
exactly (3.90). The half-space potential has the same eigenfunctions and eigenvalues as

the odd-parity solutions to the symmetric potential.

3.3 Electron Tunneling

WKBJ is often used to calculate the tunneling rate of particles through potential barriers.

Of course, it is better to use exact eigenfunctions for the evanescent waves, but they are

often unavailable. WKBJ is usually an accurate method of obtaining the tunneling rates.

A potential barrier has V(x) > E. For this case the momentum is an imaginary variable.

The amplitude of the eigenfunction in the barrier has the form

w(x)¼T0 exp["a(x)] (3:91)

a(x)¼
ffiffiffiffiffiffiffi
2m
p

!h

Z x

0
dx¢

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V (x¢)"E

p
(3:92)

The prefactor is usually taken to be a constant T0, with no momentum term. The barrier is

considered to be over the interval 0< x< L, and the phase integral is started at x¼ 0.

There is never a phase constant such as p/4 for the evanescent wave. The tunneling

probability is the absolute magnitude squared of the eigenfunction at x¼ L:

P¼ jw(L)j2¼ jT0j2 exp ["2a(L)] (3:93)

The first case is a simple repulsive square well of height V0 > 0 and width L. The

tunneling probability is

a(L)¼ cL, c¼
ffiffiffiffiffiffiffi
2m
p

!h

ffiffiffiffiffiffiffiffiffiffiffiffi
V0"E

p
(3:94)

P¼ jw(L)j2¼ jT0j2 exp ["2cL] (3:95)

The same result is found when solving the exact eigenfunction.

The next case is called Fowler-Nordheim tunneling. The usual experimental geometry is

to put a positive voltage on the surface of a metal to assist electrons to exit the surface.

Figure 3.6 shows the surface region. The shaded region on the left shows the occupied

electron states E< l, where l is the chemical potential. The electrons are confined to the

metal by a step potential that has a work function ef from the chemical potential. The

external potential is represented by an electric field E that makes F¼ eE. The potential

function is V(x)¼ ef" Fx, where its zero is defined as the chemical potential. The

tunneling exponent is

a(x)¼
ffiffiffiffiffiffiffi
2m
p

!h

Z x

0
dx¢

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e/"Fx¢"E

p
(3:96)

The electron exits the triangular barrier at the point x¢¼ L¼ (ef"E)/F. The integral is

similar to those for the linear potential

a(L)¼ 2

3

ffiffiffiffiffiffiffi
2m
p

!hF
[e/"E ]3=2 (3:97)
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P¼ jT0j2 exp["2a(L)] (3:98)

The interesting feature is that the tunneling rate has an exponent that is inversely pro-

portional to the applied field F. At large values of the electric field, the exponent becomes

small and the tunneling is very rapid. The factor ef"E must be positive or there is no

need to tunnel.

When an electron is outside of the surface of a perfect conductor, it has an image potential

"e2/4x. A better theory of Fowler-Nordheim tunneling includes this image potential:

V(x)¼ e/" Fx" e2

4x
(3:99)

This potential is shown in figure 3.6b. There are now two turning points bL,R that are both

positive. They are found as the points where V(b)¼E:

0¼ e/"Fb"E" e2

4b
(3:100)

bj¼ n –
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2"e2=4F

q
, n¼ e/"E

2F
(3:101)

a¼
ffiffiffiffiffiffiffiffiffiffi
2mF
p

!h2

Z bR

bL

dx¢ffiffiffiffi
x¢
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(bR"x¢)(x¢"bL)

p
(3:102)

bR¼ nþ ffiffiffiffiffiffi$ $ $p
and bL¼ n" ffiffiffiffiffiffi$ $ $p

. The factor of x2" e2/4F must be positive. In figure 3.6b,

this constraint means that E is less than the top of the potential barrier.

The above integral is expressed in terms of complete elliptic integrals:

a¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mFbR
p

3!h2 2nE(p)"2bLK(p)½ &, p2¼ bR" bL

bR
(3:103)

This expression is usually evaluated on the computer. The image correction to Fowler-

Nordheim tunneling is most important at large values of field F.

3.4 Variational Theory

The variational method is useful for finding the eigenfunction and eigenvalue of the

lowest bound state of a Hamiltonian. The lowest bound state is called the ground state.

(a) (b)

Figure 3.6. Fowler-Nordheim tunneling. (a) Electrons must tunnel through a

triangular barrier. (b) The addition of the image potential reduces the barrier height.
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