac{Z e^{2}}{4 \pi \epsilon_{0} r} \psi .
$$

氢原子自由运动 \hat{H}_{X} 电子和原子核的相对运动 $\hat{H}_{\vec{r}}$

$$
\psi\left(\vec{x}_{e}, \vec{x}_{N}\right)=K(\vec{X}) \psi_{\vec{r}}(\vec{r})
$$

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2\left(m_{e}+m_{N}\right)} \nabla_{\vec{X}}^{2} K(\vec{x})=E_{k} K(\vec{X}) \\
& -\frac{\hbar^{2}}{2 \mu} \nabla_{\vec{r}}^{2} \psi_{\vec{r}}-\frac{Z e^{2}}{4 \pi \epsilon_{0} r} \psi_{\vec{r}}=E_{\vec{r}} \psi_{\vec{r}}
\end{aligned}
$$

$$
E_{\text {total }}=E_{k}+E_{\vec{r}}
$$

氨原子（Z＝1）波函数

将峑原子波函数记作为

$$
\begin{gathered}
\psi(r, \theta, \phi)=\frac{u(r)}{r} Y_{\ell}^{m}(\theta, \phi) \\
\frac{d^{2}}{d r^{2}} u(r)-\frac{\ell(\ell+1)}{r^{2}} u(r)+\frac{2 \mu E}{\hbar^{2}} u(r)+\frac{2 \mu e^{2}}{4 \pi \epsilon \hbar^{2}} \frac{u(r)}{r}=0
\end{gathered}
$$

引入无量纲参数

$$
\begin{aligned}
& \rho=\sqrt{-\frac{8 \mu E}{\hbar^{2}}} r, \quad \lambda=\frac{2 \mu e^{2}}{4 \pi \epsilon_{0} \hbar^{2}} \sqrt{\frac{-\hbar^{2}}{8 \mu E}}=\frac{1}{a_{0}} \sqrt{\frac{-\hbar^{2}}{2 \mu E}} \\
& \frac{d^{2}}{d \rho^{2}} u_{\ell}(\rho)-\frac{\ell(\ell+1)}{\rho^{2}} u_{\ell}(\rho)+\frac{\lambda}{\rho} u_{\ell}(\rho)-\frac{1}{4} u_{\ell}(\rho)=0 \\
& u(r)=r R(r) \frac{r \rightarrow \infty}{r \rightarrow 0} 0 \longrightarrow \lambda \text { 取特定的数值 }
\end{aligned}
$$

考虑在 $\rho \rightarrow 0$ 和 $\rho \rightarrow \infty$ 处的波函数性质

$$
\begin{array}{cc}
\frac{d^{2}}{d \rho^{2}} u_{\ell}(\rho)-\frac{\ell(\ell+1)}{\rho^{2}} u_{\ell}(\rho)+\frac{\lambda}{\rho} u_{\ell}(\rho)-\frac{1}{4} u_{\ell}(\rho)=0 \\
\rho \rightarrow \infty & \rho \rightarrow 0 \\
\frac{d^{2}}{d \rho^{2}} u_{\ell}(\rho)-\frac{1}{4} u_{\ell}(\rho)=0 & \frac{d^{2}}{d \rho^{2}} u_{\ell}(\rho)-\frac{\ell(\ell+1)}{\rho^{2}} u_{\ell}(\rho)=0 \\
u_{l}(\rho) \sim e^{-\rho / 2} & u_{l}(\rho) \sim \rho^{\ell+1}
\end{array}
$$

$$
u_{\ell}(\rho) \sim \rho^{\ell+1} e^{-\rho / 2} v_{\ell}(\rho)
$$

- 当 $\rho \rightarrow 0$ 时，$v_{\ell}(\rho)$ 趋于常数，否则 $\ell=0$ 时波函数行为不好；
- 当 $\rho \rightarrow \infty$ 时，$\rho^{\ell+1} v_{\ell}(\rho)$ 的整体发散性要慢于 $e^{\rho / 2}$ 。

$$
\rho v_{\ell}^{\prime \prime}+[2(\ell+1)-\rho] v_{\ell}^{\prime}-(\ell+1-\lambda) v_{\ell}=0
$$

合流超几何函数（hypergeometry function）
级数解法

$$
\begin{aligned}
& v(\rho)=\sum_{j=0}^{\infty} a_{j} \rho^{j} \\
& \frac{d v}{d \rho}=\sum_{j=0}^{\infty} j a_{j} \rho^{j-1}=\sum_{j=0}^{\infty}(j+1) a_{j+1} \rho^{j} \\
& \frac{d^{2} v}{d \rho^{2}}=\sum_{j=0}^{\infty} j(j+1) a_{j+1} \rho^{j-1}
\end{aligned}
$$

$$
\begin{gathered}
\sum_{j=0}^{\infty} j(j+1) a_{j+1} \rho^{j}+2(l+1) \sum_{j=0}^{\infty}(j+1) a_{j+1} \rho^{j}-\sum_{j=0}^{\infty} j a_{j} \rho^{j} \\
-(l+1-\lambda) \sum_{j=0}^{\infty} a_{j} \rho^{j}=0
\end{gathered}
$$

$$
\begin{gathered}
\sum_{j=0}^{\infty} j(j+1) a_{j+1} \rho^{j}+2(l+1) \sum_{j=0}^{\infty}(j+1) a_{j+1} \rho^{j}-\sum_{j=0}^{\infty} j a_{j} \rho^{j} \\
-(l+1-\lambda) \sum_{j=0}^{\infty} a_{j} \rho^{j}=0
\end{gathered}
$$

令相同幂次 ρ^{j} 的系数相等

$$
\begin{aligned}
& j(j+1) a_{j+1}+2(l+1)(j+1) a_{j+1}-j a_{j}-(l+1-\lambda) a_{j}=0 \\
& {[j(j+1)+2(l+1)(j+1)] a_{j+1}-(j+l+1-\lambda) a_{j}=0}
\end{aligned}
$$

$$
a_{j+1}=\frac{j+l-1-\lambda}{(j+1)(j+2 l+2)} a_{j}
$$

$u_{\ell}(\rho) \sim \rho^{\ell+1} e^{-\rho / 2} v_{\ell}(\rho)$
1）分离出 $\rho^{\ell+1}$ 项可以避免级数展开中出现多个零系数；
2）分离出 $e^{-\rho / 2}$ 项可以避免出现 a_{j}, a_{j+1}, a_{j+2} 的递推关系式，否则计算非常困难

径向波函数在无穷远处为零要求

$$
\lim _{\rho \rightarrow \infty} \rho^{l+1} v(\rho)<e^{\rho / 2}
$$

$v(\rho)$ 的级数展开在 $\rho \rightarrow \infty$ 处的渐进行为

$$
\begin{aligned}
& a_{j+1}=\frac{j+l-1-\lambda}{(j+1)(j+2 l+2)} a_{j} \Rightarrow \lim _{j \rightarrow \infty} \frac{a_{j+1}}{a_{j}}=\lim _{j \rightarrow \infty} \frac{j+l+1-\lambda}{(j+1)(j+2 l+2)} \rightarrow \frac{1}{j} \\
& e^{\rho}=\sum_{j=0}^{\infty} \frac{\rho^{j}}{j!} \text { 且 } \lim _{j \rightarrow \infty} \frac{a_{j+1}^{\prime}}{a_{j}^{\prime}}=\frac{\frac{1}{j!}}{\frac{1}{(j-1)!}}=\frac{1}{j} \xrightarrow{v(\rho) \xrightarrow{j \rightarrow \infty} e^{\rho}}
\end{aligned}
$$

即

$$
u(\rho) \rightarrow \rho^{l+1} e^{-\rho / 2} e^{\rho} \rightarrow \rho^{l+1} e^{\rho / 2} \xrightarrow{\rho \rightarrow \infty} \text { 发散 }
$$

$v(\rho)$ 的无穷阶级数展开是不满足平方可积条件的，故需要对级数求和进行截断，从而导致能量量子化

截断要求

$$
j+l+1-\lambda=0 \quad \Longrightarrow \quad \lambda \equiv n=j+l+1
$$

\mathbf{n} 是整数，$n=1,2,3, \cdots$

轨道角动量量子数

$$
\lambda=n=\frac{2 \mu e^{2}}{4 \pi \epsilon_{0} \hbar^{2}} \sqrt{\frac{-\hbar^{2}}{8 \mu E}}=\frac{1}{a_{B}} \sqrt{\frac{-\hbar^{2}}{2 \mu E}} \quad \Longrightarrow \quad E_{n}=-\frac{\hbar^{2}}{2 \mu a_{B}^{2} n^{2}}
$$

$$
\begin{aligned}
& \text { 波尔半径 } \quad a_{B}=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m_{e} c^{2}}=\frac{1}{\alpha} \frac{\hbar}{m_{e} c}=\frac{\hbar}{m_{e}(\alpha c)} \\
& \text { 精细结构常数 } \alpha=\frac{e^{2}}{4 \pi \epsilon_{0} \hbar c}=\frac{1}{137.0539779(32)} \\
& E_{n}=-\left(\frac{e^{2}}{4 \pi \epsilon_{0}}\right) \frac{1}{2 a_{0}} \frac{1}{n^{2}}=-\frac{1}{2} m_{e}(\alpha c)^{2} \frac{1}{n^{2}}
\end{aligned}
$$

氢原子能级的简并度

$$
E_{n}=-\frac{1}{2} m_{e}(\alpha c)^{2} \frac{1}{n^{2}} \quad n=n_{r}+\ell+1
$$

氢原子离散能级只依赖于主量子数 n ，与 n_{r} 和 ℓ 无关，能级简并度为 n^{2}

每一个轨道角动量 ℓ 都具有 $2 \ell+1$ 个简并

$$
g_{n}=\sum_{l=0}^{n-1}(2 l+1)=2 \sum_{l=0}^{n-1} l+\sum_{l=0}^{n-1} 1=2 \times \frac{1}{2}(n-1) n+n=n^{2}
$$

简并度高意味着更高的对称性－SO（4）

简并度高意味着更高的对称性

$$
E=-1 \begin{array}{ll}
1 s \quad 1 \\
l=0(s) & l=1(p) \quad l=2(d) \quad l=3(f)
\end{array}
$$

量子开普勒运动

非 $\frac{1}{r^{2}}$ 力

龙格楞次矢量

任意中心势中轨道角动量守恒，

$$
\vec{R}=\frac{\vec{r}}{r}-\frac{\vec{P} \times \vec{L}}{m e^{2}}
$$

$\frac{1}{r}$ 势中还有额外的龙格楞次失量守恒

对 $1 / r^{2}$ 力的微小破坏也会令龙格楞次矢量变化，

氞原子波函数

$$
\begin{gathered}
n_{r}=0,1,2, \cdots, n-1 \quad \ell=n-1, n-2, n- \\
\text { 졷向波函数 } u_{n l}(\rho) \sim F\left(-n_{r}, 2 l+2, \rho_{n}\right) \rho_{n}^{l+1} e^{-\rho_{n} / 2}
\end{gathered}
$$

$$
\rho_{n}=\sqrt{\frac{-8 \mu E_{n}}{\hbar^{2}}} r=\frac{2}{n a_{B}} r \text { 用第 } \mathrm{n} \text { 个能级特征长度标记的径向距离 }
$$

完整的归一化波函数

$$
\begin{aligned}
\psi_{n l m} & =R_{n l}(r) Y_{l}^{m}(\theta, \phi) \\
& =\left(\frac{2}{n a_{B}}\right)^{3 / 2} \sqrt{\frac{(n+l)!}{2 n(n-l-1)!}} \frac{1}{(2 l+1)!} \rho_{n}^{l} e^{-\rho_{n} / 2} F\left(-n_{r}, 2 l+2, \rho_{n}\right) Y_{l}^{m}(\theta, \phi)
\end{aligned}
$$

合流超几何函数

基态和第一激发态波函数

$$
\begin{array}{rlrl}
\psi_{n l m}(r, \theta, \phi)= & R_{n l}(r) Y_{l}^{m}(\theta, \phi) \\
R_{10} & =2\left(\frac{1}{a_{B}}\right)^{3 / 2} e^{-r / a_{B}}, & u_{100} & =\frac{1}{\sqrt{\pi a_{B}^{3}}} e^{-\frac{r}{a_{B}}} \\
R_{20}=\left(\frac{1}{2 a_{B}}\right)^{3 / 2}\left(2-\frac{r}{a_{B}}\right) e^{-\frac{r}{2 a_{B}}}, & u_{200} & =\frac{1}{4 \sqrt{2 \pi a_{B}^{3}}}\left(2-\frac{r}{a_{B}}\right) e^{-\frac{r}{a_{B}}} \\
u_{210} & =\frac{1}{4 \sqrt{2 \pi a_{B}^{3}}} \frac{r}{a_{B}} e^{-\frac{r}{2 a_{B}}} \cos \theta \\
R_{21}=\left(\frac{1}{2 a_{B}}\right)^{3 / 2} \frac{r}{a_{B} \sqrt{3}} e^{-\frac{r}{2 a_{B}}} & u_{211} & =\frac{-1}{8 \sqrt{\pi a_{B}^{3}}} \frac{r}{a_{B}} e^{-\frac{r}{2 a_{B}}} e^{i \phi} \sin \theta \\
u_{21-1} & =\frac{1}{8 \sqrt{\pi a_{B}^{3}}} \frac{r}{a_{B}} e^{-\frac{r}{2 a_{B}}} e^{-i \phi} \sin \theta
\end{array}
$$

$$
n_{r}=n-\ell-1
$$

n_{r} 径向节点个数 （原点和无穷远处除外）

标记径向波函数的变化缓急
$n=3$

量子开普勒运动的经典极限

$$
\begin{aligned}
& V(r)=-\frac{K e^{2}}{r} \\
&|E|=\frac{K e^{2}}{2 a}=\frac{\mathbf{L}^{2}}{2 \mu b^{2}} \\
& b=a \sqrt{1-\epsilon^{2}} \text { or } \epsilon^{2}=1-\frac{b^{2}}{a^{2}}=1-\frac{2 \mathbf{L}^{2}|E|}{\mu\left(K e^{2}\right)^{2}} \\
& \epsilon=0 \text { 圆周运动 } \\
& \epsilon \rightarrow 1 \text { 直线运动 } \quad r_{\text {min }}=a(1-\epsilon) \text { and } r_{\max }=a(1+\epsilon)
\end{aligned}
$$

量子开普勒运动的经典极限

$$
\begin{aligned}
& V(r)=-\frac{K e^{2}}{r} \\
& |E|=\frac{K e^{2}}{2 a}=\frac{\mathrm{L}^{2}}{2 \mu b^{2}}
\end{aligned}
$$

$b=a \sqrt{1-\epsilon^{2}} \quad$ or $\quad \epsilon^{2}=1-\frac{b^{2}}{a^{2}}=1-\frac{2 \mathrm{~L}^{2}|E|}{\mu\left(K e^{2}\right)^{2}}$

量子力学中

$$
\begin{gathered}
E=E_{n}=-\frac{K e^{2}}{2 a_{0}} \frac{1}{n^{2}} \quad \text { and } \quad \mathrm{L}^{2}=l(l+1) \hbar^{2} \quad a_{0}=\frac{\hbar^{2}}{m_{e} K e^{2}} \\
\epsilon^{2}=1-\frac{l(l+1)}{n^{2}} \quad \underset{\ell=n-1}{\text { 经典 } n_{r}=0} \epsilon^{2}=\frac{1}{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0 \\
\text { 圆周 }
\end{gathered}
$$

径向分布的经典极限

经典开普勒运动对应于量子力学中径向无节点的情况，

$$
n_{r}=0 \quad: \quad R_{n, n-1}(r) \sim r^{n-1} e^{-\frac{r}{n a_{B}}}
$$

电子的径向几率分布为

$$
P_{n, n-1} \sim\left|R_{n, n-1}\right|^{2} r^{2} \sim r^{2 n} e^{-\frac{2 r}{n a_{B}}}
$$

几率分布的最大值对应的径向位置（最概然位置）：

$$
\begin{aligned}
& \frac{d P_{n, n-1}}{d r}=0 \quad \Longrightarrow \quad r_{\max }=n \\
& \text { 这和圆周运动的经典图像相符。 }
\end{aligned}
$$

$n=10$ 时径向概率密度分布

在库伦势中运动粒子的轨道形成一个封闭椭圆，具有相同半主轴的椭圆轨道对应于相同能量。

$$
\begin{aligned}
& \text { I=n-1轨道近似于圆形, } \\
& \text { 而|=0 轨道是一个细长椭圆 }
\end{aligned}
$$

三维各向同性谐振子
 $$
\hat{H}=\frac{\hat{p}_{r}^{2}}{2 m}+\frac{\hat{L}^{2}}{2 m r^{2}}+\frac{1}{2} m \omega^{2} r^{2}
$$

力学量完全集 $\left\{\hat{H}, \hat{L}^{2}, \hat{L}_{z}\right\}$ 波函数记作为 $\psi_{n l m}(r, \theta, \phi)$
定态薜定谔方程

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{1}{r} \frac{\partial}{\partial r^{2}} r-\frac{\hat{L}^{2}}{\hbar^{2} r^{2}}\right) \psi_{n l m}+\frac{1}{2} m \omega^{2} r^{2} \psi_{n l m}=E \psi_{n l m}
$$

将波函数分解为径向和空间角度两部分

$$
\psi_{n l m}=R_{n l}(r) Y_{l m}(\theta, \phi)=\frac{u_{n l}(r)}{r} Y_{l m}(\theta, \phi)
$$

取无量纲参数

$$
\rho=\frac{r}{\alpha}, \quad \lambda=\frac{2 E}{\hbar \omega}, \quad \alpha=\sqrt{\frac{\hbar}{m \omega}}
$$

$$
\frac{\partial^{2}}{\partial \rho^{2}} u(\rho)+\left[\lambda-\rho^{2}-\frac{l(l+1)}{\rho^{2}}\right] u(\rho)=0
$$

设径向波函数为 $u(\rho)=\rho^{l+1} e^{-\frac{\rho^{2}}{2}} v(\rho)$
$\Rightarrow \rho v^{\prime \prime}(\rho)+\left[2(l+1)-2 \rho^{2}\right] v^{\prime}(\rho)+(\lambda-2 l-3) \rho v(\rho)=0$

令 $y=\rho^{2}$
$\Rightarrow y v^{\prime \prime}(y)+\left[\left(l+\frac{3}{2}\right)-y\right] v^{\prime}(y)-\frac{2 l+3-\lambda}{4} v(y)=0$
合流超几何微分方程

$$
y v^{\prime \prime}(y)+\left[\left(l+\frac{3}{2}\right)-y\right] v^{\prime}(y)-\frac{2 l+3-\lambda}{4} v(y)=0
$$

在 $\mathbf{y}=0$ 处有正常解要求

$$
v(y)=c F\left(\frac{2 l+3-\lambda}{4}, l+\frac{3}{2}, y\right)
$$

为使在无穷远处 $R_{n l}(r) \rightarrow 0$ ，要求截断多项式，即有

$$
\begin{gathered}
\frac{2 l+3-\lambda}{4}=-n_{r} \quad \longrightarrow \quad \lambda=\frac{2 E}{\hbar \omega}=4 n_{r}+2 l+3 \\
E=\hbar \omega\left(2 n_{r}+l+\frac{3}{2}\right) \equiv\left(N+\frac{3}{2}\right) \hbar \omega \\
N=2 n_{r}+l
\end{gathered}
$$

三维各向同性谢振子的能级

$$
E=\left(N+\frac{3}{2}\right) \hbar \omega \quad N=2 n_{r}+l
$$

当给定N，

$$
\begin{aligned}
& 1 \quad N \text { 为奇 } \\
& \ell=N, N-2, \cdots, \\
& 0 \quad \mathrm{~N} \text { 为偶 } \\
& \begin{array}{cc}
\frac{N-1}{2} & \text { N为奇 } \\
\frac{N}{2} & \text { N为偶 }
\end{array}
\end{aligned}
$$

三维各向同性谐振子的能级简并度

$$
E=\left(N+\frac{3}{2}\right) \hbar \omega
$$

$$
N=2 n_{r}+l
$$

当 N 为奇，$\quad \ell=1,3,5, \cdots, N$

$$
g_{N}=\sum_{1,3, \cdots, N}(2 \ell+1)=2 \frac{N+1}{2} \frac{N+1}{2}+\frac{N+1}{2}=\frac{(N+1)(N+2)}{2}
$$

当 N 为偶，$\quad \ell=0,2,4, \cdots, N$

$$
g_{N}=\sum_{0,2, \cdots, N}(2 \ell+1)=2 \frac{N}{2}\left(\frac{N}{2}+1\right)+\left(\frac{N}{2}+1\right)=\frac{(N+1)(N+2)}{2}
$$

更高的对称性 SU（3）

い ム吕

＊力学量完备集 $\left\{\hat{H}, \hat{\vec{L}}^{2}, \hat{L}_{z}\right\}$

$$
\begin{aligned}
& \psi(r, \theta, \phi)=R_{n \ell}(r) Y_{\ell}^{m}(\theta, \phi)=\frac{u_{n \ell}(r)}{r} Y_{\ell}^{m}(\theta, \phi) \\
&-\frac{\hbar^{2}}{2 \mu} \frac{d^{2} u(r)}{d r^{2}}+\left[V(r)+\frac{\ell(\ell+1) \hbar^{2}}{2 \mu r^{2}}\right] u(r)=E u(r)
\end{aligned}
$$

当势函数满足 $r^{2} V(r) \xrightarrow{r \rightarrow 0} 0$ ，存在束缚态
波函数平方可积 $u(r)=r R(r) \xrightarrow{r \rightarrow \infty} 0$
$u(r)=r R(r) \xrightarrow{r \rightarrow 0} 0, ~$ 这保证 \hat{p}_{r} 是厄米算符
当 $\mathrm{r} \sim \mathrm{O}$ 时，$R(r) \sim r^{\ell}$

总结

＊氢原子

$$
E \psi=\underbrace{-\frac{\hbar^{2}}{2\left(m_{e}+m_{N}\right)} \nabla_{\vec{X}}^{2}}_{\text {氢原子自由运动 } \hat{H}_{X}} \psi \underbrace{-\frac{\hbar^{2}}{2 \mu} \nabla_{\vec{r}}^{2} \psi-\frac{Z e^{2}}{4 \pi \epsilon_{0} r} \psi}_{\text {电子和原子核的相对运动 } \hat{H}_{\vec{r}}} .
$$

$$
\frac{d^{2}}{d r^{2}} u(r)-\frac{\ell(\ell+1)}{r^{2}} u(r)+\frac{2 \mu E}{\hbar^{2}} u(r)+\frac{2 \mu e^{2}}{4 \pi \epsilon \hbar^{2}} \frac{u(r)}{r}=0
$$

引入无量纲参数

$$
\begin{aligned}
& \rho=\sqrt{-\frac{8 \mu E}{\hbar^{2}}} r, \quad \lambda=\frac{2 \mu e^{2}}{4 \pi \epsilon_{0} \hbar^{2}} \sqrt{\frac{-\hbar^{2}}{8 \mu E}}=\frac{1}{a_{0}} \sqrt{\frac{-\hbar^{2}}{2 \mu E}} \\
& \frac{d^{2}}{d \rho^{2}} u_{\ell}(\rho)-\frac{\ell(\ell+1)}{\rho^{2}} u_{\ell}(\rho)+\frac{\lambda}{\rho} u_{\ell}(\rho)-\frac{1}{4} u_{\ell}(\rho)=0 \\
& u(r)=r R(r) \xrightarrow[r \rightarrow \infty]{r \rightarrow 0} 0 \Longrightarrow \lambda \text { 取特定的数值 }
\end{aligned}
$$

总结

$$
\begin{gathered}
u_{\ell}(\rho) \sim \rho^{\ell+1} e^{-\rho / 2} v_{\ell}(\rho) \\
v(\rho)=\sum_{j=0}^{\infty} a_{j} \rho^{j} \quad a_{j+1}=\frac{j+l-1-\lambda}{(j+1)(j+2 l+2)} a_{j}
\end{gathered}
$$

截断要求

$$
j+l+1-\lambda=0 \quad \Longrightarrow \quad \lambda \equiv n=j+l+1
$$

\mathbf{n} 是整数，$n=1,2,3, \cdots$

径向波函数展开幂次

轨道角动量量子数

$$
\lambda=n=\frac{2 \mu e^{2}}{4 \pi \epsilon_{0} \hbar^{2}} \sqrt{\frac{-\hbar^{2}}{8 \mu E}}=\frac{1}{a_{B}} \sqrt{\frac{-\hbar^{2}}{2 \mu E}} \quad \Longrightarrow \quad E_{n}=-\frac{\hbar^{2}}{2 \mu a_{B}^{2} n^{2}}
$$

能级简并度为 \mathbf{n}^{2}

总结

＊三维各向同性谐振子
力学量完全集 $\left\{\hat{H}, \hat{L}^{2}, \hat{L}_{z}\right\}$

$$
\hat{H}=\frac{\hat{p}_{r}^{2}}{2 m}+\frac{\hat{L}^{2}}{2 m r^{2}}+\frac{1}{2} m \omega^{2} r^{2}
$$

波函数记作为 $\psi_{n l m}(r, \theta, \phi)$ ，定态薛定谔方程

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m}\left(\frac{1}{r} \frac{\partial}{\partial r^{2}} r-\frac{\hat{L}^{2}}{\hbar^{2} r^{2}}\right) \psi_{n l m}+\frac{1}{2} m \omega^{2} r^{2} \psi_{n l m}=E \psi_{n l m} \\
u(\rho)=\rho^{l+1} e^{-\frac{\rho^{2}}{2}} v(\rho) \text { 和 } y=\rho^{2} \\
y v^{\prime \prime}(y)+\left[\left(l+\frac{3}{2}\right)-y\right] v^{\prime}(y)-\frac{2 l+3-\lambda}{4} v(y)=0 \\
\text { 在 } \mathbf{y}=\mathbf{0} \text { 处有正常解要求 } \quad v(y)=c F\left(\frac{2 l+3-\lambda}{4}, l+\frac{3}{2}, y\right)
\end{gathered}
$$

总结

＊三维各向同性敩振子

在 $\mathbf{y}=\mathbf{0}$ 处有正常解要求 $v(y)=c F\left(\frac{2 l+3-\lambda}{4}, l+\frac{3}{2}, y\right)$
为使在无穷远处 $R_{n l}(r) \rightarrow 0$ ，要求截断多项式，即有

$$
\begin{gathered}
\frac{2 l+3-\lambda}{4}=-n_{r} \longrightarrow \lambda=\frac{2 E}{\hbar \omega}=4 n_{r}+2 l+3 \\
E=\hbar \omega\left(2 n_{r}+l+\frac{3}{2}\right) \equiv\left(N+\frac{3}{2}\right) \hbar \omega \\
N=2 n_{r}+l
\end{gathered}
$$

能级简并度为 $(\mathbf{n}+\mathbf{1})(\mathbf{n}+\mathbf{2}) \mathbf{2}$

