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Electron-Proton Scattering

& In this handout aiming towards a study of electron-proton
scattering as a probe of the structure of the proton e-

& Two main topics: e-
& ep — e-p elastic scattering
& e-p — e-X deep inelastic scattering (next lecture)

& But first consider scattering from a point-like particle,
e.g. e e-
euw —eu
i.e. the QED part of
(e7q — e7q)
& Two ways to proceed: " w
& perform QED calculation from scratch

8¢
(IMi|*) =
(p1—p3

& take results from e*e~ —u*u- and use “Crossing Symmetry” to
obtain the matrix element fore"u~ — e~u~

) [(P1-P2)(P3-p4) + (P1.p4)(P2-p3)] (1)



Crossing Symmetry

% Having derived the Lorentz invariant matrix element

for e*e~ = utu~ “rotate” the diagram to correspond
to e u™ — e u~ and apply the principle of crossing
symmetry to write down the matrix element !

% The transformation: | p; — pl; po — —ph: p3 — pls pa — —ph

ete” utus

w— rmn oy U

Changes the spin averaged matrix element for

e~e” 2 uuf ®» e u e u
pL P2 P34 py s PP

* Take ME for e*e~ = u*u~ (page 143) and apply crossing symmetry:

(IMfi]*) =

4 .p3)* + (p1-ps)’? 12 4(1?| Py)? +(p).ph)°
2 (p1 1”’) » <|Mﬁ| )= (P| P})

(1)



) o) 2 2
1. “4+(p1.p)* ST+ U
# (lei|2> :284 (1 | P4) (17I 12) (2) i 284 ( . )
(p1.p3)?

« Work in the C.o.M:

P3 ~C
p1 = (E,0,0,E) pz:(E’O’O’—E) e~ P > /\ -
p3 = (E,Esin6,0,Ecos0) / ‘ P2
ps = (E,—Esin6,0,—Ecos0) W P4

giving p1.p2 =2E%, p1.p3 =E*(1—cos8); pi.ps=E*(1+cos0)

10 4

E*(14cos0)? +4E* el — el
- (M) = 2220 o
E4(1 —cos6)? 10
do I (M2 = e [l -i—%(l +cosG)2] ?3102 Vs=1GeV
dQ ~ 64m2s 8%s (1 —cosB)? g
€10
* The denominator arises from the propagator —iguv / q2 % /5 = 10GeV
©
here C] = (p1 —p3)? = E*(1 —cos ) |
as q — () the cross section tends to infinity. O 0 o5



- What about the angular dependence of do et [l -+ %( | +cos 9)2]
the numerator ? dO ~ 87 (1— 0059)2

 The factor | + %(] + Ccos 9)2 reflects helicity (really chiral) structure of QED

» Of the 16 possible helicity combinations only 4 are non-zero:

MRR e MLL e MRL e MLR e
2" 2 2" 2
SN </ - - "4/ e & </
/ -1 /.‘-------—m- / - / -
w1 e VL e
A A : : A A

-1 cosB +1 -1 cosB +1 | -1 coso -1 cosO +1
S: — Z — +l S; — _l
— 0 ] 10 4( +cos0)

i.e. no preferred polar angle spin 1 rotation again



* The cross section calculated above is appropriate for the scattering of two
spin half Dirac (i.e. point-like) particles in the ultra-relativistic limit
(where both electron and muon masses can be neglected). In this case

12\ _ 4(17|-P4)2+(P1-P2)2
(IMfi]") =2e 2
(131-173)”

* We will use this again in the discussion of “Deep Inelastic Scattering” of
electrons from the quarks within a proton.

- Before doing so we will consider the scattering of electrons from the composite
proton -i.e. how do we know the proton isn’t fundamental “point-like” particle ?

e~ e m
* In this discussion we will not be able to use the
relativistic limit and require the general expression
for the matrix element:
P P wm
) 8C’4 5 5 7.0
(IMyi|") = o1 —pa) [(P1-2)(P3-Pa) + (P1-pa)(P2-p3) — (P1-p3)M* — (p1.pa)m” +2m*M*| | (3)




Probing the Structure of the Proton

% In €’ p — e7p scattering the nature of the interaction of the virtual
photon with the proton depends strongly on wavelength

¢ At very low electron energies A > I'p: e~
the scattering is equivalent to that from a
“point-like” spin-less object

e-
¢ At low electron energies A ~ Ip :
the scattering is equivalent to that from a
extended charged object

e-

¢ At high electron energies A < r,
the wavelength is sufficiently short to
resolve sub-structure. Scattering from
constituent quarks

¢ At very high electron energies A < I'p :
the proton appears to be a sea of
quarks and gluons.




Rutherford Scattering Revisited

% Rutherford scattering is the low energy
limit where the recoil of the proton can be

neglected and the electron is non-relativistic e‘ P .
 Start from RH and LH Helicity particle spinors (neglect proton recoil)
s
ur =N %‘»c uy =N %s N = V‘ E +m;
E'?.lme"‘bs —%ew’c s = sin(0/2); c=cos(6/2)
* Now write in terms of: — 1P| Non-relativistic limit: & — 0
E+m, Ultra-relativistic limit: o — |
¢ S
—> u=N eg’és up =N e(’x‘psc
ae'?s —oe'lc

and the possible initial and final state electron spinors are:
| 0 C —S

0 s f
ur(p1) =N, pe u(p1) =N, (]) ur(p3) = N, asc u(p3) =N, O(cs
0 — L os —Q0lC



* Consider all four possible electron currents, i.e. Helicities R—#R, L—L, LR, R—L

_?‘;}_'Z?e_ ur(p3)v*ur(pr) = (E+my) [(052 +1)c,2as, —2ias,2ac] (4)
9_4,.7‘6_ u (p3)v*u (pr) = (E+m,) [(Oc2 +1)c,2as, —2ias, 20| (3)
ey o u(p3)Yu(pr) = (E+m.) [(1—a?)s,0,0,0] (6)
.?:_—_v_,..ﬁe_ u (p3)v*ur(pr) = (E+m,) [(Oc2 ~1)s,0,0,0] (7)

* In the relativistic limit (a¢ =1 ),i.e. £ > m
(6) and (7) are identically zero; only R»R and L—L combinations non-zero

* In the non-relativistic limit, |p| < E we have o =0

wr(p3) v ur(pr) =) (p3)¥*u;(p1) = (2m,) [c,0,0,0]
ar(p3) Y uy(pr) = = (p3)Y*ur(p1) = (2me)15,0,0,0]

All four electron helicity combinations have non-zero Matrix Element

i.e. Helicity eigenstates = Chirality eigenstates



* The initial and final state proton spinors (assuming no recoil) are:

Solutions of Dirac

I 0
ur(0) = /2M,, (8) u (0)=./2M, ((l)) equation for a particle

at rest

0 0
giving the proton currents: jpTT = jpu - 2Mp ( l 3030,0)

Jpt1 =Jpi1 =0

* The spin-averaged ME summing over the 8 allowed helicity states

1 16M2m e 3 — s
(M%) = ¢! Z(16M2m2) (4c® + 4s%) = /\’ ’

4 4*

where ¢> = (p; — p3)*> = (0,p1 — p3)* = —4|f)'|2sm (6/2)

2...2 4 Note: in this limit all
<|M2 |> . Mpmee angular dependence
i

- |pl*sin*(6/2) s in the propagator

 The formula for the differential cross-section in the lab. frame is

1

do 1 .
— E| cosG) Myl ©

dQ ~ 64n2 <M+E|

10



* Here the electron is non-relativistic so £ ~ m, < M,, and we can neglect
E in the denominator of equation (8)

do I 2 m2e*

huali M
dQ 647:2M[2,| f 64m2|p|*sin®(0/2)

* Writing 82 = 4o and the kinetic energy of the electron as Ex = p2/2me

—) (d_O') — a2 (9)
dQ Rutherford l6E12< Sin4 9/2

% This is the normal expression for the Rutherford cross section. It could have
been derived by considering the scattering of a non-relativistic particle in the
static Coulomb potential of the proton V(?) , without any consideration of the
interaction due to the intrinsic magnetic moments of the electron or proton.
From this we can conclude, that in this non-relativistic limit only the interaction
between the electric charges of the particles matters.

11



The Mott Scattering Cross Section

» For Rutherford scattering we are in the limit where the target recoil is
neglected and the scattered particle is non-relativistic FEg < m,

* The limit where the target recoil is neglected and the scattered particle is
relativistic (i.e. just neglect the electron mass) is called Mott Scattering

* In this limit the electron currents, equations (4) and (6), become:
ur(p3)y*ur(pr1) =2E [c,s,—is,c]| ur(p3)y*u)(p1) = E[0,0,0,0]

Relativistic = Electron “helicity conserved”

* It is then straightforward to obtain the result:

’ 6
— (dG _ 0‘4 os2 2 (10)
dQ 2 gj 2
Mott k4E Sl': 6/ 2J N y
Rutherford formula Overlap between initial/final
with ¢, — F (F state electron wave-functions.
Ex =E (E>me) Just QM of spin %

% NOTE: we could have derived this expression from scattering of
electrons in a static potential from a fixed point in space V(?) .
The interaction is ELECTRIC rather than magnetic (spin-spin) in nature.

% Still haven’t taken into account the charge distribution of the proton..... o’



Form Factors

* Consider the scattering of an electron in the static potential F—7 V(?)
due to an extended charge distribution.

* The potential at 7 from the centre is given by: d
Qp(?,) 3 3=
V(7) = ———d°F  with F)d’r =1
() Il — 7] I p(7)
* In first order perturbation theory the matrix element is given by: . D3
o . Pi_,
Mi = (V@) = [ePTV@Henas i= ()
— // ig.r Qp ;q d‘%-old?-o_ // ig.(r—7v l([l Qp(—:’) d"i;*ld??
4r|r — 7| 4x|7 — P
- Fix 7 and integrate over d37 with substitution R=7-—7
My = / " QIRIdzR / p(F)e T & F = (Myi) poin F ()

% The resulting matrix element is equivalent to the matrix element for scattering
from a point source multiplied by the form factor

/p lqld3

13



do a2 ) 0 I\ 12
— ; cos” —|F(g°)|*
<dQ>Mott 4E?sin* 6 /2 2| )

*There is nothing mysterious about form factors — similar to diffraction of plane

waves in optics. The finite size of the scattering centre

introduces a phase difference between
plane waves “scattered from different points
in space”. If wavelength is long compared

> to size all waves in phase and F(Z[Q) =

n
>

For example:

point-like exponential Gaussian Uniform Fermi
D (?) sphere function
F(Eiz) unity \“dipole” \Gaussian sinc-like
Dirac Particle = Proton 6Li 40Ca

‘NOTE that for a point charge the form factor is unity.

14



Point-like Electron-Proton Elastic Scattering

« So far have only considered the case we the proton does not recoil...
For E, > m, the general case is

pi = (E,0,0,E)

e p2 = (M,0,0,0)

------- ps = (E3,0,E3sin60,E3¢c0s0)
ps = (Es,pa)

« From Eqn. (2) with m = m, = () the matrix element for this process is:

4
2 3¢

(|Mpi|°) =

(P1—p3

- Experimentally observe scattered electron so eliminate p4

» The scalar products not involving P4 are:
p1.p2 = EM p1-p3 = E1E3(1 —cos0) p2.p3 = EsM

« From momentum conservation can eliminate P4 : p4s=p1+p2—p3
p3-p4 = p3.p1+ p3.p2 — p3.p3 = E1E3(1 —cos 0) + EsM
p1-p4 = p1-p1+p1.p2 — p1-p3 = E{M — E1 E3(1 —cos 0)

) LIS
-------------------------------------------------------------------------

9. 2 :
I’l P1 = [1| |I’|| =m, '@'05 i.e. neglect m,

7 [(p1-p2)(p3.p4) + (p1-p4)(p2-p3) — (p1.p3)M*]  (11)

15



» Substituting these scalar products in Egn. (11) gives

(M)

8¢t

(p1 — p3)

8¢*

(P1—p3)

ME\E3 [(E) — E3)(1 —cos@) +M(1+cos6)]

-2ME,E3 (E| — E3)sin®(6/2) + Mcos*(6/2)] (12)

- Now obtain expressions for ¢g* = (p; — p3)* and (E| — E3)
C]2 = (p1 —1)3)2 = p% +p% —2p1.p3 = —2E|E3(1 —COSG) (13)

NOTE:

q2<0

= —4E E3sin® 0 /2

Space-like

(14)

* For (E| — E3) startfrom q.py = (p1 — p3).p2 = M(E| — E3)

and use

(g+p2)* =
@ +p3+2q.p =
g +M+2q.p, =
= q.p2 =

P
P
M2
—4°/2

q=(p1—p3) = (pa—p2)

16



* Hence the energy transferred to the proton:

(IMyi|*)

- For E > m, we have

7 (15)
E\—E3=———
T v
Because q2 is always negative FE| — E3 > () and the scattered
electron is always lower in energy than the incoming electron
« Combining equations (11), (13) and (14):
= 8¢’ OME\E [Mcos2 6/2 T o /2]
© 16E2EZsine/2” 2M
M2€4 R q2 5 ]
= cos“ 0 /2 — sin“ 0 /2
E\E3sin*6/2 [ 2= 50 /
2
dO’ o ] E3 |M |2 (,2 I
dQ ~ 64n2 \ ME, /! C=a
dG az E‘; ( 2 q2 2 )
= — | cos“0/2— sin“ @ /2
dQ  4EZsin* 60 /2 E) / 2M?2 / (16)

17



Interpretation

& So far have derived the differential cross-section for e-p — e-p elastic
scattering assuming point-like Dirac spin 2 particles. How should we
interpret the equation?

do a2 Er :

- (00829/2— 1 sin29/2)

dQ 4E7sin* 6 /2 E 2M?
& Compare with /do o2 0
= — 4 C082 —
dQ /v 4E2sin®6/2 2

the important thing to note about the Mott cross-section is that it is equivalent
to scattering of spin-'2 electrons in a fixed electro-static potential. Here the
term F; /E, is due to the proton recoil.

do o~ EA :

: 2 q )
— = cos“0/2 — sin“ 6 /2
dQ  4E7sin*6/2 E ( / gMz / )

J

Y

. the new term: o< Sin? % -) Ma_gneti_c i_nteracti_on : due to the
spin-spin interaction

18



» The above differential cross-section depends on a single parameter. For an electron
scattering angle @ , both q2 and the energy, F5, are fixed by kinematics

* Equating (13) and (15)

—2M(E| —E3) = —2E|E3(l —COSG)
E; M
Ey M+E;(1—-cos8)

» Substituting back into (13):

) 2ME? (1 —cos )

q:

~ M+E;(1—-cos8)

& eg.ep—ep at E,,=529.5 MeV, look at scattered electrons at 6 = 75°

For elastic scattering expect:
- ME,
 M+E (1 —=cos8)
B 038 x 529
938 +529(1 — cos75°)

E3

= 373 MeV

E;

E.B.Hughes et al., Phys. Rev. 139 (1965) B458

3000

529.50 Mev, 75° 1

2 -2 ..
2500k Qi*7S5 F 1

‘.
(HYDROGEN UNCORRECTED) {
20001 i

3 1500} |
The energy identifies the scatter as elasm

Also know squared four-momentum transfer

 2x938 x529%(1 — cos75°)
938+ 529(1 — cos 75°)

’|

q

=294MeV? .. .. w,

§'°°°\

L
360 370
SCATTERED ELECTRON ENERGY (MaY)

19



Elastic Scattering from a Finite Size Proton

% In general the finite size of the proton can be accounted for by introducing
two structure functions. One related to the charge distribution in the proton, Gg (q )
and the other related to the distribution of the magnetic moment of the proton, GM(q )

* It can be shown that equation (16) generalizes to the ROSENBLUTH FORMULA.

do o E3(Gg+rc,%4 , 0

— cos’ — +21G2 smze)
dQ  4EZsin*@/2E; \ (1+7) 2 M= 2

2
with the Lorentz Invariant quantity: | » — _ q > ()
4M?

« Unlike our previous discussion of form factors, here the form factors are a

function of q2 rather than 21'2 and cannot simply be considered in terms of the
FT of the charge and magnetic moment distributions.

But q2 = (E1 — E3)2 — ij and from eq (15) obtain

~ )

So for

20



* Hence in the limit 612/4M2 < 1 we can interpret the structure functions in
terms of the Fourier transforms of the charge and magnetic moment distributions

Ge(q?) ~ Ge(@) = [ ¥ p (M7
Gu(q®) ~ Gu(@) = [ ¥ u(F)d'F

* Note in deriving the Rosenbluth formula we assumed that the proton was
a spin-half Dirac particle, i.e.

* However, the experimentally measured value of the proton magnetic moment
is larger than expected for a point-like Dirac particle:

e -
i —2795%
H M

So for the proton expect

GE(0) = / pAEF=1  Gu(0)= / w(FEF = p, = +2.79

» Of course the anomalous magnetic moment of the proton is already evidence
that it is not point-like !
21



Measuring GE(qz) and GM(qz)

* Express the Rosenbluth formula as:

2 2 [
do (do) (GE+TGM+2rG§4tan25)
0

dQ  \dQ (1+7)
where 2 i.e. the Mott cross-section including
d_G — - E3 C082 9 the proton recoil. It corresponds
dQ /, 4Ei") sin 0/2 E, 2 to scattering from a spin-0 proton.

"At very low g% T = —q*/AM* =0 at highg?: T>1

do do do do 50N\ o, 2
i ) ~GR(2 — — | &~ (| 1+4+27tan” = | Gy (g
a0 (dQ)(, ~GE(7) dQ (dQ>() ( 2 ) Cula)
’In general we are sensitive to both structure __=

functions! These can be resolved from A=gie =

the angular dependence of the cross - X

section at FIXED (2 = \

q 3g slope = 2tG%,

T intercept = (gertfm)

tan® 6 /2

22



& EXAMPLE: e-p — e-p at E,_,,= 529.5 MeV

eam

& Electron beam energies chosen to give certain values of q2
& Cross sections measured to 2-3 %

PROTON

o  ¢*=293MeV?

%

L
s
PROION FORM FACTORS

s ® JANSSENS et of M

A DUDELZAX et ot

v ORICKEY ot o Experimentally find
LEMMANN ot ol, GM(qZ) — 2.79GE(q2),

I.e. the electric and

do/dn (eme/STERADIAN)
o
e

PROTON
CROSS

3
-

E.B.Hughes et al., Phys. Rev. 139 (1965) B458
o,

p SECTioNS and magnetic form
E factors have same
- distribution
Lok 8 ¢ 3 ) . o g o M
0 200 400 600 800 1000 0 . ISR,
INCIDENT ENERGY (MeV)
0 0.5 , 1.0
qg°/GeV-

23



Higher Energy Electron-Proton Scattering

% Use electron beam from SLAC LINAC: 5<E . <20 GeV

eam

* Detect scattered electrons using the
“8 GeV Spectrometer”

OETECTOR
SHELDING

bending magnets

PLAN VIEW HODOSCOPES

P.N.Kirk et al., Phys Rev D8 (1973) 63

24



High 4° Results

% Form factor falls rapidly with 612

_ Prolonformfactor * Proton is not point-like
Point-like proton | * Good fit to the data with “dipole form”:
[ Sttt GI’( 2) .y G)I"'f ot |
EXT)™ 3579~ (1+42/0.71GeV2)?
A . i % Taking FT find spatial charge and
= I magnetic moment distribution
& 2\ .
S o (] + 0.7|ch-) ' p(r) = poe r/a
10 r E
with a~0.24 fm
: Corresponds to a rms charge radius
w0 : Frms =~ 0.8 fm
* ] % Although suggestive, does not
o T e T e imply proton is composite !
p) '
q-/GeV- _
% Note: so far have only considered
R.C.Walker et al., Phys. Rev. D49 (1994) 5671 E| ASTIC scattering; Inelastic scattering
A.F.Sill et aI., PhyS. Rev. D48 (1993) 29 iS the SUbjeCt Of neXt handout
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Summary: Elastic Scattering

* For elastic scattering of relativistic electrons from a point-like Dirac proton:

dO' a2 Ex 2
— - cos2 9 _ q_2 sin’ %
dQ 4E-§m 9/2 E, 2 2M -
" \_V_’ \ Y ) Y /
Rutherford | |Proton | [Electric/ Magnetic term
recoil Magnetic due to spin
scattering

* For elastic scattering of relativistic electrons from an extended proton:

do o E3(Gi~+rG,2w , 0

cos” — +27Gj; sin 9)
dQ  4E]sin*6/2E; \ (1+7) 2 e 2

Rosenbluth Formula

* Electron elastic scattering from protons demonstrates that the proton is an
extended object with rms charge radius of ~0.8 fm



